聚乳酸纤维沙袋沙障降解老化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸,又称聚丙交酯,因原材料易获取,可完全降解,无害性等特点,在减少环境污染、节省石油资源及减轻地球温室效应方面具有重要的应用意义,因而被认为是最具发展前景的理想绿色高分子材料之一。聚乳酸已被引入到我国的荒漠化防治领域并且取得了理想的防沙固沙效果,目前主要的利用途径是铺设聚乳酸沙障。
     本研究通过在乌兰布和沙漠及毛乌素沙地铺设不同规格的聚乳酸沙障,测定沙障不同铺设时间及铺设位置下的物理、化学性能、热性能及表面形貌变化,解析了聚乳酸沙障的降解老化过程,揭示了影响聚乳酸沙障降解老化的主要因素。通过对比其他常见高分子纤维材料沙障在沙区应用的老化情况,评价了聚乳酸沙障的耐久性。针对聚乳酸沙障在沙区应用过程中出现的漏沙现象,提出了解决办法并进行了验证。主要结论如下:
     (1)聚乳酸沙障织物的顶破强力损失率、失重率和单纱断裂强度损失率均随着铺设时间的延长而增大,至5a时,三者的平均值分别为44.1%,22.21%,70.53%,变化速度并不一致。
     (2)单根聚乳酸沙障障体上下左右4个不同部位的沙障降解老化程度由高到低依次为:障体迎风面、障体顶部、障体背风面、障体贴地面,且四者之间的差异性随时间增加逐渐减小。说明风沙活动对聚乳酸沙障的降解老化起着最重要的作用,其次是光照和水分影响,且随时间增加,这些环境因素之间的影响力差异逐渐减小。
     (3)乌兰布和沙漠沙障障体暴露面的降解程度高于贴地面部分,且二者差异较大。而毛乌素沙地沙障障体暴露面与贴地面的降解程度之间差异较小,表明不同研究区域下风沙活动、光照及土壤水分等环境因素作用强度不一。生长季0.5-1a(5月-10月)的聚乳酸沙障降解程度较非生长季0.5-2a(11月-翌年4月)的稍大,表明不同取样时间下风沙活动、光照及土壤水分的差异对于聚乳酸沙障降解老化性能有重要的影响。
     (4)FT-IR分析显示聚乳酸沙障在前5a的整个降解老化过程中并无新旧官能团的产生及消失,表明其在沙区的应用性能较为稳定。到铺设5a时聚乳酸沙障的—CH发生明显振动,表明长时间的光照是影响聚乳酸沙障的主要因素之一;聚乳酸沙障相对分子量随时间增加逐步降低,分子量分布宽度逐渐变大,变化幅度分别为33.96%、6.63%,说明聚乳酸大分子逐渐降解为小分子。通过建立一级动力学模型方程预测聚乳酸沙障的使用寿命半衰期约为8.5a。
     (5)随着铺设时间的延长,聚乳酸沙障的玻璃化转变温度先上升后下降,同时,熔点下降,熔融焓增大,结晶度增大,表明聚乳酸沙障随铺设时间的延长降解老化程度不断加深,但仍处于无定型区降解阶段。
     (6)随铺设时间的延长,聚乳酸沙障障体的纱线结构由较为完整到开始出现凌乱和部分破坏,而纤维表面则由团簇状碎片、条状及片状剥皮逐渐发展至凹槽块状纤维脱落、开裂。初步判断聚乳酸沙障的降解老化尚处于初期至中期阶段,远未达到最终使用寿命。试验地同期铺设2a后,聚乳酸沙障的顶破强力损失率仅为25.06%,7种常规化纤材料沙障中顶破强力损失率最小的是47.68%,最大的已经达到100%。表明聚乳酸沙障具有比其他常规化纤材料沙障优越的耐降解老化性能,适宜在沙区推广使用。
     (7)不同铺设规格的聚乳酸沙障在降解老化过程中无明显差异。由于沙丘不同部位的风沙活动、光照、土壤水分含量等环境因素分布的差异而导致相应部位的聚乳酸纤维沙障降解程度不同,降解老化程度呈如下规律:沙丘顶部>迎风坡坡中>迎风坡坡底>背风坡坡底>背风坡坡中;迎风坡不同坡位的沙障整体降解老化程度比背风坡的偏大。不同沙埋深度的聚乳酸沙障降解老化程度随土壤含水率的变化表现为先增大后降低,且随沙埋时间的增加,不同埋深处的聚乳酸沙障降解老化程度差异越来越大。表明土壤水分是影响聚乳酸沙障降解老化的一个重要因素。
     (8)100℃沸水加热处理1.5min能显著增大聚乳酸沙障织物密度,减小织物孔径大小,使纵向长度为5cm的沙障织物的线圈数达到93个,明显改善漏沙情况,减少漏沙量为78.5%,对其本身的化学性能、热性能及表面形貌没有任何影响。但沙障织物纵向长度显著减小,单丝细度稍有下降,而横向宽度及重量变化不大。
The Polylactic Acid(PLA)has many advantages, such as easily available raw materials,good physical and chemical properties, complete biodegradable and harmless, which make ithas important significance in reducing environmental pollution, saving oil resources andreducing greenhouse gas effect. The PLA is becoming one of the most prospective greenenvironmental protection materials. The PLA materials have been introduced into the area ofdesertification combating, and achieved promising effects on desertification prevention andtreatment.
