防治水稻螟虫单项技术措施的评价及储备技术—转基因水稻对非靶标生物影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻螟虫是我国水稻上的主要害虫,发生面积广,为害重,已经成为水稻增产的主要限制性因素之一,因此有效地控制水稻害虫对水稻增产和保证我国的粮食有效供给具有重要意义,目前防治水稻螟虫主要采用化学防治,单纯的使用化学杀虫剂,不仅引起“3R”问题,而且影响稻田生物群落的多样性和破坏生态平衡失调,同时农药残留影响人畜健康、食品安全等。本文通过大田条件下,研究防治螟虫的各个单项技术对螟虫的防治效果,节肢动物群落影响以及田间落卵量和诱蛾效果等,在此基础上提出水稻螟虫无公害的综合防治体系。同时,研究转基因抗虫水稻对稻田节肢动物群落结构和稳定性多样性的影响以及靶标害虫对转基因抗虫水稻的抗性,以期能为转基因水稻的商业化生产提供理论和实践上的支持。
     1农业防治田间防效
     本研究中使用的农业防治措施包括适时提早翻耕、科学施肥、科学管水、低桩收割和农业综合防治。农业措施对于螟虫有很好的防治效果,二化螟落卵量在不同类型的稻田与对照相比降低42.85%—80.00%,早稻和中稻上二化螟的防治效果分别为45.88%和53.95%,三化螟防治效果为90.68%,其中早耕灌水防效为35.84%;同时,农业防治措施能显著提高捕食性和寄生性昆虫数量,降低植食昆虫数量;另外,农业防治田块显著提高了稻田节肢动物多样性,保持稻田生物群落的平衡。
     2药剂防治螟虫田间防效
     2008年在大冶对20%氯虫苯甲酰胺SC(康宽)、锐劲特80%WG、乐斯本48%EC、茚虫威15%EC、杀虫单90%WP、乙酰甲胺磷30%EC、异硫氰酸酯·锐劲特(宏锐)、异硫氰酸酯(宏劲13号)等8种药剂防治三化螟的效果进行田间试验,结果表明:20%氯虫苯甲酰胺SC(康宽)卵孵盛末期施药的防治效果优于卵孵高峰期;在Simpson优势集中性指数、Shannon-Wiener多样性指数(H)、均匀性指数、群落相似性指数方面,20%氯虫苯甲酰胺SC(康宽)与对照相比基本接近。因此,20%氯虫苯甲酰胺SC(康宽)在三化螟卵孵盛末期施药作为推荐药剂,乐斯本48%EC可以作为推荐使用的备用药剂。
     2009年在鄂州、大冶、当阳3地试验对常用的防治二化螟的药剂进行了田间小区试验,期望筛选出适合当地的农药种类。结果表明,25%毒死蜱和异硫氰酸酯·毒死蜱(宏毒)在大冶有很好的防治效果,药后10天和25天防效分别为80.81%、80.81%和74.81%、75.59%;在鄂州,异硫氰酸酯·毒死蜱(宏毒)、异硫氰酸酯·锐劲特(宏劲1号)、40%毒死蜱EC和75%乙酰甲胺磷WP,早稻防效分别为93.04%、89.74%、91.58%和94.51%,晚稻上分别为96.01%、88.89%、92.02%和96.90%;在当阳,杀单·.苏云药后7天和15天的防效分别为96.73%和67.38%。
     节肢动物多样性调查表明,各个药剂的处理对对照相比,能降低植食者数量,提高捕食者优势度,节肢动物群落的主要参数方面都没有差别,说明各个药剂对节肢动物群落无负面的影响,这可能与小区面积较小和取样时存在误差有关。
     3性引诱剂田间防效
     采用水盆诱捕器和三角诱捕器研究二化螟和三化螟性引诱剂的防治效果,诱捕器放置密度为3诱捕器每亩。结果表明,二化螟性引诱剂的诱蛾量随着水稻类型(早中晚稻)和天气的变化而变化,总体的诱蛾量很小(0.35头/盆/日左右),在不同试验地点防治效果在26.23%—61.88%之间波动,有效的防控范围半径2.5m左右;三化螟诱芯SI2009521A的效果优于三化螟诱芯SI20093241,平均每天单钵诱螟蛾量分别为0.57头和0.49头,防治效果在25%—34%之间。
     节肢动物群落结构调查结果表明性诱区能都提高捕食者的数量,节肢动物群落的主要参数与对照相比也存在明显的优势,说明性引诱剂对环境比较友好。
     4频振灯田间防效
     本文对灯光诱虫的防治效果进行了研究,采用佳多公司生产的频振式杀虫灯,密度为150米/盏,结果表明频振灯诱蛾量很大,三化螟诱蛾量为26.2头/灯/夜,灯下三化螟蛾雌雄比为1.51:1,平均怀卵率20.7%;鄂州,二化螟3盏灯共诱蛾量为1185头,性比为5.24:1,平均怀卵率21.68%;当阳,3盏灯共诱蛾量为7886头,第二代雌雄比为1.86:1,雌蛾怀卵率21.43%,第三代雌雄比为1.75:1,雌蛾怀卵率25.05%。对雌蛾的引诱效果优于雄蛾,田间螟虫落卵量比对照减少量在53.53%—77.98%之间,对螟虫有很好的防治效果,防效达到60%以上,有效控制范围距灯的距离为30-50m。
     节肢动物群落结构调查结果表明性诱区能都提高捕食者的数量,降低植食者的数量,节肢动物群落的主要参数与对照相比不一致。
     5综合防控效
     该试验主要在鄂州和当阳进行,有机组合各个单项防治措施研究对二化螟的综合防治效果,结果很好的说明综防区不仅能够减轻二化螟的发生和为害,降低田间落乱量50%以上,把螟害率控制在2%以下,防治效果控制在38.77%和82.21%之间,增加产量,早稻单产增15.8%,晚稻增产7.53%,而且能够减少农药使用量和使用次数,在一定程度上保护了生态环境,发挥了生态控制的作用。
     6转基因水稻对稻田节肢动物群落的影响
     节肢动物各功能团优势类群组成在Bt水稻田与对照间基本相同:植食性昆虫优势类群大多是螟蛾科的稻纵卷叶螟和飞虱科的白背飞虱与褐飞虱;寄生性昆虫大多是寄蝇科、茧蜂科和姬蜂科;捕食性天敌以蜘蛛占绝对优势;中性昆虫主要是蚊科和摇蚊科,转基因水稻田在4个功能团的组成和优势度方面与对照田没有差别。节肢动物群落的主要参数除物种丰富度年际之间有变化之外、其余三个参数Simpson指数、Shannon-Winner指数和均匀度指数等方面与对照没有差别,转基因抗虫水稻田块和对照田Bray-Curtis距离系数,相异性指数小,群落相似性比较高。说明转基因抗虫水稻对田间的节肢动物群落的影响总体来说比较小,对节肢动物群落没有负面的影响。
     Bt水稻和相应的对照田块,非靶标害虫飞虱科和叶蝉科的主要昆虫以及优势蜘蛛及其组成的主要科的数量动态变化基本一致,年际之间略有变化,说明转基因水稻非靶标害虫刺吸式口器害虫和捕食性天敌蜘蛛类群没有负面的影响。
     7螟虫对转基因水稻的抗性研究
     转基因抗虫水稻不论是第一年种植的新品种还是连续种植十年的品种,不论是在大田或者网罩,自然感虫或者人工接虫条件,接虫量多或少,转基因抗虫水稻都能够对螟虫的为害有着比较高的抗性水平,螟害率低于1.5%,卷叶率低于12.62%。
     以上单项措施的研究结果表明,农业防治和灯光诱杀能够有效的减少螟虫田间落卵量,对螟虫有很好的防控效果;诱芯的效果由于受到多种因素的影响对螟虫的控制波动较大;化学农药对螟虫同样具有很好的防控效果,较好的药剂有20%氯虫苯甲酰胺SC(康宽)、乐斯本48%EC、25%毒死蜱、异硫氰酸酯·毒死蜱(宏毒)、异硫氰酸酯·锐劲特(宏劲1号)、40%毒死蜱EC、75%乙酰甲胺磷WP、杀单·.苏
     抗虫转基因水稻对螟虫也具有比较好的控制效果,对非靶标刺吸式害虫的防控作用比较弱。各个单项防控技术措施能够减少植食者的数量,增加捕食者的数量,对田间的节肢动物群落无不良影响。根据评价的结果,我们认为的综合防控技术是:选育抗性品种,以农业防治为基础,充分发挥自然天敌的生物控制作用和选用灯光诱杀,辅以化学农药防治。
Rice stem borers were major rice pests in China, which were wide in occurrence area and had heavy damage on the rice, and had become a major limiting factor in rice production, so effective control of them would great significance on rice grain yields and ensureing the supply of our country's. Rice stem borers currently were mainly controlled by chemical pesticides, which not only leaded to "3R" problem and effected the diversity of biological communities in the paddy fields and destroyed ecological balance but also effected human and animal health, food security. This paper mainl assessed the various techniques for controlling rice stem borer in terms of effect, arthropod community as well as eggs amounts and trapping effect under field conditions. Above those, IPM for controlling rice stem borers were proposed. We also studied the effects of transegenic insect-resistant rice on arthropod community and diversity in paddy field, as well as target pests may generated resistance to transegenic insect-resistant rice. These provide theoretical and practical evidence for commercial production of genetically modified rice.
