次亚微米CMOS工艺下的ESD防护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着硅基CMOS工艺技术的不断进步,器件的特征尺寸已缩减至纳米阶段,目的是提高芯片的集成度、性能和运算速度,并降低单位芯片的制造成本。但由于新工艺技术的应用及电路性能的提高,使静电放电(electrostatic discharge, ESD)防护设计的设计难度加大,使得近几年ESD防护技术的发展变缓。目前ESD相关方面的研究是以ESD防护的器件级建模为主,这种研究方法忽视了防护结构面积及寄生效应对实际生产的影响,使得理论成果对于芯片生产指导有限。因此国内主流代工厂生产出的芯片其ESD防护部分仍然以传统的二极管和MOS结构为主,而较小规模的芯片设计厂商不仅其产品的ESD防护设计水平更低,其自身制造水平也以次亚微米工艺为主
     本论文采用华润上华0.6μm CSMC6S06DPDM-CT02CMOS工艺与香港应用科学与技术研究院(ASTRI)的相关ESD测试设备作为研究平台,以工艺—器件—电路—版图—全芯片作为研究主线,对次亚微米CMOS工艺条件下防护器件的ESD可靠性问题进行了系统研究。文中对现有ESD防护技术进行了全面的对比归纳,提出了多种全新的电路结构与版图布局方案。本论文的研究成果为次亚微米CMOS工艺条件下ESD防护技术的研究提供了理论依据。
     本文的主要研究内容概括如下:
     1.工艺与器件级ESD防护技术研究:通过对防护器件在ESD大电流条件下电、热特性的分析,得到了可用于定义仿真边界条件的器件失效量化表征量;利用器件的热平衡机理建立了ESD防护器件的解析模型;通过对ISE-TCAD中物理模型的对比研究,获得了可用于0.6μm CSMC6S06DPDM-CT02CMOS工艺条件下的ESD事件仿真优化物理模型;最后利用仿真与流片测试相结合的方法,对次亚微米工艺条件下源漏注入工艺、阱工艺、外延层与衬底工艺、栅氧工艺、Silicide工艺引起的ESD防护器件失效机理进行系统研究,并根据研究结论提出了改善各工艺条件下ESD防护器件性能的方案。
     2.电路与版图级ESD防护技术研究:1)电阻部分:以扩散电阻作为研究对象,对其在ESD大电流条件下的电流饱和现象进行了深入研究,由于该现象限制了ESD电流的快速泄放,使得扩散电阻无法作为独立的ESD防护结构使用,流片测试得到的结果验证了研究理论的正确性;2)二极管部分:针对ESD大电流条件下的二极管正、反向特性进行了研究,获得了二极管阳极有效宽度与ESD防护性能之间的关系,并利用仿真与流片测试结果,设计出了一种能够最大化阳极宽度的环形叉指平行布线二极管防护结构;3)MOS部分:从ESD大电流条件下的栅极接地NMOS(gate grounded NMOS, ggNMOS) snapback特性入手,对ggNMOS结构重要的电学指标进行了研究,通过仿真与流片测试,获得了ggNMOS版图参数、结构参数与ESD鲁棒性之间的关系,并针对多指条结构的不均匀导通问题,利用MOS结构的寄生电容特性,设计出了一种能够抑制“触发死区”现象的改进型栅耦合栅接地NMOS(gate coupled gate grounded NMOS, gc-ggNMOS)防护结构;4)最后总结前述的研究结论,以多ESD泄放通路作为设计目标,创新性地设计出了一种单指双通路ESD防护结构,通过与传统ggNMOS结构的流片测试结果对比表明,该全新防护结构能够在全面提高ESD鲁棒性指标的同时,有效降低芯片面积,该防护结构最终通过了5000V的人体放电模式(human body model, HBM)(?)试。3.全芯片级ESD防护技术研究:在系统分析了各种测试条件下ESD电流径对全芯
     片防护性能影响的基础上,通过传输线脉冲测试与失效分(transmission line pulsing, TLP)析研究,得到了总线杂散电容、电阻对全芯片防护设计影响的规律,并利用研究结果提出了可以提升芯片ESD耐压等级的版图布局方案;通过闩锁测试,分析了芯片端口处ESD防护结构形成闩锁的原因,并设计出了一种全新的抑制闩锁形成的版图布局方案。最终的研究结果显示,在不增加芯片面积、工艺步骤,且不影响核心电路正常工作的情况下,基于本文全芯片ESD防护设计理论制造出的HC132芯片最终通过了HBM条件下5000V的ESD耐压等级测试。全文最后根据总线串扰理论,提出了一种新的可以抑制ESD总线串扰的封装方案,将ESD防护设计方法从传统的片内设计扩展到了片外设计领域。
Along with the progress of silicon CMOS process technology, device’s feature size hasstepped into the nano-phase for the purpose to improve chip performance and operation speed,and to reduce cost of manufacture per chip as well. However, because of the generation ofnew technology and the improvement of circuit performance, the protection design of ESD(electrostatic discharge, ESD) is becoming more difficult. Therefore, ESD protectiontechnology has experienced a slowing development in recent years. Study on ESD is mainlyabout device-level modeling of ESD protection at present. This approach ignores the fact thatthe protection structure area and parasitic effect have some influence on actual production,which lead to limited guidance of theoretical results for chip production. So that the ESDprotection parts in chips of China’s mainstream foundry’s production are still mainly based ontraditional diodes and MOS structure. What’s more, ESD protection design level of smallerchip design manufacturer’s production is lower, and the production level itself is mostlysub-submicron technology-based.