     Various patterns of the PLA sand barriers were laid on the dune of Ulanbuh desert and MuUs sandland and regularly sampled. The change of physical, chemical, thermal properties andsurface morphology of different part of PLA sand barriers with the increased laying time weremeasured, the process and laws and the main impact factors of the degradation of PLA sandbarriers were analyzed and revealed. Combined with laboratory simulation and field test, thepolish resistance properties of PLA sand barriers were evaluated and the empirical evaluationequation was established. The improvement measures for the sand leakage in the application ofPLA sand barriers were proposed and verified. The main conclusions are as follows:
     (1)The loss ratio of bursting strength,single yarn breaking strength and weight increasedwith the laying time, and reached to48.28%,78.77%and23.05%after5years, respectively.Their variation speed were inconformity.
     (2)The degradation degree of different part of the barrier body ranked in the descendingorder as windward part, top part, leeward part and the ground part. The difference of thedegradation degree for4parts of barrier body decreased with the increase of laying time, whichindicated that the wind-sand activity was the most important impact factor for the degradationof PLA sand barriers, following as light and soil water, the impact of environmental factorsdecreased with the increase of time.
     (3)The degradation degree of the exposed part of sand barriers was higher than theground part in Ulan buh desert, and the difference was significant. While the difference of thedegradation degree between the two parts in Mu Us Sandland was small, which indicated thatthe impact intensity of the wind-sand activity and light and soil water varied in different studyarea. The degradation degree of PLA sand barriers in growing season (May to October) andnon-growing season (November to following March) half year were different, and thedegradation degree in in growing season was higher than in non-growing season, whichindicated that the environment difference such as the wind-sand activity and light and soilwater between the sampling time impacted the degradation degree of sandbag barriers
     (4)The FT-IR analysis showed that there were no generation and disappear of new or oldfunctional groups, which indicated that the PLA sandbag barriers were stable in the sand area.The results of FTIR analysis showed that the–CH vibrated significantly, which indicated thatthe long time exposure to the light was one of the important factors that impact the degradationof PLA. The measurement of relative molecular weight showed that the relative molecularweight of PLA sand barriers decreased with the increase of time, the average value haddecreased33.96%. The distribution of relative molecular weight was becoming wider, theaverage value had decreased6.63%.which means that the degradation degree of PLA wasaggravating. The half life of the PLA sand barriers’ service life was predicted to be about8.5athrough the establishment of first order kinetics model.
     (5)The DSC thermal analysis results showed that with the extension of time, the glasstransition temperature of the PLA sand barriers first increased then decreased. Meanwhile, themelting point decreased, the melting enthalpy and crystallinity increased. All these indicatedthe degradation degree of PLA sand barriers was increasing with the extention of laying time,but it was still in the amorphous zone degradation stage.
     (6)The results of scanning electron microscope showed that the structures of barriers’yarns were destroyed with the extension of time. The demolishment of fiber surfacetransformed from strip peeling off to groove block off even to crack. It can be estimated that the PLA sand barriers were in the initial stage and medium stage of degradation. Theaccelerated degradation stage did not reached. The bursting strength loss rate of PLA sandbarriers was25.06%after being laid2years, while the bursting strength loss rate of7conventional chemical fiber materials varied from47.68%to100%, which indicates that thePLA sand barriers has the advantages of degradation resistence and they are suitable for beingwidely used in the sandy area
     (7)Due to the comprehensive effect of environmental factors, the degradation degrees ofthe PLA sandbarriers distributed on the different part of dune were different. The sand barrierslocated on the top of dunes and in the middle part of windward slope suffered the severestdegradation, followed as the bottom parts of windward and leeward slope, the middle part ofthe leeward slope suffered the least severe degradation. All the sand barriers laid on thewindward side suffered severer degradation than that laid on the leeward side.Overall, thedegradation degrees of the sand barriers distributed on different part of windward slope wereseverer than that of on leeward slope. There are no obvious differences in the degradationprocess of PLA sand barriers among different laying patterns. The experiment of sand bury inthe lowland showed that the degradation degrees varied with the difference of water content,the difference was becoming larger with the increase of burying time, which indicated that thesoil water content was an important factor that affects the PLA sand barriers degradation.
     (8)Boiled for1.5min in the100℃water, the fabric density of PLA sand barrierssignificantly increased, meanwhile the pore diameter of the fabric reduced significantly.Thenumber of coils reached93per5cm after boiling. The situation of the sand leakage of PLAsand barriers improved significantly, and the leakage amount of sand reached78.5%. Theimpact on the chemical and thermal properties and surface morphology was little. Whereas thelength of the fabric significantly reduced, the fineness of single yarn decreased slightly, so didthe width and the weight of fabric.
引文
[1]朱震达.中国沙漠化研究的进展[J].中国沙漠,1989,9(1):1-13.
    [2]王涛,赵哈林,肖洪浪.中国沙漠化研究的进展[J].中国沙漠,1999,19(4):299-311.
    [3]王涛.我国沙漠化研究的若干问题——3.沙漠化研究和防治的重点区域[J].中国沙漠,2004,24(1):1-9.
    [4]尚可政,董光荣,王式功,等.我国北方沙区气候变化对全球变暖的响应[J].中国沙漠,2001,21(4):72-77.