     1 Agricultural control in paddy field
     Agricultural control measures included timely plowing ahead, scientific fertilization, and scientific water management, low-pile harvest and agriculture integrated control. Agricultural control had good control effects for the stem borer, eggs of SSB decreased from 42.85 percent to 80.00 percent comparing with the control in different types of rice,the effects of SSB were 45.88 percent in early rice and 53.95 percent in later rice, control effect of yellow rice borer was 90.68 percent, control effect of irrigation farming was35.84 percent; At the same time, agricultural control measures can significantly increase the number of the predatory and parasitic insects and decrease the number of herbivorous insects; In addition, Agricultural control significantly increased the rice arthropod diversity and maintained the balance of biological communities.
     2 Chemical control in paddy field
     Field experiments that eight chemical pesticide(Chlorantraniliprole 20% SC, fipronil 80% WG, Chlorpyrifos 48% EC, indoxacarb 15% EC, monosultap 90% WP, Acephate 30% EC, Hong Rui, HongJing13) for controllng YSB were tested in Daye in 2008, The results show that Chlorantraniliprole 20% SC has better effects at the end of egg hatching than the peak and it was also similar to the CK in terms of Simpson index, Shannon-Wiener diversity index (H), evenness index, community dissimilarity index. So, Chlorantraniliprole 20% SC will be a better choice for controlling Yellow stem borer considering all the above factors and Chlorpyriphos 48%EC can be another.
     The pesticides for controlling SSB were selected in Ezhou, Daye, Dangyang in 2009. The results showed that 25% chlorpyrifos and HongDu had good control effect in Daye, control effects were seperately 80.81 percent,80.81 percent and 74.81 percent,75.59 percent after 10 and 25 days; Hongdu、Hongjing 1、40% Chlorpyrifos EC and 75%Acephate wp was better for Ezhou,the control effects for early and later rice were 93.04 percent,89.74 percent,91.58 percent,94.51 percent,96.01 percent 88.89 percent, 92.02 percent and 96.90 percent; control effects of Monosultap·Bt in Dangyang.were 96.73 percent and 67.38 percent after7 and 15 days.Various pesticide treatments can increase the number of predators, reduce the number of herbivores and have no difference compared to control groups on the main parameters arthropod community, indicating the various pesticides had non-negative effects on arthropod communities, which may be related to smaller plot or sampling error.
     3 Sex pheromone in paddy field
     The effects of Sex Pheromone for controlling rice stem borer were studied by basin traps and triangular trap, the density of traps were three per 667m2. Moth quantities attracted changed with the type of rice and the weather, the overall moth quantities was very small(0.35N/pot/day), resulting in control effects fluctuations between 26.23% and 61.88% in different test sites. Control range of sex pheromone was 2.5m from the lure. The effects on YSB, SI2009521A was better than SI20093241.At the same time, Sex pheromone control can increase the number of predatory insects, and there were obvious advantages in the main parameters of arthropod community.
     4 Frequency-oscillated light in paddy field
     Control effect of the light trapping had been studied with the Frequency-oscillated light, density of 150 m/light, the results show that the trapping moths were larger,26.2N /light/night for YSB, ratio of male and female was 1.51:1, the average rate of fecundity was 20.7 percent; in Ezhou, the total trapping moths of three lights for SSB were 1185 N, sex ratio was 5.24:1, The average rate of fecundity were 21.68 perceent; Dangyang, the total trapping moths of three lights for SSB were 7886 N, sex ratio for the second generation and the third generation was 1.86:1 and 1.75:1, the average rate of fecundity were 21.43 percent and 25.05 percent. the trapping efficiency of female moths was better than male moths. Eggs redueced from 53.53% and 77.98%, compared with the control, control effects were betten than 60 percent, the range of control was 30-50m from the position of FLT.
     Trapping zones can increase the number of predators, reduce the number of herbivores, the main parameters of arthropod community were inconsistent with with the control.