     This paper uses0.6m CSMC6S06DPDM-CT02CMOS technology and the Hong KongApplied Science and Technology Research Institute (ASTRI)’s ESD test equipment as aresearch platform, technology-device-circuit-layout-full chip as the main line, systematicallystudying the protection device’s ESD reliability issues under the conditions of sub-submicron.Existing ESD protection technologies are compared comprehensively in this paper. Moreover,a variety of new concept of circuit structure and scheme of layout are proposed. The paper’sresearch results provide a theoretical basis for the research of ESD protection technologyunder the condition of sub-submicron CMOS process.
     The main contents of this paper are summarized as follows:
     1. Study of process and device level ESD protection technology: By analyzing electricaland thermal characteristics of protection device under ESD high current, the value ofquantitative characteristics of device failure which can be used to define the simulationboundary condition is found. By using heat balance mechanism in devices, analytical modelof ESD protection device is established. Through comparing physical models in ISE-TCAD,an optimized physical model of ESD event simulation is obtained, which can be used under0.6m CSMC6S06DPDM-CT02CMOS process condition. Finally, this paper studies thefailure mechanism of ESD protection devices which is manufactured by source and drainsimplantation process, well process, epitaxial layer and substrate process, gate oxide processand Silicide process under sub-submicron process condition, and uses the research results topropose the scheme to improve characteristics of ESD protection device under all process conditions.
     2. Study of circuit and layout level ESD protection technology:1) As for a resistor, thispaper uses diffusion resistance as object of study, and deeply studies its current saturationunder ESD high current condition. Since the phenomenon limits the ESD current rapiddischarge, diffusion resistance can not work as a separate ESD protection structure. The resultof chip test verifies the correctness of the research theory.2) For diode part, this paper studiesits forward and reverse characteristics under the condition of ESD high current, and finds therelationship between the effective width of the diode anode and ESD protection performance.Moreover, by using simulation and silicon test result, the diode with annular inter-digitalparallel wiring diode protection structure is designed to maximize the width of the anode.3)For MOS part, the paper starts from gate grounded NMOS, ggNMOS snapback characteristics,studies ggNMOS structure’s important electrical indicators, and obtains the relationshipbetween ggNMOS layout parameter, structure parameter and ESD robustness by simulatingand chip fabrication and test. Aiming at non-uniform conduction problem of multi-fingerstructure, by using the parasitic capacitance feature of MOS structure, this paper designs animproved gate coupled gate grounded NMOS gc-ggNMOS protection structure to inhibit thetrigger dead zone phenomenon.4) At last the paper makes a conclusion of previous studyresult. Aiming at designing ESD discharge path, a single finger and dual-channel ESDprotection structure is innovatively designed. Comparison with traditional ggNMOS structuretape-out and test results show that the new protection structure is able to improve ESDrobustness index, while effectively reduce utilization of the chip area. This protectionstructure has passed5000V human body model (HBM) test.
     3. Study of full-chip ESD protection technology: Through studying transmission linepulsing testing (TLP) and failure analysis, on the basis that the effect of ESD current path onperformance of full-chip protection is systematically studied under all test conditions, law thatbus stray capacitance and resistance’s influence on full-chip protection design is obtained.And layout plan that can help to improve chip ESD withstand voltage level is proposed byusing research results. Through the latch test, this paper analyzes the reason why ESDprotection structure forms latch at chip’s port, and therefore designs a new layout program toinhibit the formation of the latch. The final research results show that without increasing chiparea and process steps, and in the case not to influence the core circuit’s normal performances,based on the full-chip ESD protection design theory, the HC132chip finally passes the5000VESD withstand test under HBM condition. According to the bus crosstalk theory, the paperputs forward an innovative package program to inhibit ESD bus crosstalk, and extends the ESD protection design method from traditional on-chip design to off-chip design.