    [5]张奎壁,邹受益.治沙原理与技术[M].北京:中国林业出版社,1990.
    [6] Aubréville A. Climats, forêts et désertification de l'afrique tropicale [J].1949.
    [7]朱震达.中国土地荒漠化的概念、成因与防治[J].第四纪研究,1998,(2):145-155.
    [8]吴波,苏志珠,陈仲新.中国荒漠化潜在发生范围的修订[J].中国沙漠,2007,27(6):911-917.
    [9]慈龙骏.我国荒漠化发生机理与防治对策[J].第四纪研究,1998,(2):97-107.
    [10]葛绥成.中国北方气候干燥及沙漠扩大之研究[J].正官报史地,1941,9月3日—10月11日.
    [11]朱震达.土地荒漠化问题研究现状与展望[J].地理研究,1994,13(1):104-113.
    [12]朱震达,刘恕.关于沙漠化的概念及其发展程度的判断[J].中国沙漠,1984,4(3):2-8.
    [13]董玉祥.“荒漠化”与“沙漠化”[J].科技术语研究,2000,2(4):18-21.
    [14]司洪生.关于“荒漠化”与“沙漠化”概念的讨论[J].世界林业研究,1998,(1):69-72.
    [15]马世威,高永.荒漠化与沙漠化概念的争议及学术意义[J].内蒙古林学院学报,1998,(1):65-70.
    [16]董光荣,申建友,金炯,等.关于“荒漠化”与“沙漠化”的概念[J].干旱区地理,1988,11(1):58-61.
    [17]裴欢,覃志豪.干旱区绿洲荒漠化演变趋势及成因分析——以吐鲁番绿洲为例[J].地理科学,2012,32(4):506-510.
    [18]郭坚,王涛,薛娴,等.松嫩沙地荒漠化现状和原因[J].干旱区资源与环境,2007,21(5):99-103.
    [19]胥宝一,李得禄.河西走廊荒漠化及其防治对策探讨[J].中国农学通报,2011,27(11):266-270.
    [20]王鸣远,杨素堂.中国荒漠化防治与综合生态系统管理[J].西北林学院学报,2005,20(2):1-6.
    [21]慈龙骏,吴波.中国荒漠化气候类型划分与潜在发生范围的确定[J].中国沙漠,1997,17(2):107-111.
    [22] Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical Review,1948,38(1):55-94.
    [23] Dregne H E, Kassas M, Rozanov B. A new assessment of the world status of desertification[J].Desertification Control Bulletin,1991,(20):6-19.
    [24]张玉,宁大同, V.Smil.中国荒漠化灾害的经济损失评估[J].中国人口资源与环境,1996,6(1):49-53.
    [25]董光荣,吴波,慈龙骏,等.我国荒漠化现状、成因与防治对策[J].中国沙漠,1999,19(4):22-36.
    [26]丁国栋,赵廷宁,范建友,等.荒漠化评价指标体系研究现状述评[J].北京林业大学学报,2004,26(1):92-96.
    [27]孙保平.荒漠化防治工程学[M].中国林业出版社,2000.
    [28]刘玉璋,董光荣,李长治.影响土壤风蚀主要因素的风洞实验研究[J].中国沙漠,1992,12(4):44-52.
    [29] Chepil W S. Soil conditions that influence wind erosion[J]. USDA Technical Bulletin,1958, No.1185.
    [30] Terrence J, George R, Kenneth G. Soil erosion:Processes, prediction, measurement and control[M].New York: John Wiley&Son, Inc,2002.
    [31] Merrill S D, Black A L, Fryrear D W, et al. Soil wind erosion hazard of spring wheat-fallow as affectedby long-term climate and tillage [J]. Soil Science Society of America Journal,1999,63:1768-1777.
    [32] Blumberg D G, Greeley R. Field studies of aerodynamic roughness of fixed sandy beds[J].AridEnviron,1993,25:39-48.
    [33] Fryrear D W. Soil ridges clods and wind erosion[J].Trans of the ASAE,1984,27(2):445-448.
    [34]李金峰,孟杰,叶菁,等.陕北水蚀风蚀交错区生物结皮的形成过程与发育特征[J].自然资源学报,2014,29(1):67-69.
    [35] Liu Y, Yang H, Li X, et al. Effects of biological soil crusts on soil enzyme activities in revegetated areasof the tengger desert, china[J]. Applied Soil Ecology,2014,80(0):6-14.
    [36] Wu Y, Rao B, Wu P, et al. Development of artificially induced biological soil crusts in fields and theireffects on top soil[J]. Plant and soil,2013,370(1-2):115-124.
    [37] Guo Y, Zhao H, Zuo X, et al. Biological soil crust development and its topsoil properties in the processof dune stabilization, inner mongolia, china[J]. Environmental geology,2008,54(3):653-662.
    [38] Bowker M A, Miller M E, Belnap J, et al. Prioritizing conservation effort through the use of biologicalsoil crusts as ecosystem function indicators in an arid region[J]. Conservation Biology,2008,22(6):1533-1543.
    [39] Zhao J, Zheng Y, Zhang B, et al. Progress in the study of algae and mosses in biological soil crusts[J].Front Biol China,2009,4(2):143-150.
    [40] Belnap J, Prasse R, Harper K. Influence of biological soil crusts on soil environments and vascularplants[M]. Biological soil crusts: Structure, function, and management. Springer.2003:281-300.