     5IPM in paddy field
     The trial mainly conducted in Ezhou and Dangyang, various single control measurs were combined for controlling SSB, results showed that integrated zone can not only reduce the occurrence and damage of SSB, reduce the eggs above 50 percent, the borer damage was lower 2 percent, control effects fluctuateed between 38.77% and 82.21%, increased yield (15.8 percent for early rice and 7.53 percent for later rice, but also can reduce uses and frequency the pesticide, protect the ecological environment, then ecological control has played a role.
     6 Effects of transgenic insect-resistance rice on arthropod communities in paddy fields
     Dominant groups of arthropod functional groups between Bt and control rice fields is basically the same:dominant groups of herbivorous insects Including the rice leaffoller, Cnaphalocrocis medinalis of Pyralidae and the white planthopper and brown planthopper of Delphacidae; parasitic insects were mostly Muscidae, Braconidae and Ichneumonidae; spiders had absolute advantage of predators; neutral insects wre mainly Culicidae and Chironomidae.There were no difference between transgenic rice fields and control fields in the composition and dominance of the four functional groups. The main parameters of arthropod community in addition to that species richness fluctuated between the inter-annual, there is no difference with the control in terms of another three parameters of Simpson's index, Shannon-Winner index and evenness index. Bray-Curtis distance index of transgenic insect-resistancerice and the control field were small, so community similarity were high.In general the effects of transgenic insect-resistant rice on the field of arthropod communities were relatively small, there were no negative impact on arthropod community.
     Ddynamic changes of non-target insectsDelphacidae and Cicadellidae and main predatory spiders were basically the same between Bt rice control,as well as the composition of main predatory spider, though slight changes between inter-annual Transgenic rice shows no negative impact on non-target insects including Delphacidae and Cicadellidae and dominated predatory spiders.
     7 Resistance of rice stem borer to transgenic rice
     Genetically modified insect-resistant rice cultivation, whether the first year or continuous cultivation of a decade, had relatively high resistance levels, in the field or the net enclosures, natural or artificial pests, the amount of insects more or less. rate of borer damage was less than 1.5% and rate of leafroll wasless than 12.62%. But it also should be noted that Bt toxic protein would change in the expression on continuous cultivation, there were the trends that stripped stem borer may resistance to Bt rice under the certain selection pressure and certain degree of pest amounts.
     Those results showed that the agricultural control and Frequency- oscillated light can effectively reduce eggs, the effec of sex pheromone relucted due to various factors; chemical pesticides also had good effects and a lots of pesticides had been selected; Transgenic resistant rice had better control on stem borers and badly control onsucking pests. All the individual technical measures can reduce the number of herbivores, increase the number of predators, and no adverse effects on the arthropod community. Based on the evaluation results, the TPM was that:breeding resistant varieties and basing on agricultural control, giving natural enemies for biological control and using light trapping, combined with chemical pesticides.
引文
1.白耀宇,蒋明星,程家安.影响Bt稻离体叶中Cry1Ab杀虫蛋白降解的环境因子研究.中国农业科学,2006,39(4):721-727
    2.白耀宇,蒋明星,程家安.转Bt基因水稻对两种弹尾虫及尖钩宽黾蝽捕食作用的影响.昆虫学报,2005,48(1):42-47
    3.白耀宇,蒋明星,程家安等.转Btcry1Ab基因水稻对稻田弹尾虫种群数量的影响.应用生态学报,2006,17(5):903-906
    4.白耀宇.转Bt基因水稻Cry1Ab杀虫蛋白的环境动态及其对非靶标昆虫的影响[博士论文].浙江大学,2004
    5.蔡万伦,石尚柏,杨长举等.Bt水稻田不同斑块设计对田间节肢动物群落稳定性的影响.生态学报,2005,25(11):2968-2975
    6.蔡万伦,石尚柏,杨长举等.不同种植方式下转Bt基因水稻对稻田节肢动物群落的影响.昆虫学报,2005,48(4):537-543
    7.蔡万伦,杨长举,张宏宇等.转Bt基因水稻对三化螟自然种群的影响.昆虫学报,2008,51(1):556-560
    8.蔡雪涛.稻水象甲本地扩散及其与栖境质量的关系[硕士论文].浙江大学,2006
    9.陈栋良,宋道济,瞿富云,吴刚.佳多频振式杀虫灯在三化螟综合防治技术上的应用,四川农业科技,2007,6:45-46
    10.陈杰林.害虫综合治理.1990.农业出版社
    11.陈茂,叶恭银,胡萃,等.Bt水稻对飞虱和叶蝉及其卵寄生蜂扩散规律的影响.浙江大学学报(农业与生命科学版),2003,29(1):29-33
    12.陈茂,叶恭银,胡萃,等.Bt籼稻对褐飞虱取食、产卵行为的影响.植物保护学报,2003,30(4):365-370
    13.陈茂,叶恭银,卢新民,等.Cry1Ab杀虫蛋白在水稻-褐飞虱-拟水狼蛛食物链中转移与富集.昆虫学报,2005,48(2):208-213
    14.陈茂,叶恭银,姚洪渭,等.抗虫转基因水稻对非靶标害虫褐飞虱取食与产卵行为影响的评价.中国农业科学,2004,37(2):222-226
    15.陈茂.转基因抗虫_抗病毒水稻对非靶标生物的生态安全性评价[博士论文].浙江大学,2005
    16.陈前武,姜训球,胡德文等.不同诱芯、诱捕器诱杀水稻二化螟效果的比较,江 西植保,2008,31(4):189-190
    17.陈日,李秀岩,刘梅等.长春地区二化螟发生世代及性诱技术的初步研究,吉林农业科学,2007,32(5):37-39
    18.程家安主编.水稻害虫(全国高等农业院校教材植物保护、昆虫学专业用).北京:中国农业出版社,1996
    19.褚柏,苏建坤,朱锦清等.扬州地区水稻二化螟抗药性监测[J].南京农业大学学报,1987,4(增刊):56-63.
    20.崔金杰,夏敬源.转Bt基因棉田昆虫群落多样性及其影响因素的研究.生态学报,2000.20:824-829
    21.崔旭红.转Bt基因水稻抗虫性研究及其对田间昆虫生物群落的影响[硕士论文].华中农业大学,2003
    22.邓曙东,徐静,张青文等.转Bt基因棉对非靶标害虫及害虫天敌种群动态的影响.昆虫学报,2003,46(1):1-5
    23.丁锦华.农业昆虫学.南京:江苏科学技术出版社,2002
    24.丁颖.中国水稻栽培学.农业出版社.1961
    25.董兆克.Bt稻抗虫与非Bt稻施药防治水稻螟虫的效益分析[硕士论文].华中农业大学,2007
    26.杜正文主编.中国水稻病虫害综合防治策略与技术.农业出版社,1991
    27.樊龙江,吴月友,庞洪泉等.转基因Bt水稻花粉在桑叶上的自然飘落浓度生态学报,2003,23(4):826-833
    28.范农.杜邦最新革命性杀虫剂“康宽”降临.农药市场信息,2008,10:32-32.