引文
[1.1] Yiqun Cao, Glaser U., Willemen J., On the dynamic destruction of LDMOStransistors beyond voltage overshoots in high voltage ESD,201032nd ElectricalOverstress/Electrostatic Discharge Symposium Proceedings (EOS/ESD).2010, p10.
    [1.2] Danniel F, Kary C.W., Venson C, Methodology for Prompt and Low Cost ESD Test,Semiconductor Technology.2009,12, v34, p1216.
    [1.3] Merrill R. and Issaq E., ESD design methodology, in Proc. EOS/ESD symp.,1993,p233–237.
    [1.4] Kwok Soohoo, Wielgos M, Case study of product defects found by air dischargemode ESD but missed by contact ESD,20081st Asia-Pacific Symposium on EMC(APEMC)&19th International Zurich Symposium on EMC&Exhibition.2008,6,p136.
    [1.5] Kim S. U., ESD induced gate oxide damage during wafer fabrication process, inProc. EOS/ESD Symp., Sept.1992, vol. EOS-14, pp.99–105.
    [1.6] Greason W. D., Electrostatic discharge: A charge driven phenomenon, in Proc.EOS/ESD Symp.,1991, p1–9.
    [1.7] Amerasekera A., Duvvury C., ESD in Silicon Integrated Circuits, Second Edition,England: John Wiley&Sons, Ltd.,2002, p106.
    [1.8] Shi Xiaofeng, Luo Hongwei, Li Bin, Latent damage in n-well diffused resistorunder ESD stress, Electronic Components&Materials.2009,9, v28, p20.
    [1.9] Vinson J. E., Liou J J. Electrostatic discharge in semiconductor devices: protectiontechniques. Proc. Of the IEEE,2000;88(12):1878-1900.
    [1.10] Laasch I., Ritter H. M., Werner A., Latent damage due to multiple ESD discharges,200931st Electrical Overstress/Electrostatic Discharge Symposium. EOS/ESD.2009, p6.
    [1.11] Steven H V., ESD: Circuits and Devices, England: John Wiley&Sons, Ltd.,2008,p7.
    [1.12] Notermans G.,“On the use of N-well resistors for uniform triggering of ESDprotection Proc. Of the IRPS,1992p141-150.
    [1.13] Amerasekera A., and Duvvury C., ESD in Silicion Integrated Circuits, England:John Wiley&Sons, Ltd.,2002, p395.
    [1.14] Vlasov V A., Sinkevitch V F. Elektronnaya Technika,1971, p68.
    [1.15] Maloney T., Khurana N. Transmission line pulsing techniques for circuit modelingof ESD phenomena, Proceedings of the Electrical Overstress/ElectrostaticDischarge Symposium,1985, p49.
    [1.16] Renninger R., Jon M C., Lin D, A field induced charged-device model simulator,Proceedings of the Electrical Overstress/Electrostatic Discharge Symposium,1989,p59.
    [1.17] Polgreen T., Chatterjee A. Improving the ESD failure threshold of silicided nMOSoutput transistors by ensuring uniform current flow, Proceedings of the ElectricalOverstress/Electrostatic Discharge Symposium,1989, p167.
    [1.18] Voldman S., Gross V. Scaling optimization and design considerations ofelectrostatic discharge protection circuits in CMOS technology, Proceedings of theElectrical Overstress/Electrostatic Discharge Symposium,1993, p251.
    [1.19] ESD Association S5.1, HBM-ESD Sensitivity Testing: Human bodymodel-Component level,1993.
    [1.20] Amerasekera A., Duvvury C. The impact of technology scaling on the ESDrobustness and protection circuit design, Proceedings of the ElectricalOverstress/Electrostatic Discharge Symposium,1994, p237.
    [1.21] ESD Association S5.2, MM-ESD Sensitivity Testing: Human bodymodel-Component level,1994.
    [1.22] ESD Association S5.3, CDM-ESD Sensitivity Testing: Human bodymodel-Component level,1997.
    [1.23] Voldman S., Juliano P., Johnson R. Electrostatic discharge and high current pulsecharacterization of epitaxial base silicion germanium heterojunction bipolartransistors, Proceedings of the International Reliability Physics Symposium,2000,p310.