    [41]胡英娣.几种化学固沙材料抗风蚀的风洞实验研究[J].中国沙漠,1997,17(1):103-106.
    [42]徐先英,唐进年,金红喜,等.3种新型化学固沙剂的固沙效益实验研究[J].水土保持学报,2005,19(3):62-65.
    [43]丁亮,湛文武,韩文峰.化学固沙新材料对沙丘内部温度、湿度影响的现场试验研究[J].工程地质学报,2004,12(z1):352-355.
    [44]温学飞,张亚峰.化学固沙剂对柠条出苗影响的研究[J].宁夏农林科技,2013,54(3):18-21.
    [45]凌裕泉.腾格里沙漠沙坡头地区流沙治理研究[M].银川:宁夏人民出版社1980.
    [46]常兆丰,仲生年,韩福桂,等.粘土沙障及麦草沙障合理间距的调查研究[J].中国沙漠,2000,20(4):111-113.
    [47]李生宇,雷加强.草方格沙障的生态恢复作用——以古尔班通古特沙漠油田公路扰动带为例[J].干旱区研究,2003,20(1):7-10.
    [48]王丽英,李红丽,董智,等.沙柳方格沙障对库布齐沙漠防风固沙效应的影响[J].水土保持学报,2013,27(5):115-118.
    [49]胡春元,杨茂,杨存良,等.库布齐沙漠穿沙公路沙害综合防治技术[J].干旱区资源与环境,2002,16(3):71-77.
    [50]高永,邱国玉,丁国栋,等.沙柳沙障的防风固沙效益研究[J].中国沙漠,2004,24(3):365-370.
    [51]高永,虞毅,龚萍,等.沙柳沙障[M].北京:科学出版社,2013.
    [52]王丽英,李红丽,董智,等.沙柳沙障对沙丘沙粒度组成与特征的影响[J].中国水土保持科学,2013,11(4):53-59.
    [53]万玲玲,董智,李红丽,等.沙柳方格沙障对库布齐沙漠沙丘粒度分布的影响[J].干旱区资源与环境,2013,27(1):165-170.
    [54]董智,李红丽,左合君,等.土壤凝结剂沙障防沙机理的风洞模拟实验研究[J].干旱区资源与环境,2004,18(3):154-159.
    [55]董智,李红丽,汪季,等.土工格栅沙障防风积沙效应风洞模拟实验[J].中国水土保持科学,2007,5(1):35-39.
    [56]屈建军,刘贤万,雷加强,等.尼龙网栅栏防沙效应的风洞模拟实验[J].中国沙漠,2001,21(3):62-66.
    [57]马全林,王继和,詹科杰,等.塑料方格沙障的固沙原理及其推广应用前景[J].水土保持学报,2005,19(1):36-39.
    [58]刘虎俊,王继和,李毅,等.塑料网方格沙障对新月形沙丘迎风坡的风沙流影响[J].水土保持学报,2011,25(5):26-29.
    [59]韩致文,刘贤万,姚正义,等.复膜沙袋阻沙体与芦苇高立式方格沙障防沙机理风洞模拟实验[J].中国沙漠,2000,20(1):41-45.
    [60]孙涛,刘虎俊,朱国庆,等.3种机械沙障防风固沙功能的时效性[J].水土保持学报,2012,26(4):12-16.
    [61]周丹丹,虞毅,胡生荣,等.沙袋沙障凹曲面特性研究[J].水土保持通报,2009,29(4):22-25.
    [62]周丹丹.生物可降解聚乳酸(PLA)材料在防沙治沙中的应用研究[D].呼和浩特:内蒙古农业大学,2009.
    [63]袁立敏,高永,虞毅,等. PLA沙障对土壤硬度的影响[J].中国水土保持科学,2010,8(4):90-94.
    [64]袁立敏,高永,李谦,等.沙袋沙障对沙丘植被特征的影响[J].水土保持通报,2011,31(5):80-84.
    [65]袁立敏. PLA沙障对土壤物理性质影响及其防护效益研究[D].内蒙古农业大学,2010.
    [66]韩春冬.聚乳酸纤维沙障断源输沙效果研究[D].内蒙古农业大学,2011.
    [67]韩春冬,高君亮,虞毅,等. PLA沙障对毛乌素沙地新月形沙丘土壤水分的影响[J].内蒙古林业科技,2011,36(4):1-4.
    [68]马全林,王继和,刘虎俊,等.机械沙障在退化人工梭梭林恢复中的应用[J].干旱区研究,2005,22(4):526-531.
    [69]任余艳,胡春元,贺晓,等.毛乌素沙地巴图塔沙柳沙障对植被恢复作用的研究[J].水土保持研究,2007,14(2):13-15.
    [70]万玲玲,董智,李红丽,等.沙柳方格沙障对土壤种子库的影响[J].中国水土保持科学,2011,9(4):78-85.
    [71]周丹丹,胡生荣,韩敏.沙柳沙障内植被恢复影响因子探究[J].水土保持研究,2008,15(6):115-118.
    [72]张风春,蔡宗良.活沙障适宜树种选择研究[J].中国沙漠,1997,(3):86-90.
    [73]曹显军.治理高大流动沙丘技术介绍植物再生沙障[J].内蒙古林业,2000,(2):30.
    [74] Tokiwa Y, Calabia B P. Biodegradability and biodegradation of poly (lactide)[J]. Appl MicrobiolBiotechnol,2006,72(2):244-251.