    29.方继朝,杜正文,程遐年.水稻螟害上升态势与控害减灾对策分析.昆虫知识,1998,35(4):193-1971
    30.方军.苏云金杆菌营养期杀虫蛋白vip3基因及其在转基因水稻中的应用[博士论文].浙江大学,2008
    31.付秀芹.转Bt基因水稻对土壤生态系统的影响转Bt基因水稻对土壤生态系统的影响[博士论文].湖南师范大学,2008
    32.傅强,王峰,李登虎,等.转基因抗虫水稻MSA和MSB对非靶标害虫褐飞虱和白背飞虱的影响.昆虫学报,2003,46(6):697-704
    33.高秀云,田俊策,陈洋等.Biolog-Eco方法检测转cry1Ab粳稻对褐飞虱肠道微生物多样性的影响.植物保护学报,2008,35(4):327-331
    34.高玉林,傅强,王锋等.转CrylAc和CpTI.双基因抗虫水稻对二化螟和大螟的致死效应及田间螟虫构成的影响.中国水稻科学,2006,20(5):543-548
    35.高玉林.田间棉铃虫对Bt棉花的耐性演化分析[博士论文].中国农业科学院,2009
    36.戈峰,王常平,陈小飞等.二化螟性信息素诱杀剂在贵州稻区诱蛾的效果.贵州农业科学,2002,30(5):13-14
    37.耿金虎,沈佐锐,李正西等.常规棉花粉和转Cry1Ac+CpTI棉花粉对拟澳洲赤眼蜂繁殖和存活的影响.生态学报,2005,25(7):1575-1582
    38.郭建英,万方浩,董亮等.取食转Bt基因棉花上的棉蚜对丽草蛉发育和繁殖的影响.昆虫知识,2005,42(2):149-154
    39.郭建英.转Bt基因棉对棉田生态系统的影响及其生态安全性.南京农业大学博士学位论文.2007
    40.韩兰芝,吴孔明,彭于发,郭予元.转基因抗虫水稻生态安全性研究进展.应用与环境生物学报2006,12(3):431-436
    41.韩兰芝.转cry1Ac_CpTI基因水稻对鳞翅目害虫种群的影响及靶标害虫的抗性风险评价[博士后].中国农业科学院,2007
    42.韩招久,韩召军,陈长琨等.二化螟对杀虫单和甲胺磷抗性监测及田间抗性动态.植物保护学报,2002,29:93-94
    43.郝树广,张孝羲,程遐年,等。稻田节肢动物群落营养层及优势功能集团的组成与多样性动态.昆虫学报,1998,41:343-353
    44.何月平.二化螟抗药性监测及治理与高毒农药替代药剂筛选研究[博士论文].南京农业大学,2008
    45.贺艳.稻水象甲共生菌Wolbachia中插入序列的克隆与鉴定[硕士论文].浙江大学,2008
    46.季相华.稻水象甲夏季滞育相关基因的分离与鉴定[硕士论文].浙江大学,2008
    47.贾士荣,郭三堆,安道昌.2001.转基因棉花.北京:科学出版社:19-31
    48.姜永厚,吴进才,徐建祥等.稻田蜘蛛生态位变化及杀虫剂对捕食功能的影响.生态学报,2002,22(8):1286-1292
    49.姜永厚.转基因抗虫水稻对几种天敌的影响及其机理研究[博士论文].浙江大学,2004
    50.蒋彩英.Bt水稻花粉对家蚕安全性评价及对家蚕安全的Bt菌株生物学的研究[博士论文].浙江大学,2004
    51.蒋明星,祝增荣,王正军,程家安等.二化螟越冬幼虫三种寄生蜂发生动态.昆虫天敌.2000,22(1):33-37
    52.蒋明星,祝增荣,朱金良等.不同生境中水稻二化螟的寄生情况.中国生物防治.1999,15(4):145-149.
    53.焦晓国,宣维健,盛承发.性信息素在害虫测报中的应用研究进展.植物保护,2006,32(6):9-11
    54.焦晓国,崔旭红,张国安.Bt水稻对田间非靶标害虫种群动态的影响.昆虫知识,2006,43(6):774-777
    55.焦晓国,宣维健,盛承发.性信息素大面积诱捕法防治东北越冬代水稻二化螟.昆虫学报,2005,48(3):370-374
    56.焦晓国.转Bt基因水稻抗虫性研究[硕士论文].华中农业大学,2001
    57.李冬虎,傅强,王锋等.转sck/Cry1Ac双基因抗虫水稻对二化螟和稻纵卷叶螟的抗虫效果.中国水稻科学,2004,18:43-47
    58.李光涛,曹阳,叶恭银等.转Bt基因抗虫稻谷对麦蛾的抗性评价.植物保护学报,2008,35(3):205-208
    59.李丽莉,王振营,何康来.转基因抗虫作物对非靶标昆虫的影响.生态学报,2004,24:1797-1806
    60.李闪红.螟虫对转Bt水稻的选择性及转Bt水稻对螟虫的抗性研究[硕士论文].华中农业大学,2005
    61.李为争,盛承发,郭线茹等.二化螟性诱芯中不饱和十六醛的比例对诱捕效果的影响。植物保护,2008,34(3):105-108
    62.李为争,王红托,游秀峰等.不同配方信息素诱芯对二化螟的诱捕效果比较研究.昆虫学报,2006,49(4):710-713
    63.李向阳.稻水象甲在双峰县发生情况调查及药剂筛选试验[硕士论文].湖南农业大学,2008
    64.李云瑞.农业昆虫学.中国农业出版社.2002
    65.刘光杰,寒川一成,陈仕高等.水稻害虫的可持续治理及经济效益评估.应用生态学报,2006,17:1941-1947
    66.刘谦,朱鑫泉.2001.生物安全.北京:科学出版社:38-240
    67.刘微.水稻转Bt基因对稻田土壤光合碳固定和微生物多样性的影响研究[博士论文].浙江大学,2009
    68.刘向东,张孝羲,郭慧芳等.;稻田蜘蛛群落对稻飞虱的控制功能作用研究.生态学报,2001,21(1):100-105
    69.刘雨芳,贺玲,汪琼等.转cry1Ac/sck基因抗虫水稻对稻田寄生蜂群落影响的评价.昆虫学报,2006,49(6):955-962
    70.刘雨芳,刘文海,贺玲等.转基因工程稻大米对小鼠的急性毒性与致突变研究.湖南科技大学学报(自然科学版),2008,23(4):111-117
    71.刘雨芳,刘文海,朱春花等.基因工程抗虫杂交稻大米的食品安全性评价.湖南科技大学学报(自然科学版),2007,22(4):107-112
    72.刘雨芳,张古忍,古德祥.农田生态系统中生境与植被多样性对节肢动物群落的影响及其作用机制探讨.湘潭师范学院学报,2000,21:74-78.