    [1.24] ESD Association, ESD SP5.5-2004: Standard practice for electrostatic dischargesensitivity testing-transmission line pulse component level,2004.
    [1.25] Fischer M. Resistor-thick oxide FET gate protection device for thin oxide FETs,IBM Technology Disclosure Bulletin,1970,Vol13(5), p1272.
    [1.26] Avery L. Integrated circuit protection device, U.S. Patent No.4400711,1983.
    [1.27] Duvvury C., Pountree R. Output buffer with improved ESD pprotection, U.S. PatentNo.4855620,1989.
    [1.28] Rountree. Circuit structure with enhanced electrostatic discharge protection, U.S.Patent No.4939616,1990.
    [1.29] Graham A. Structure for providing electrostatic discharge protection, U.S. Patent No.5124877,1992.
    [1.30] Miller M. Electrostatic discharge detection and clamp control circuit, U.S. PatentNo.5255146,1993.
    [1.31] Puar D. Shunt circuit for electrostatic discharge protection, U.S. Patent No.5287241,1994.
    [1.32] Pianka J. ESD protection of output buffers, U.S. Patent No.5345357,1994.
    [1.33] Voldman S., Geissler S., Nowak E. Semiconductor diode with silicide films andtrench isolation, U.S. Patent No.5629544,1997.
    [1.34] Krakauer D., Mistry K., Butler S. Self-referencing modulation circuit for CMOSintegrated circuit electrostatic discharge protection clamps, U.S. Patent No.5617283,1997.
    [1.35] Assaderaghi F., Hsu L., Mandelman J. Silicon-on-insullator body-coupled gateddiode for electrostatic discharge and analog applications, U.S. Patent No.5811857,1998.
    [1.36] Voldman S. Electrostatic discharge protection circuits for mixed voltage interfaceand multi-rail disconnected power grid applications, U.S. Patent No.5945713,1999.
    [1.37] Ker M D. Substrate-triggering electrostatic discharge protection circuit fordeep-submicron integrated circuits, U.S. Patent No.6072219,2000.
    [1.38] Voldman S., Hui D. Switchable active clamp network, U.S. Patent No.6075399,2000.
    [1.39] Ker M D., Hung K K., Tang T H. Silicon-on-insulator diodes and ESD protectioncircuits, U.S. Patent No.6649944,2003.
    [1.40] Voldman S., Botula A., Hui D. Electrostatic discharge power clamp circuit, U.S.Patent No.6549061,2003.
    [1.41] Mergens M P., Russ C C., Speed optimized diode-triggered SCR for RF ESDprotection of ultra-sensitive IC nodes in advanced technologies, IEDM conference,2005.
    [1.42] Chatty K., Gauthier R., Study of factors limiting ESD diode performance in90nmCMOS technologies and beyond,43th Annual IEEE International ReliabilityPhysics Symposium,2005, p325.
    [1.43] Guang C., Haigang F., Noise analysis of ESD structures and impacts on afully-integrated5.5GHz LNA in0.18m SiGe BiCMOS, Microwave Conference,2005, p135.
    [1.44] Li Y, Liou J J, Vinson J, Investigation of diode geometry and metal line pattern forrobust ESD protection applicationals, Microelectronics Reliability,2008,48(10),p1660.
    [1.45] Ker M D, Lin C Y. Low-Capacitance SCR With Waffle Layout Structure forOn-Chip ESD Protection in RF ICs, IEEE Transactions on Microwave Theory andTechniques,2008,56(2). p1286.
    [1.46] Ameraskera A, Duvvury C. ESD in silicon integrated circuits Second Edition, NewYork: John Wiley&Sons,2002, p56.
    [1.47] Russ C C, Mergens M P J, Verhagel K G. GGSCRs: GGNMOS Triggered siliconcontrolled rectifiers for ESD protection in deep sub-micron CMOS processes,2001Proceedings of the Electrical Overstress/Electrostatic Discharge (EOS/ESD)Symposium,2001, Sept, p22.
    [1.48] Mergens M P, Russ C C, Armer J. Multi-finger turn-on circuits and designtechniques for enhanced ESD performance and width-scaling,2001Proceedings ofthe Electrical Overstress/Electrostatic Discharge (EOS/ESD) Symposium,2001,Sept, p11.
    [1.49] Verhaege K, Russ C, Luchies J M. Grounded-gate nMOS transistor behavior underCDM ESD stress conditions. IEEE Transactions on Electron Device,1997,44(9),p1972.