    [75] Madison L L, Huisman G W. Metabolic engineering of poly (3-hydroxyalkanoates): from DNA toplastic[J]. Microbiology and molecular biology reviews,1999,63(1):21-53.
    [76] Steinbüchel A. Perspectives for biotechnological production and utilization of biopolymers: metabolicengineering of polyhydroxyalkanoate biosynthesis pathways as a successful example[J]. Macromolecul-lar Bioscience,2001,1(1):1-24.
    [77] Moon S I, Lee C W, Miyamoto M, et al. Melt polycondensation of L‐lactic acid with Sn (II) catalystsactivated by various proton acids: A direct manufacturing route to high molecular weight Poly (L‐lactic acid)[J]. Journal of Polymer Science Part A: Polymer Chemistry,2000,38(9):1673-1679.
    [78]寇士军.聚乳酸纤维的性能研究[D].天津:天津工业大学硕士学位论文,2004.
    [79] Kricheldorf H R. Syntheses and application of polylactides[J]. Chemosphere,2001,43(1):49-54.
    [80]秦志忠,秦传香,曹雪琴.聚乳酸的直接合成研究(Ⅱ)[J].合成技术及应用,2004,18(3):1-2.
    [81]盛敏刚,严永新,张金花,等.环境友好型生物降解材料聚乳酸的性能研究[J].中国农学通报,2007,23(9):499-503.
    [82]何虹.环保生物降解型聚乳酸(PLA)纤维[J].天津纺织科技,2005,43(2):11-17.
    [83]吕晶,张泉.聚乳酸复合纤维的性能及应用[J].产业用纺织品,2004,22(9):1-5.
    [84] Huneault M A, Li H. Morphology and properties of compatibilized polylactide/thermoplastic starchblends[J]. Polymer,2007,48(1):270-280.
    [85] Wang W, Ping P, Chen X, et al. Polylactide-based polyurethane and its shape-memory behavior[J].European polymer journal,2006,42(6):1240-1249.
    [86] Gupta B, Revagade N, Hilborn J. Poly (lactic acid) fiber: an overview[J]. Progress in polymer science,2007,32(4):455-482.
    [87] Lunt J. Polylactic acid polymers for fibers and nonwovens[J]. International Fiber Journal,2000,15(6):48-52.
    [88] Lee S H, Hyun Kim S, Han Y K, et al. Synthesis and degradation of end‐group‐functionalizedpolylactide[J]. Journal of Polymer Science Part A: Polymer Chemistry,2001,39(7):973-985.
    [89] Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media[J]. Journal of Materials Science: Materials in Medicine,1990,1(4):198-206.
    [90] Fukuzaki H, Yoshida M, Asano M, et al. Synthesis of copoly (d, l-lactic acid) with relatively lowmolecular weight and in vitro degradation[J]. European polymer journal,1989,25(10):1019-1026.
    [91] Tsuji H, Miyauchi S. Poly(l-lactide): VI Effects of crystallinity on enzymatic hydrolysis ofpoly(l-lactide) without free amorphous region[J]. Polymer degradation and stability,2001,71(3):415-424.
    [92] Liu L, Li S, Garreau H, et al. Selective enzymatic degradations of poly (L-lactide) and poly(ε-caprolactone) blend films[J]. Biomacromolecules,2000,1(3):350-359.
    [93] Kikkawa Y, Fujita M, Abe H, et al. Effect of water on the surface molecular mobility of poly (lactide)thin films: an atomic force microscopy study[J]. Biomacromolecules,2004,5(4):1187-1193.
    [94]郭尚春,孙皎.影响聚乙交酯丙交酯降解性能的因素[J].口腔材料器械杂志,2002,11(4):201-203.
    [95] Tsuji H, Ikarashi K. In vitro hydrolysis of poly (l-lactide) crystalline residues as extended-chaincrystallites: III. Effects of pH and enzyme[J]. Polymer degradation and stability,2004,85(1):647-656.
    [96]马晓妍,石淑先,夏宇正,等.聚乳酸及其共聚物的制备和降解性能[J].北京化工大学学报,2004,31(1):51-56.
    [97] Helbling C, Abanilla M, Lee L, et al. Issues of variability and durability under synergistic exposureconditions related to advanced polymer composites in the civil infrastructure [J]. Composites Part A:Applied Science and Manufacturing,2006,37(8):1102-1110.
    [98] pekogˇLu B, B ke H, izer Assessment of material use in relation to climate in historical buildings[J]. Building and environment,2007,42(2):970-978.
    [99] Jakubowicz I, Yarahmadi N, Petersen H. Evaluation of the rate of abiotic degradation of biodegradablepolyethylene in various environments [J]. Polymer degradation and stability,2006,91(7):1556-1562.
    [100] Johnson K E, Pometto A L, Nikolov Z L. Degradation of degradable starch-polyethylene plastics in acompost environment[J]. Applied and environmental microbiology,1993,59(4):1155-1161.
    [101] Ho K-L G, Pometto Iii A L, Hinz P N. Effects of temperature and relative humidity on polylactic acidplastic degradation[J]. Journal of environmental polymer degradation,1999,7(2):83-92.
    [102] Briassoulis D. Analysis of the mechanical and degradation performances of optimised agriculturalbiodegradable films [J]. Polymer degradation and stability,2007,92(6):1115-1132.