    73.刘志诚,叶恭银,傅强,等.转cry1Ab基因水稻对拟水狼蛛捕食作用间接影响的评价.中国水稻科学,2003,17(2):175-178
    74.刘志诚,叶恭银,胡萃,等.Bt水稻对主要非靶标害虫和蜘蛛优势种田间种群动态的影响.植物保护学报,2002,29(2):138-144
    75.刘志诚,叶恭银,胡萃,等.抗虫转基因水稻和化学杀虫剂对稻田节肢动物群落的影响.应用生态学报,2004,15(12):2309-2314
    76.刘志诚,叶恭银,胡萃,等.转Cry1 Ab/Cry1 Ac基因汕稻对稻田节肢动物群落影响.昆虫学报,2003,46(4):454-465.
    77.吕亮,陈其志,张舒等.湖北省水稻二化螟和三化螟的抗药性监测.华中农业大学,2008,27(2):213-216
    78.罗举.上海地区螟虫灾变规律研究[博士论文].南京,南京农业大学,2005
    79.毛国忠,徐关康,俞安品等.稻纵卷叶螟防治药剂筛选试验.农药科学与管理,2002,23:26-28
    80.潘欣葆.湖北稻区二、三化螟1996-1997年大发生原因与综合治理对策[J].昆虫知识,2000,37(3):134-136
    81.曲明静,韩召军,许新军.二化螟对三唑磷的抗性发生动态及风险评估[J].南京农业大学学报,2005,28(3):38-42.
    82.盛承发,王红托,高留德等.我国水稻螟虫大发生现状、损失估计及防治对策.植物保护,2003,29(1):37-39
    83.盛承发,王红托,盛世余等.我国稻螟灾害的现状及损失估计.昆虫知识,2003,40(4):289-294
    84.盛承发,王文铎,焦晓国等.应用性信息素诱杀水稻二化螟效果的初步研究.吉林农业人学学报,2002,24(5):58-61,65
    85.时盛伟.稻水象甲与水稻螟虫的关系及其夏季生殖特性[硕士论文].浙江大学,2006
    86.苏建伟,盛承发,夏友保等.二化螟性信息素应用技术:笼罩诱捕器和筒形诱捕器.昆虫知识,2001,38(2):145-148
    87.苏建伟,盛承发,宜维健等.二化螟性诱剂和诱捕器设置技术的研究.植物保护,1999 a,25(4):1-3
    88.苏建伟,宣维健,王红托等.应用二化螟性诱剂大面积诱捕越冬代雄蛾.植物保护,1999b,25(2):1-3
    89.谭红,叶恭银,沈君辉等.转cry1Ab基因抗虫籼稻对非靶标害虫白背飞虱发育与繁殖的影响,植物保护学报,2006,33(3):251-256
    90.汤进龙,吴进才,李国生等.稻田多种蜘蛛对褐飞虱(N ilaparvata lugens)捕食量的数学模型及关联度研究.生态学报,2001,21(7):1212-1215
    91.唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002
    92.万鹏.长江中游棉区转Cry1A基因棉花杀虫蛋白表达及对靶标和非靶标害虫的影响[博士论文].中国农业科学院,2004
    93.汪海燕.Bt水稻及其外源基因表达蛋白的环境行为与生物学效应[博士论文].浙江大学,2007
    94.王洪全,颜亨梅,杨海明.中国稻田蜘蛛群落结构研究初报.蛛形学报,1999,8(2):95-105
    95.王洪兴,陈欣,唐建军等.转Bt基因水稻秸秆降解对土壤微生物可培养类群的影响.生态学报,2004,24(1):89-94
    96.王平.转Bt基因水稻稻谷对储藏特性及仓储节肢动物群落的影响[硕士论文].华中农业大学,2007
    97.王强,谭福杰,尤子平.二化螟对六类杀虫剂的耐药性及增效剂的增效作用研究.南京农业大学学报,1987,4(增):44-55
    98.王世贵.Bt水稻对靶标害虫二化螟的生物学与病理学效应[博士论文].浙江大学,2002
    99.王新忠,谢家峰,樊道怀,胡玉龙.频振式杀虫灯应用技术研究初报.安徽农学通报, 2006,12(3):105-107
    100.王忠华,王茵,崔海瑞等.Bt水稻“克螟稻”稻米毒理性评价研究初报.中国农业科学2002,35(12):1487-1492
    101.王忠华,倪新强,徐孟奎等.Bt水稻“克螟稻”花粉对家蚕生长发育的影响.遗传2001,23(5):463~466
    102.王忠华,舒庆尧,崔海瑞等.Bt转基因水稻“克螟稻”杂交后代二化螟抗性研究初报,2000,26:310-314
    103.吴刚,崔海瑞,舒庆尧.“克螟稻”后代Cry1Ab基因表达特性及其对二化螟抗性的研究.中国农业科学,2001,34(5):496-501
    104.吴刚,崔海瑞,舒庆尧等.Cry1Ab基因在转基因“克螟稻”后代中的遗传稳定性及表达.农业生物技术学报,2000,8(3):253-256
    105.吴孔明.我国Bt棉花商业化的环境影响与风险管理策略.农业生物技术学报,2007,15(1):1~4.