    [1.50] Trinh S, Mergens M P J, Verhaege K G,. Multi-finger turn-on circuits and designtechniques for enhanced ESD performance and width scaling, MicroelectronicsReliability,2003,43(9), p1537.
    [2.1] G Notermans, P de Jong, and F Kuper, Pitfalls When Correlating TLP, HBM andMM Testing, in Proceedings of the EOS/ESD Symposium,1998, p170.
    [2.2] J Barth et al., TLP Calibrations, Correlation, Standards and New Techniques, inProceedings of the EOS/ESD Symposium,2000, p85.
    [2.3] MIL-STD-883E, Method3015.7, Electrostatic Discharge Sensitivity Classification,Dept. of Defence, Test Method Standard, Microcircuits.1989.
    [2.4] Fujiwara Shuji, Nakaya Kiyofumi, Hirano Tetsuro, Source engineering for ESDrobust NLDMOS, Electrical Overstress/Electrostatic Discharge SymposiumProceedings.2011, p234.
    [2.5] Wang S.J., Yao F., Qin B., Analysis and Optimization of HV ESD Protection, IEEEInternational Conference of Electron Devices and Solid-State Circuits (EDSSC).2010, p4.
    [2.6] ESD Association WG5.1, ESD STM5.1-2001: Standard Test Method forElectrostatic Discharge Sensitivity Testing-Human Body Model (HBM)Component Level,2001.
    [2.7] Automotive Electronics Council, Human Body Model Electrostatic Discharge Test;AEC-Q100-002-REV-C,2001.
    [2.8] JEDEC Solid State Technology Association, JESD22-A114-B: ElectrostaticDischarge (ESD) Sensitivity Testing Human Body Model (HBM),2000.
    [2.9] Ashton Robert, Lescouzeres Lionel, Characterization of off chip ESD protectiondevices, Electrical Overstress/Electrostatic Discharge Symposium Proceedings.2008, p21.
    [2.10] M. Chaine, K. Verhaege, L. Avery, M. Kelly, H. Gieser, K. Bock, L.G. Henry, T.Meuse, T. Brodbeck and J. Barth, Investigation into Socketed CDM (SDM) TesterParasitics, Proc. EOS/ESD symp.,1998, p301.
    [2.11] ESD Association, ESD STM5.3.1-1999: Standard Test Method for ElectrostaticDischarge Sensitivity Testing-Charged Device Model (CDM) Component Level,1999.
    [2.12] Automotive Electronics Council, Charged Device Model Electrostatic DischargeTest; AEC-Q100-011Rev A,2001.
    [2.13] JEDEC Solid State Technology Association, JESD22-C101-A: Field-InducedCharged Device Model Test Method for Electrostatic Discharge-WithstandThresholds of Microelectronic Components,2000.
    [2.14] ESD Association WG5.2, ESD STM5.2-1998: Standard Test Method forElectrostatic Discharge Sensitivity Testing-Machine Model (MM) ComponentLevel,1998.
    [2.15] Automotive Electronics Council, Machine Model Electrostatic Discharge Test;AEC-Q100-03Rev E,2001.
    [2.16] JEDEC Solid State Technology Association, JESD22-A115-A: ElectrostaticDischarge (ESD) Sensitivity Testing Machine Model (MM),1997.
    [2.17] EIAJ-Standard, IC-121-1988, Testing Method20: Electrostatic Destructive TestElectrostatic Discharge,1988
    [2.18] Farbiz Farzan, Salman Akram A., Boselli, Gianluca, Novel techniques to modulatethe holding voltage in high voltage ESD protections, ElectricalOverstress/Electrostatic Discharge Symposium Proceedings.2011, p67.
    [2.19] ESD Association, ESD SP5.5-2004: Standard practice for electrostatic dischargesensitivity testing-transmission line pulse component level,2004.
    [2.20] Yiqun Cao, Glaser U., Willemen J., On the dynamic destruction of LDMOStransistors beyond voltage overshoots in high voltage ESD,201032nd ElectricalOverstress/Electrostatic Discharge Symposium Proceedings (EOS/ESD).2010, p10.
    [2.21] Fujiwara S., Nakaya K., Hirano, T., Source engineering for ESD robust NLDMOS,201133rd Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD).2011, p6.
    [2.22] S. U. Kim, ESD induced gate oxide damage during wafer fabrication process, inProc. EOS/ESD Symp.,1992, p99.