    [103] Briassoulis D. Mechanical behaviour of biodegradable agricultural films under real field conditions [J].Polymer degradation and stability,2006,91(6):1256-1272.
    [104] Wiles D M, Scott G. Polyolefins with controlled environmental degradability [J]. Polymer degradationand stability,2006,91(7):1581-1592.
    [105] Koutny M, Lemaire J, Delort A-M. Biodegradation of polyethylene films with prooxidant additives [J].Chemosphere,2006,64(8):1243-1252.
    [106] Shyichuk A, Stavychna D, White J. Effect of tensile stress on chain scission and crosslinking duringphoto-oxidation of polypropylene [J]. Polymer degradation and stability,2001,72(2):279-285.
    [107] Nakamura H, Nakamura T, Noguchi T, et al. Photodegradation of PEEK sheets under tensile stress [J].Polymer degradation and stability,2006,91(4):740-746.
    [108] Ishigaki T, Sugano W, Ike M, et al. Effect of UV irradiation on enzymatic degradation of celluloseacetate[J]. Polymer degradation and stability,2002,78(3):505-510.
    [109] Iovino R, Zullo R, Rao M, et al. Biodegradation of poly (lactic acid)/starch/coir biocomposites undercontrolled composting conditions[J]. Polymer degradation and stability,2008,93(1):147-157.
    [110] El-Hadi A, Schnabel R, Straube E, et al. Correlation between degree of crystallinity, morphology, glasstemperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and theirblends[J]. Polymer testing,2002,21(6):665-674.
    [111] Briassoulis D. The effects of tensile stress and the agrochemical Vapam on the ageing of low densitypolyethylene (LDPE) agricultural films. Part I. Mechanical behaviour[J]. Polymer degradation andstability,2005,88(3):489-503.
    [112] Duval C. Matériaux dégradables In Matières plastiques et environnement–Recyclage, valorisation,biodégradabilité, écoconception[J]. DUNOD, Paris,2004,
    [113] He Y, Qian Z, Zhang H, et al. Alkaline degradation behavior of polyesteramide fibers: surfaceerosion[J]. Colloid and Polymer Science,2004,282(9):972-978.
    [114] Tsuji H, Ikada Y. Properties and morphology of poly (L-lactide)4. Effects of structural parameters onlong-term hydrolysis of poly (L-lactide) in phosphate-buffered solution[J]. Polymer degradation andstability,2000,67(1):179-189.
    [115] Müller R-J, Witt U, Rantze E, et al. Architecture of biodegradable copolyesters containing aromaticconstituents[J]. Polymer degradation and stability,1998,59(1):203-208.
    [116] Yew G, Mohd Yusof A, Mohd Ishak Z, et al. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites[J]. Polymer degradation and stability,2005,90(3):488-500.
    [117] Le Digabel F, Avérous L. Effects of lignin content on the properties of lignocellulose-basedbiocomposites [J]. Carbohydrate polymers,2006,66(4):537-545.
    [118] Bonhomme S, Cuer A, Delort A, et al. Environmental biodegradation of polyethylene[J]. Polymerdegradation and stability,2003,81(3):441-452.
    [119] Zanardini E, Abbruscato P, Ghedini N, et al. Influence of atmospheric pollutants on thebiodeterioration of stone[J]. International Biodeterioration&Biodegradation,2000,45(1):35-42.
    [120] Lugauskas A. Micromycetes as deterioration agents of polymeric materials[J]. InternationalBiodeterioration&Biodegradation,2003,52(4):233-242.
    [121] Walsh J. Ecological considerations of biodeterioration[J]. International Biodeterioration&Biodegradation,2001,48(1):16-25.
    [122] Hueck H. The biodeterioration of materials—an appraisal[J]. International Biodeterioration&Biodegradation,2001,48(1):5-11.
    [123] Gu J-D. Microbiological deterioration and degradation of synthetic polymeric materials: recentresearch advances[J]. International Biodeterioration&Biodegradation,2003,52(2):69-91.
    [124]王淮亮.基于数字图像处理的风蚀地表颗粒特征研究[D].呼和浩特;内蒙古农业大学,2013.
    [125] Deng C, Tian H, Zhang P, et al. Synthesis and characterization of RGD peptide grafted poly (ethyleneglycol)-b-poly (L-lactide)-b-poly (L-glutamic acid) triblock copolymer[J]. Biomacromolecules,2006,7(2):590-596.
    [126] Carrasco F, Pagès P, Gámez-Pérez J, et al. Processing of poly(lactic acid): Characterization of chemicalstructure, thermal stability and mechanical properties[J]. Polymer Degradation and Stability,2010,95(2):116-125.
    [127] Lucas N, Bienaime C, Belloy C, et al. Polymer biodegradation: mechanisms and estimation techniques[J]. Chemosphere,2008,73(4):429-442.
    [128]余序芬,鲍燕萍,吴兆平,等.纺织材料实验技术[M].北京:中国纺织出版社,2008.
    [129]张卓,姜亚明,肖海洋.针织物钢球法顶破强力测试的研究进展[J].针织工业,2009,(12):61-62.
    [130]华慧,张秀芳,沈新元.干湿纺聚乳酸纤维的体外降解性能[J].高分子材料科学与工程,2007,23(3):109-112.