    106.吴伟详.转Bt基因克螟稻对土壤和根系微生物多样性的影响[博士论文].浙江大学,2003
    107.吴志平.二化螟中肠Bt毒蛋白Cry1Ab受体基因的分子生物学研究[博士论文].浙江大学,2002
    108.夏敬源,崔金杰,马丽华等.转Bt基因抗虫棉在害虫综合治理中的作用研究.棉花学报,1999,11(2):57-94
    109.肖满开,王小平,张生来等.安庆市第三代二化螟田间危害状况及水稻损失率的研究.昆虫知识,2000,37(5):257-259
    110.熊振民,蔡洪法.中国水稻.中国农业科技出版社.1988
    111.徐遥,丁瑞丰,李号宾等.转Bt基因棉花国抗62对棉铃虫生长发育的影响及田间抗虫效果.昆虫学报,2008,51(2):222-226
    112.徐永桂.二化螟对Cry1Ab抗性风险评估和Cry1A毒素与二化螟中肠BBMV配基结合分析[硕士论文].南京农业大学,2009
    113.杨保军,唐健,江云珠等.转cry1Ab基因克螟稻对根际可培养细菌类群的影响.生态学报,2009,29(6):3036-3043
    114.杨辅安,盛承发,韦永保,等.二化螟性诱剂迷向防治作用的研究.植物保护,2001,27(3):4-6
    115.杨辅安,韦永保,祝春强.用二化螟性诱剂代替测报灯进行二化螟发生期预测.植 物保护。2000,26(2):14-16
    116.杨璞.稻水象甲地理型孤雌生殖的研究[博士论文].浙江大学,2008
    117.叶恭银.植物保护学.2007.浙江大学出版社
    118.叶平扬,董姗姗,卢宝荣等.转基因水稻与野生稻(Oryza nivara Sharmaet Shastry)杂交后代种子萌发率.复旦学报(自然科学版),2008,47(3):329-335
    119.尤民生,刘雨芳,侯有明.农田生物多样性与害虫综合治理.生态学报,2004,24(1):117-122
    120.于凤泉,李志强,刘培斌等.稻水象甲生物防治研究进展.辽宁农业科学,2003(6):19-20
    121.袁志东.Bt水稻花粉对家蚕不同品种的毒力测定和生物学影响研究[硕士论文].浙江大学,2006
    122.张广林,韩成香,姚洪渭等.水稻螟虫对4种Bt杀虫蛋白的敏感性测定.植物保护,2007,33(6):78-80
    123.张桂芬,万方浩,郭建英等.Bt毒蛋白在转Bt基因棉中的表达及其在害虫-天敌间的转移.昆虫学报,2004,47(3):334-341
    124.张矩红.转Bt基因抗虫棉对棉蚜的生态风险评价[博士论文].中国农业科学院,2006
    125.张天才,黄丕娇.频振式杀虫灯对水稻二化螟的诱杀效果.中国农技推广,2005,2:47-48
    126.张薇.Cry1Ab杀虫蛋白在—转Bt基因水稻—稻纵卷叶螟_拟水狼蛛—间的传递及对拟水狼蛛的影响[硕士论文].湖南师范大学,2009
    127.张文俊.稻水象甲种群数量扩张机制的研究[博士论文].浙江大学,2007
    128.赵红盈,张永军,吴孔明等.转cry1Ac/CpTI双价抗虫水稻Cry1Ac杀虫蛋白的表达特性及其对二化螟的毒杀效果农业生物技术学报,2004,12(1):76-79
    129.赵树英,秦利芳.佳多频振式杀虫灯应用效果综述.新疆农业大学学报,2002,25(3):71-72
    130.赵文娟.转Bt基因稻谷储藏期对四种储粮害虫的影响[硕士论文].西南大学,2009
    131.周霞,程家安,娄永根.转cry1Ab基因水稻对非靶标昆虫白背飞虱种群增长的影响.昆虫学报,2006,49(5):786-791
    132.Aaron J. Gassmann,Yves Carriere, Bruce E. Tabashnik. Fitness Costs of Insect Resistance to Bacillus thuringiensis.. Annu. Rev. Entomol.2009.54:147-63
    133.Alcantara E P, Aguda R M,Curtiss A et al. Bacillus thuringiensis d-Endotoxin Binding to Brush Border Membrane Vesicles of Rice Stem Borers. Archives of Insect Biochemistry and Physiology,2004,55:169-177
    134.Alejandra Bravo, Mario Soberon. How to cope with insect resistance to Bt toxins?.TRENDS in biotechnology,2008,26(10):573-579
    135.Alinia F, Ghareyazie B, Rubia L et al. Effect of plant age, larval age and fertilizer treatment on resistance of a crylAb-transforme daromatic rice to lepidopterous stem borers and foliage feeders. J Econ Ento mol.,2000.2:485-493
    136.Andow.The risk of resistance evolution in insects to transgenic insecticidal crops.Collection of biosafety reviews,2008,4:142-199.
    137.Bajaj Sh, Mohanty A.Recent advances in rice biotechnology-towards genetically superior transgenic rice, Plant Biotechnology Journal,2005,3:275-307
    138.Bao-Rong Lu, Allison A Snow. Gene flow from genetically modified rice and its environmental consequences. Bioscience,2005,55:669-678
    139.Bates SL, Zhao JZ,Roush R T. Insect resistance management in GM crops:past, present and future. Nat. Biotechnol.2005,23:57-62
    140.Baum JA, Bogaert T, Clinton W et al.Control of coleopteran insect pests through RNA interference. Nat. Biotechnol.2007,25:1322-1326
    141.Bentur JS, Andow DA, Cohen MB et al. Frequency of alleles cmferring resistance to a Bacillu-s thuringiensis toxin in a Philippine population of Scirpophaga irwertulas. J Econ Entomol,2000,93(5):1515-1521
    142.Bernal C C, Aguda R M, Cohen B M. Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predatorcyrtorhinus lividipennis. Ent Exp Appl,2002,102:21-28
    143.Birch A N E, Geoghegan I E, Majerus M E N et al. Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Mol Breed,1999,5:75-83
    144.Blatchley, W S, C. W. Leng.1916. Rhynchophora or weevils of North Eastern American. The Nature Publishing Co. Indianlis. Illus. Lissorhoptrus simplex,1916: 228-230
    145.Blatehley, W. S., and C. W.Leng.1916.Rhynchopra or weevils of North EastemAmerian. The Nature Publishing Co. IndianaaPolis.Illus.Lissorhoptrus simplex.228-230
    146.C.Neal Stewart Jr,Matthew D.Halfhill, Suzanne I.Warwick. Transgene introgression from genetically modified crops to their wild relatives.Nature,2003,4:806-817
    147.Cannon R J C. Bt transgenic crops:risk and benefits. Integrated Pest Management Reviews,2000,151-173
    148.Cappello M,. Bungiro R D, Harrison LM et al. A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. PNAS,2006,103(41):15154-15159
    149.Carri'ere Y, Tabashnik BE.2001. Reversing insect adaptation to transgenic insecticidal plants. Proc. R. Soc. London Sci. Ser. B 268:1475-80
    150.Chen L J, Lee D S, Song Z P et al. Gene flow from cultivatedrice(Oryza sativa)toitsweedy andwild relatives(J). Annals ofBotany,2004,93:67-73
    151.Chen, L., Marmey, P., Taylor, N.J et al. Expression and inheritance of multiple transgenes in riceplants. Nat. Biotechnol,1998,16:1060-1064
    152.Chen,X.et al. The nutritional evaluation of transgenic rice. Acta Nutrimenta Sinica,2004,26,119-123
    153.Cheng X, Sardana R, Kaplan H et al. Agrobacterium-transformed rice plants expressing synthetic cryⅠA(b) and cryⅠA(c) genes are highly toxic to striped stem borer and yellow stem borer, Proc. Natl. Acad. Sci. USA,1998,95:2767-2772
    154.Cheng, X.Y., Sardana, R., Kaplan, H et al,Agrobacterium-transformed rice expressing synthetic cry1Ab andcry1Ac genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA,1998,95,2767-2772
    155.Chilcutt C F, Tabashnik B E. Contamination of refuges by Bacillus thuringiensistoxin genes from transgenic maize. PNAS,2004,101(20):7526-7529
    156.Chin HG, Kim GD, Marin I et al.Protein trans-splicing in transgenic plant chloroplast: Reconstruction of herbicide resistance from split genes. PNAS,2003,100(8):4510-4515
    157.Christou, P., Ford, T.L., Kofron, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. BioTechnology,1991,9:957-962
    158.Cork A, Souza K D. Control of yellow stem borer, Scirpophaga incertulas (Lepidoptera: Pyralidae)by mating disruption on rice in India:effect of unnatural pheromone blends and application time on efficacy. Bulletin of Entomological Research,1996,86:515-524
    159.Dale PJ, Clarke B, Fontes EM. Potential for the environmental impact of transgenic crops Nat. Biotechnol.2002,50:567-574
    160.Daniell H. Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol.2002,20:581-586
    161.Datta K, Vasquez A. Tu J, et al. Constitutive and tissue-specific differential expression of the cryⅠA(b) gene in transgenic rice plants conferring resistance to rice insect pests. Theor Appl Genet,1998,97:31-36
    162.Datta, S.K., Peterhans, A., Datta, K et al. Genetically engineered fertile indica rice recovered from protoplasts. BioTechnology,1990,8:736-740
    163.Dirie A M, Cohen M B, Gould F. Larval dispersal and survival of Scirpophaga incertulas (Lepidoptera: Pyralidae) and Chilo suppressalis(Lepidoptera: Crambidae) on cry1Ab-transformed and non-transgenic rice. Environ Entomol,2000,29:972-978
    164.Du JW, Dai XJ, Xu SF et al, Studies on sex pheromone of yellow stem borer Scirpophaga incertulas (Walker), Pyralidae, Lepidoptera. Sci. Sin. (Series B). 1987,30:967-9731
    165.Duan, X., Li, X., Xue, Q., et al. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat. Biotechnol.1996,14:494-498.