    [2.24] Yao Fei, Wang Xin, Wang Shijun, Mixed-mode simulation-design for IEC-ESDprotection, ICSICT-2010-201010th IEEE International Conference on Solid-Stateand Integrated Circuit Technology.2010, p1596.
    [2.25] Diaz C, Kang S, Duvvury C, Electrical Overstress Power Profiles: A Guideline toQualify EOS Hardness of Semiconductor Devices, Proc.14th EOS/ESDSymposium,1992, p88.
    [2.26] Liu W., Liou, J.J., Singh, N., Characterization and failure analysis of Sub-10nmdiameter, gate-all-around nanowire field-effect transistors subject to electrostaticdischarge (ESD),2011IEEE4th International Nanoelectronics Conference (INEC).2011, p2.
    [2.27] Cilento T., Schenkel M., Yun C., Simulation of ESD protection devices in anadvanced CMOS technology using a TCAD workbench based on an ESDcalibration methodology, Microelectronics Reliability.2010,9, v50, p1367.
    [2.28] Yoshinori Taka, Fujiwara O., Dependence of breakdown fields on charge voltagesfor human ESD,1st Asia-Pacific Symposium on EMC (APEMC)&19thInternational Zurich Symposium on EMC&Exhibition.2008, p148.
    [2.29] Automotive Electronics Council, Human Body Model Electrostatic Discharge Test,AEC-Q100-0020REV-C,2001.
    [3.1] Olson Nicholas, Boselli Gianluca, Salman Akram, A novel TCAD-basedmethodology to minimize the impact of parasitic structures on ESD performance,IEEE International Reliability Physics Symposium Proceedings, p474-479,2010,2010IEEE International Reliability Physics Symposium.2010, p474.
    [3.2] Yiqun Cao, Glaser U., Frei S., A Failure Levels Study of Non-snapback ESDDevices for Automotive Applications,2010IEEE International Reliability PhysicsSymposium (IRPS2010).2010, p458.
    [3.3] Albert Z. H., On-Chip ESD Protection for Integrated Circuits: An IC DesignPerspective, England:Kluwer Academic Publishers,2002, p219.
    [3.4] Integrated Systems Engineering,2004ISE user’s manual, Zurich: IntegratedSystems Engineering International, p36.
    [3.5] Zhen Li, Jiang Xiao, Byongsu Seol, Measurement methodology for establishing anIC ESD sensitivity database, Asia-Pacific Symposium on ElectromagneticCompatibility (APEMC2010).2010, p1051.
    [3.6] Johnsson David, Pogany Dionyz, Willemen Joost, Avalanche breakdown delay inESD protection diodes.2010,10, v57, p2470.
    [3.7] Arndt Bastian, Zur Nieden, Mueller Felix, Virtual ESD testing of automotiveelectronic systems,2010Asia-Pacific Symposium on ElectromagneticCompatibility.2010, p683.
    [3.8] Chen Xiang, Wei Ming, Wang Lei, Humanbody-metal ESD model currentwaveform denoising, High Voltage Apparatus.2010,8, v46, p14.
    [3.9] Axelrad V., Shibkov,A. Mixed-Mode Circuit-Device simulation of ESD ProtectionCircuits with Feedback Triggering, International Conference on Solid State Devicesand Materials,2004, p390.
    [3.10] Salman A Gauthier R, Stadler W et al. Characterization and investigation of theinteraction between hot electron and electrostatic discharge stresses using NMOSdevices in0.13um CMOS technology[C], International Reliability PhysicsSymposium,2001, p219.
    [3.11] Yeh Chih-Ting, Ker Ming-Dou, Capacitor-less design of power-rail ESD clampcircuit with adjustable holding voltage for on-chip ESD protection, IEEE Journal ofSolid-State Circuits.2010,11, v45, p2476.
    [3.12] Ohtsu T., Kataoka K., Study on ESD Phenomena of Magnetic Head by1ns PulseESD,2010Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC2010).2010, p430.
    [3.13] Ackaert J., Greenwood B., Design solutions for preventing process induced ESDdamage during manufacturing of interconnects,2010IEEE InternationalConference on IC Design&Technology (ICICDT).2010, p98.
    [3.14] Russ C C, Mergens M P J, Verhagel K G. GGSCRs: GGNMOS Triggered siliconcontrolled rectifiers for ESD protection in deep sub-micron CMOS processes,2001Proceedings of the Electrical Overstress/Electrostatic Discharge (EOS/ESD)Symposium,2001, Sept, p22.
    [3.15] Zhang Haipeng, Zhang Liang, Wang Dejun, Positive ESD robustness of a novelanti-ESD TGFPTD SOI LDMOS, International Conference on ComputerApplications and Industrial Electronics.2010, p1.