    [131]吴双全,张佩华,郭正.不同比例PGA/PLA编织线的体外降解性能[J].东华大学学报:自然科学版,2009,(3):274-278.
    [132] Carrasco F, Lacorte T, Brice o K. Fourier transform IR and differential scanning calorimetry study ofcuring of trifunctional amino‐epoxy resin[J]. Journal of applied polymer science,2005,98(4):1524-1535.
    [133] Ca avate J, Pagès P, Saurina J, et al. Determination of small interactions in polymer composites bymeans of FTIR and DSC[J]. Polymer Bulletin,2000,44(3):293-300.
    [134] Colomw X, Canavate J, Pag s P, et al. Changes in crystallinity of the HDPE matrix in composites withcellulosic fiber using DSC and FTIR[J]. Journal of reinforced plastics and composites,2000,19(10):818-830.
    [135] Sánchez-Soto M, Pagés P, Lacorte T, et al. Curing FTIR study and mechanical characterization of glassbead filled trifunctional epoxy composites[J]. Composites Science and Technology,2007,67(9):1974-1985.
    [136] Lacorte T, Lipinska M, Carrasco F. Study of curing of layered silicate/trifunctional epoxynanocomposites by means of FTIR spectroscopy[J]. Journal of applied polymer science,2008,108(4):2107-2115.
    [137] Vasanthan N, Salem D. Structure characterization of heat set and drawn polyamide66fibers by FTIRspectroscopy[J]. Material Research Innovations,2001,4(2-3):155-160.
    [138]王玉海,沈浩,麦堪成.纳米CaCO3/PP复合材料光氧老化行为的红外光谱研究[J].中山大学学报:自然科学版,2008,47(3):62-66.
    [139] Fukushima K, Abbate C, Tabuani D, et al. Biodegradation of poly(lactic acid) and itsnanocomposites[J]. Polymer Degradation and Stability,2009,94(10):1646-1655.
    [140] Sui X, Yuan J, Zhou M, et al. Synthesis of cellulose-graft-poly (N, N-dimethylamino-2-ethylmethacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media[J].Biomacromolecules,2008,9(10):2615-2620.
    [141] Fan Y, Nishida H, Shirai Y, et al. Thermal degradation behaviour of poly (lactic acid) stereocomplex[J].Polymer Degradation and Stability,2004,86(2):197-208.
    [142] Carrasco F, Pages P. Thermal degradation and stability of epoxy nanocomposites: influence ofmontmorillonite content and cure temperature[J]. Polymer Degradation and Stability,2008,93(5):1000-1007.
    [143] Qin L, Qiu J, Liu M, et al. Mechanical and thermal properties of poly(lactic acid) composites with ricestraw fiber modified by poly(butyl acrylate)[J]. Chemical Engineering Journal,2011,166(2):772-778.
    [144] Ren Z, Dong L, Yang Y. Dynamic mechanical and thermal properties of plasticized poly (lactic acid)[J]. Journal of applied polymer science,2006,101(3):1583-1590.
    [145] Witzke D R, Narayan R, Kolstad J J. Reversible kinetics and thermodynamics of thehomopolymerization of L-lactide with2-ethylhexanoic acid tin (II) salt[J]. Macromolecules,1997,30(23):7075-7085.
    [146] Ljungberg N, Andersson T, Wesslén B. Film extrusion and film weldability of poly (lactic acid)plasticized with triacetine and tributyl citrate[J]. Journal of applied polymer science,2003,88(14):3239-3247.
    [147]白建颖.土工布老化试验研究[J].纺织学报,1996,17(5):54-56.
    [148]魏晓丽.聚丙烯土工布纤维抗老化性能研究与测试[D].天津工业大学硕士研究生论文,2003.
    [149] Pranamuda H, Tokiwa Y, Tanaka H. Polylactide Degradation by an Amycolatopsis sp[J]. Applied andenvironmental microbiology,1997,63(4):1637-1640.
    [150] Tansengco M L, Tokiwa Y. Comparative population study of aliphatic polyesters-degradingmicroorganisms at50C[J]. Chemistry Letters,1998,(10):1043-1044.
    [151] Suyama T, Tokiwa Y, Ouichanpagdee P, et al. Phylogenetic affiliation of soil bacteria that degradealiphatic polyesters available commercially as biodegradable plastics[J]. Applied and environmentalmicrobiology,1998,64(12):5008-5011.
    [152] Agarwal M, Koelling K W, Chalmers J J. Characterization of the degradation of polylactic acidpolymer in a solid substrate environment[J]. Biotechnology progress,1998,14(3):517-526.
    [153] Lalla J, Chugh N. Effects of morphology, conformation and configuration on the IR and Ramanspectra of various poly (1actic acid)[J]. Indian Drugs,1990,27(10):516-522.
    [154] Park J, Lee D, Yoo E. Melt theology of poly (1actic acid): Consequences of blending chainarchitectures[J]. Korea Polymer Journal,1999,7(2):93-101.
    [155]王媛,纪乐,王庭慰.聚乳酸的紫外光解和沸水降解[J].南京工业大学学报(自然科学版),2009,31(2):69-76.
    [156] Younes H, Cohn D. Phase separation in poly (ethylene glycol)/poly (lactic acid) blends[J]. Europeanpolymer journal,1988,24(8):765-773.