    166.Fujimoto H, Itoh K, Yammamoto M et al. Insect resistance rice generated by introduction of a modified endotoxin gene from Bacillus thuringiensis. Bio/Techology,1993,11:1151-1155
    167.Gainesa TA, Zhang WL, Wang et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri.PNAS,2010,107 (3):1029-1034
    168.Griffitts JS, Aroian RV. Many roads to resistance:how invertebrates adapt to Bt toxins. Bio Essays,2005,27:614-24
    169.Hiei, Y., Ohta, S., Komari, T.,et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacteriumand sequence-analysis of the boundaries of the tDNA. PlantJ.1994,6:271-282.
    170.Hilder V A, Boulter D. Genetic engineering of crop for insect reistance-a critical review. Crop Frot.,1999,18:177-191
    171.Huan g J K, Hu R, Rozelle R et al. Insect-resistance GM rice in farmers fields: Assessing productivity and health effects in China. Science,2005,308:688-690
    172.Huang, J.K., Hu, R.F., Rozelle, S., Pray, C..Insect-resistant GM rice in farmers'fields: assessing productivity and health effects in China. Science,2004,308:688-690
    173.Jackson, R.E.,J.R.Bradley,Jr.,F.Gould,J.W.Van Duyn.Genetic variation for resistance to Cry1Ac and Cry2Ab in bollworm,Helicoverpa zea,in North Carolina.,2002,Beltwide cotton conference.
    174.James,C.Golbal status of commercialized transgenic crops:2007.ISAAA Briefs No. 36:Preview.Ithaca,NY,International Service for the Acquisition of Agri-biotech Applications.
    175.James,C.Golbal status of commercialized transgenic crops:2008.ISAAA Briefs No. 37:Preview.Ithaca,NY, International Service for the Acquisition of Agri-biotech Applications.
    176.Huang J Ket al. Plant Biotechnology in China.Science,2002,295:674-677
    177.Kathuria, Hitesh, Giri, Jitender, Tyagi, Himani and Tyagi, Akhilesh K.'Advances in Transgenic Rice Biotechnology', Critical Reviews in Plant Sciences,2007,26(2):65-103
    178.Kojima. Regional control threshold of rice stem borer, Chilo suppressalis, indicated by adult catch with sex-pheromone trap. Japanese Journal of Applied Entomology and Zoology,1996,40 (4):279-286
    179.Lin, H. et al. Application of bar gene in seed production of hybrid rice and its biosafety analysis. Acta Agriculturae Jiangxi 12,6-10 (2000).
    180.Liu, L., Qiang, S., Song, X. & Hu, J. Observation of the sexual incompatibility between wild rice (Oryza officinalis Wall) and transgenic rice by fluoresence microscope. Scientia Agricultura Sinica.37,469-472 (2004).
    181.Lu, B., & Snow, A.A. Gene flow from genetically modified rice and its environmental consequences. BioScience,2005,55,669-678
    182.Manda G. Cattaneo, Christine Yafuso,et al.Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield.PNAS,2006,103(20): 7571-7576
    183.Mario Soberon, Liliana Pardo-Lopez, Idalia Lopez et al. Engineering Modified Bt Toxins to Counter Insect Resistance.Science,2007,318:1640-1642
    184.Marvier M, McCreedy C, Regetz J et al. A Meta-Analysis of Effects of Bt Cotton and Maize on Nontarget Invertebrates.Science,2007,316(8):1474-1477
    185.McGaughey WH. Insect resistance to the biological insecticide Bacillus thuringiensis. Science,1985,229:193-95
    186.McGaughey,W.H.,M.E.Whalon.Managing insect resistance to Bacillus thuringiensis toxins.Science,1992,258:1451-455
    187.Meihlsa L N,.Higdonb M L, SiegfriedcB D et al. Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection, PNAS,2008,105(49):19177-19182
    188.Meng F X, Wu K M, Gao X W et al. Geographic variation in susceptibility of Chilo suppressalis(Lepidoptera:Pyralidae)to Bacillus thnringiensis toxins in China. Journal of EconomicEntomology,2003,96:1838-1842
    189.Nayak, P., Basu, D., Das, S.,et al. Transgenic elite indica rice plants expressing CrylAc δ-endotoxin of Bacillus thuringiensis are resistantagainst yellow stemborer (Scirophaga incertulas). Proc. NatlAcad. Sci. USA,1997,94,2111-2116
    190.Pimentel D S, Raven P H. Bt corn pollen impacts on nontarget Lepidoptera: Assessment of effects in nature, Proc. Natl. Acad. Sci. USA,2000,97(15): 8198-8199
    191.Qifa Zhang. Strategies for developing Green Super Rice. PNAS,2007,104 (42) 16402-164097
    192.Ran KV, Rathore KS, Hodges TK et al. Expression of snowdrop lectin(GNA) in the phloem of transgenic rice plants confers resistance to rice brown plant hopper. Plant J,1998,14:469-477
    193.Romeis J, Meissle M,Bigler F. Transgenic crops expressing two Bacillus thuringiensis toxins and biological control. Nat. Biotechnol.2006,24:63-71
    194.Romeis R, Bartsch D, Bigler F et al. Assessment of risk of insect-resistant transgenic crops to nontarget arthropods, NATURE BIOTECHNOLOGY,2008,26(2):203-208
    195.Rong J(戎俊), SongZP(宋志平),Su J(苏军) et al. Low frequencies of transgene flow between Bt/CpTI rice and their non-transgenie counterparts under alternating cultivation. Biodiversity Science (生物多样性),2006,14:309-314
    196.Rong J, Lu B R, Song Z P et al. Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. NewPhytologist,2007,173:346--353
    197.Rong J, SongZP, Su J et al. Low fiequency oftransgene flow from Bt/CpTI rice to its nontransgenie counterparts planted at close spacing. NewPhytologist,2005,168: 559-566
    198.Rong, J. et al. Low frequency of transgene flow from Bt/CpTI rice to its non-transgenic counterparts planted at close spacing. New Phytol.168,559-566 (2005).