    [3.16] Lee C L, Hoque H M, et al. A method for determining a transmission line pulseshape that produces equivalent results to human body model testing methods,EOS/ESD Symposium Proceedings,2000:97.
    [3.17] Charvaka W, Duvvury C, ESD protection device issues for IC designs, IEEE2001custom integrated circuits conference,2001:41.
    [3.18] TungY C, Ker M D, Investigation of the Gate-Driven Effect andSubstrate-Triggered Effect on ESD Robustness of CMOS Devices, IEEEtransactions on device and materials reliability,2002,1(5):190.
    [3.19] Narendra R., Sudheer M.L., Jithesh V., Mathematical Analysis of ESD GeneratedEM Radiated Fields on Electronic Subsystem,2010Asia-Pacific Symposium onElectromagnetic Compatibility.2010, p442.
    [3.20] Wu J, Juliano P, Breakdown and latent damage of ultra-thin gate oxides under ESDstress conditions, Microelectronics Reliability,2001,41:1771.
    [3.21] Jon Barth, Koen Verhaege, TLP calibration, correlation, standards and newtechniques, EOS/ESD Symposium Proceedings,2000:85.
    [4.1] Yan K.P., Gaertner R., Wong C.Y., ESD protection program at electronics industry-areas for improvement,201032nd Electrical Overstress/Electrostatic DischargeSymposium Proceedings (EOS/ESD).2010, p6.
    [4.2] Li Mingliang, Dong Shurong, Han Yan, An Overview of ESD Protection inNanometer IC, Microelectronics.2010,1, v40, p87.
    [4.3] Kwang H O, Duvvury C, Investigation of Gate to Contact Spacing Effect on ESDRobustness of Salicided Deep Submicron Single Finger NMOS Transistors,Reliability Physics Symposium Proceedings,2002,p148.
    [4.4] Barth J, Verhaege K, TLP Calibration, Correlation, Standards and new Techniques,EOS/ESD Symposium Proceedings,2000, p85.
    [4.5] Jack Nathan, Rosenbaum Elyse, ESD protection for high-speed receiver circuits,IEEE International Reliability Physics Symposium Proceedings.2010, p835.
    [4.6] Jahanzeb A., Lifang Lou, Duvvury C., TLP Characterization for Testing SystemLevel ESD Performance,32nd Electrical Overstress/Electrostatic DischargeSymposium Proceedings (EOS/ESD).2010, p2010.
    [4.7] Yiqun Cao, Glaser U., Willemen J., On the dynamic destruction of LDMOStransistors beyond voltage overshoots in high voltage ESD,201032nd ElectricalOverstress/Electrostatic Discharge Symposium Proceedings (EOS/ESD).2010, p10.
    [4.8] Danniel F, Kary C.W., Venson C, Methodology for Prompt and Low Cost ESD Test,Semiconductor Technology.2009,12, v34, p1216.
    [4.9] Kwok Soohoo, Wielgos M, Case study of product defects found by air dischargemode ESD but missed by contact ESD,20081st Asia-Pacific Symposium on EMC(APEMC)&19th International Zurich Symposium on EMC&Exhibition.2008,6,p136.
    [4.10] Shi Xiaofeng, Luo Hongwei, Li Bin, Latent damage in n-well diffused resistorunder ESD stress, Electronic Components&Materials.2009,9, v28, p20.
    [4.11] Chen T Y., Ker M D., Analysis on the dependence of layout parameters on ESDrobustness of CMOS devices for manufacturing in deep-submicron CMOS process,IEEE Trans. on Semiconductor Manufacturing,2003,16(3), p486.
    [4.12] Laasch I., Ritter H. M., Werner A., Latent damage due to multiple ESD discharges,200931st Electrical Overstress/Electrostatic Discharge Symposium. EOS/ESD.2009, p6.
    [4.13] Fujiwara Shuji, Nakaya Kiyofumi, Hirano Tetsuro, Source engineering for ESDrobust NLDMOS, Electrical Overstress/Electrostatic Discharge SymposiumProceedings.2011, p234.
    [4.14] Fujiwara Shuji, Nakaya Kiyofumi, Hirano Tetsuro, Source engineering for ESDrobust NLDMOS, Electrical Overstress/Electrostatic Discharge SymposiumProceedings.2011, p234.
    [4.15] Kim S.D., Advanced Model and Analysis of Series Resistance for CMOS ScalingInto Nanometer Regime Part I: Theoretical Derivation, IEEE Trans. ElectronDevice,2002,49(3), p457.