    [157] Garlotta D. A literature review of poly (lactic acid)[J]. Journal of Polymers and the Environment,2001,9(2):63-84.
    [158] Snook J B. Biodegradability of polylactide film in simulated composting environments[D]. MichiganState University. Department of Chemical Engineering,1994.
    [159] Mathisen T, Lewis M, Albertsson A C. Hydrolytic degradation of nonoriented poly (β‐propiolactone)[J]. Journal of applied polymer science,1991,42(8):2365-2370.
    [160] Migliaresi C, De Lollis A, Fambri L, et al. The effect of thermal history on the crystallinity of differentmolecular weight PLLA biodegradable polymers[J]. Clinical Materials,1991,8(1):111-118.
    [161] Cha Y, Pitt C. The biodegradability of polyester blends[J]. Biomaterials,1990,11(2):108-112.
    [162] Grizzi I, Garreau H, Li S, et al. Hydrolytic degradation of devices based on poly (DL-lactic acid)size-dependence[J]. Biomaterials,1995,16(4):305-311.
    [163]胡玉群,徐秀娟,周文龙.聚乳酸和涤纶纤维的鉴别方法[J].纺织学报,2006,27(5):16-18.
    [164] Gonzalez M, Ruseckaite R, Cuadrado T. Structural changes of polylactic‐acid (PLA) microspheresunder hydrolytic degradation[J]. Journal of applied polymer science,1999,71(8):1223-1230.
    [165] Duek E, Zavaglia C, Belangero W. In vitro study of poly (lactic acid) pin degradation[J]. Polymer,1999,40(23):6465-6473.
    [166] Li S, Mccarthy S. Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide) s[J]. Macromolecules,1999,32(13):4454-4456.
    [167]杨斌.绿色塑料聚乳酸[M].北京:化学工业出版社,2007.
    [168]原伟杰,虞毅,王戈,等.可降解聚乳酸沙障降解性能研究[J].水土保持通报,2012,32(3):107-110.
    [169]虞毅,高永,汪季,等.沙袋沙障防沙治沙技术[M].北京:科学出版社,2014.
    [170]石莎,冯金朝,邹学勇.不同地形条件对沙漠植物生长和沙地土壤水分的影响[J].干旱区地理,2007,30(6):846-850.
    [171]叶冬梅,秦佳琪,韩胜利,等.乌兰布和沙漠流动沙地土壤水分动态、土壤水势特征的研究[J].干旱区资源与环境,2005,19(3):126-130.
    [172] Mcneill I, Leiper H. Degradation studies of some polyesters and polycarbonates—1. Polylactide:general features of the degradation under programmed heating conditions[J]. Polymer Degradation andStability,1985,11(3):267-285.
    [173] Mcneill I, Leiper H. Degradation studies of some polyesters and polycarbonates—2. Polylactide:degradation under isothermal conditions, thermal degradation mechanism and photolysis of thepolymer[J]. Polymer Degradation and Stability,1985,11(4):309-326.
    [174] Kopinke F-D, Remmler M, Mackenzie K, et al. Thermal decomposition of biodegradablepolyesters—II. Poly (lactic acid)[J]. Polymer Degradation and Stability,1996,53(3):329-342.
    [175]李富强,王钊,陈轮,等.用数字图像技术测定反滤材料孔径分布曲线[J].岩土工程学报,2007,29(6):857-860.
    [176] Baxes G A. Digital image processing: principles and applications[M]. Wiley New York,1994.
    [177] Li Y-M, Wu X-J. Digital Image Processing Technique and its Application to test and Analysis inTextile Industry[J]. Journal of Shanghai University of Engineering Science,2005,20-22.
    [178] Xu B G, Murrells C M, Tao X M. Automatic measurement and recognition of yarn snarls by digitalimage and signal processing methods[J]. Textile Research Journal,2008,78(5):439-456.
    [179] Guha A, Amarnath C, Pateria S, et al. Measurement of yarn hairiness by digital image processing[J].The Journal of The Textile Institute,2010,101(3):214-222.
    [180] Kang T J, Kim C H, Oh K W. Automatic recognition of fabric weave patterns by digital imageanalysis[J]. Textile Research Journal,1999,69(2):77-83.
    [181] Bennamoun M, Bodnarova A. Digital image processing techniques for automatic textile qualitycontrol[J]. Systems Analysis Modelling Simulation,2003,43(11):1581-1614.
    [182] Cay A, Vassiliadis S, Rangoussi M. On the use of image processing techniques for the estimation ofthe porosity of textile fabrics[J].2004.
    [183] Stojanovic R, Mitropulos P, Koulamas C, et al. Real-time vision-based system for textile fabricinspection[J]. Real-Time Imaging,2001,7(6):507-518.
    [184]王鹿振.基于数字图像处理的风蚀地表粗化信息提取研究[D].北京:中国林业科学研究院,2010.
    [185]高君亮,高永,虞毅,等.基于数字图像处理技术的风蚀地表颗粒提取[J].水土保持通报,2012,31(6):139-142.
    [186]绪娟.聚乳酸纤维耐热性和耐酸碱性研究[D].东华大学,2012.
    [187]张一平.纬编针织物双向拉伸性能研究[D].东华大学,2011.
    [188]李孔虎,郑俞蕾,寿钱英,等.线圈长度对针织物顶破和穿刺性能的影响[J].山东纺织科技,2012,52(6):7-10.
    [189]吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700