    [4.16] Oh K.H., Investigation of ESD Performance in Advanced CMOS Technology,California:stanford University,2002, p57.
    [4.17] Oh K. H, Chun J. H, Banerjee K., et al, Modeling of Temperature DependentContact Resistance for Analysis of ESD Reliability. Proc. of the InternationalReliability Physics Symposium,2003, p249.
    [4.18] Oh K, Duvvury C, Banerjee K, et al. Investigation of Gate to Contact SpacingEffect on ESD Robustness of Silicided Deep Submicron Single finger NMOSTransistors. International Reliability Physics Symposium Proceedings,2002. p148.
    [4.19] Oh K., Duvvury C., Salling C., et al, Non-uniform bipolar conduction in singlefinger NMOS transistors and implications for deep submicron ESD design, IRPSProc.,2001, p226.
    [4.20], è ù,<êJ.$d$ùC/±í nG2ggNMOS ESD±x+CRU|,X E, ú()=:y,2010,59(11), p8063.
    [4.21] Oh K., Duvvury C., Salling C., et al, Analysis of Nonuniform ESD CurrentDistribution in Deep Submicron NMOS Transistors, IEEE Trans. Electron Device,2002,49(12), p2171.
    [4.22] Salman, A., Gauthier, R., Stadler, W., et al, Characterization and investigation of theinteraction between hot electron and electrostatic discharge stresses using NMOSdevices in0.13m CMOS technology, IRPS Proc.,2001, p219.
    [4.23] KO C. Y., Tsai Y.S., Liao P.J., et al, Drain Biased TDDB Lifetime Model for UltraThin Gate Oxide, IRPS Proc.,2004, p589.
    [4.24] Ashton Robert, Lescouzeres Lionel, Characterization of off chip ESD protectiondevices, Electrical Overstress/Electrostatic Discharge Symposium Proceedings.2008, p21.
    [4.25] Salman A A, Gauthier R, Putnam C et al,“NMOSFET ESD Self-Protection Strategyand Underlying Failure Mechanism in Advanced0.13-_m CMOS Technology”,IEEE Trans. on Device and Materials Reliability,2002,2(1),p2.
    [5.1] Farbiz Farzan, Salman Akram A., Boselli, Gianluca, Novel techniques to modulatethe holding voltage in high voltage ESD protections, ElectricalOverstress/Electrostatic Discharge Symposium Proceedings.2011, p67.
    [5.2] Fujiwara S., Nakaya K., Hirano, T., Source engineering for ESD robust NLDMOS,201133rd Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD).2011, p6.
    [5.3] Yao Fei, Wang Xin, Wang Shijun, Mixed-mode simulation-design for IEC-ESDprotection, ICSICT-2010-201010th IEEE International Conference on Solid-Stateand Integrated Circuit Technology.2010, p1596.
    [5.4] Texas Instruments, Quadruple positive-nand gates with Schmitt-trigger inputsSN74HC132SPEC.,2004.
    [5.4] Salman A A, Gauthier R, Putnam C et al,“NMOSFET ESD Self-Protection Strategyand Underlying Failure Mechanism in Advanced0.13-_m CMOS Technology”,IEEE Trans. on Device and Materials Reliability,2002,2(1), p2.
    [5.5] Liu W., Liou, J.J., Singh, N., Characterization and failure analysis of Sub-10nmdiameter, gate-all-around nanowire field-effect transistors subject to electrostaticdischarge (ESD),2011IEEE4th International Nanoelectronics Conference (INEC).2011, p2.
    [5.6] J. Wu, P. Juliano, E. Rosenbaum,“Breakdown and latent damage of ultra-thin gateoxides under ESD stress conditions”, in Proceedings of the EOS/ESD Symposium,2000, p287.
    [5.7] N. Guitard, D. Tremouilles, S. Alves, M. Bafleur, F. Beaudoin, P. Perdu, A. Wislez,“ESD Induced Latent Defects in CMOS ICs and Reliability Impact”, in Proceedingsof the EOS/ESD Symposium,2004, p174.
    [5.8] Andrea Cester, Gaudenzio Meneghesso,etc. Electrostatic Discharge Effects inUltra-Thin Gate Oxide MOSFETs, IEEE Transactions on Device and MaterialsReliability,2006,6(1), p87.
    [5.9] Duvvury C., ESD Protection Device Issues for IC designs, IEEE Custom integratedcircuits conference,2001, p41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700