    199.RongJ,Xia H,Zhu Y Y et al.Asymmetric gene flow between traditional and hybrid ricevarieties(Oryza sativa)estimated by nuclear SSRs and its impficafion in germplasm conservation. New Phytologist,2004 163:439-445
    200.Sasha Ming High, Michael B. Cohen, Qing Yao Shu et al. Achieving successful deployment of Bt rice. TRENDS in Plant Science,2004,9 (6):286-292
    201.Sharma P N.Torii A.Takumi S.Mori N,Nakamura C. Marker-assisted pyramiding of brown planthopper(Nilaparvata lugens Stal)resistance genes Bphl and Bph2 on rice chromosome.Hereditas,2004,140:61-69
    202.Shelton A M, Zhao J Z, Roush R T. Economic,ecological,food safety, and social consequences of deployment of Bt transgenic plants. Annu Rev Entomol,2004,47: 845-881
    203.Shelton AM, Tang J D. Roush R Tet al. Field tests on managing resistance to Bt-engineered plants. NATURE BIOTECHNOLOGY,2000,18:339-342
    204.Shimamoto, K., Teda, R., Izawa, T et al. transgenic rice plants regenerated from transformed protoplasts. Nature,1989,338,274-277
    205.Shivraina V K, Burgosa NR, Andersb M M et al. Gene flow between Clearfield TMRice and redrice. CropProtection,2007,26:349-356
    206.Song ZP, Lu BR, ZhuYG et al. Pollen competition between cultivated and wild rice species(Oryza sativa and O.rufipogon). NewPhytologist,2002,253:289-296
    207.Song ZP, Lu BR, ZhuYG et al., Gene flow from cultivated rice to the wild species Oryza rufipogon under experimenta field conditions. New Phytologist,2003,157: 657-665
    208.Song, X., Qiang, S. & Sun, M. Gene flow between herbicide resistant transgenic rice and Echinochloa crus-galli var. mitis under mentor pollen inducement. Chinese Journal of Rice Science,2003,17,191-195
    209.Song, X., Qiang, S., Liu, L. & Xu, Y. Assessment on gene flow through detectionof sexual compatibility between transgenic rice with bar gene and Echinochloa crusgalli var. mitis. Scientia Agricultural Sinica,2002,35,1228-1232
    210.Sun X, WuA, Tang K. Transgenic rice lines with enhanced resistance to the small brown planthopper. Crop Prot,2002,21:511-514
    21 l.Tabashinik B.E etal.Johnson.Field development of resistance to Bacillus thuringiensis in diamondback moth(Lepidoptera:Plutellidae). J.Econ.Entomol,1990,83:1671-1676
    212.Tabashnik B E, Dennehy T J, Carrie're Y. Delayed resistance to transgenic cotton in pink bollworm, PNAS,2005,102(43):15389-15393
    213.Tabashnik BE, Cushing NL, Finson N, Johnson MW. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol,1990,83:1671-76
    214.Tabashnik BE, Gassmann AJ, Crowder DW, Carri'ere Y. Insect resistance to Bt crops:evidence versus theory. Nat. Biotechnol.2008,26:199-202
    215.Tabashnik BE. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol, 1994,39:47-79
    216.Tabashnika B E, Unnithana G C, Massonb L. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm,PNAS, 2009,106 (29):11889-11894
    217.Tatsuki S, Sugie H, Fukami K, et al. Identification of possible pheromone of the yellow stem borermoth, Scirpophaga incertulas (Lepidoptera: Pyralidae). Applied Entomology and Zoologv,1985,20(2):357-359
    218.Tatsuki S, Kurihara M, Usui K et al, Sex pheromone of the rice stem borermoth, Chilo suppressalis (Lepidoptera:Pyralidae):the third component, Z292Hexadecenal. Appl. Entomol. Zool.,1983,18:443-446
    219.Toriyama, K., Arimoto, Y., Uchimiya, H.et al. Transgenic rice plants after direct gene transfer into protoplasts. BioTechnology,1988,6:1072-1074
    220. Tu J M, Zhang G A, Datta K, et al. Field performance of transgenic elite commercial hybid rice expression Bacillus thuringiensis 8-endotoxin. Nature Biotechnology, 2000,18:1101-1104
    221.Uchimiya, H., Iwata, M., Nojiri, C.et al.Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). BioTechnology,1993,11:835-836
    222. Wang, H. et al. A toxicity test of transgenic rice with mtlD/gutD gene on rats. Chinese Jouranl of Rice Science,2004,18,208-212
    223.Watrud LS, Lee EH, Fairbrother A et al. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker.PNAS,2004,101(40):14533-14538
    224.Wolfenbarger L L, Phifer P R. The ecological risks and benefits of genetically engineered plants. Science,2000,290:2088-2093
    225. Wu KM, Mu M, Liang GM et al.Regional reversion of insecticide resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) is associated with the use of Bt cotton in northern China. Pest Manag Sci,2005,61:491-498
    226.Wu, D.X. et al. Comparative studies on major nutritional components and physicochemical properties of the transgenic rice with a synthetic CrylAb gene from Bacillus thuringiensis. J. Food Chem,2003,27,295-308
    227.Wu,K.,Y.Guo.The evolution of cotton pest management practices in China. Annu. Rev.Entomol,2005,50:31-52.
    228.Wunn, J., Kloti, A., Burkhardt, P.K.et al. Transgenic indica rice breedingline IR58 expressing a synthetic crylA (b) gene from Bacillus thuringiensis provides effective insect pest control. BioTechnology,1996,14,171-176
    229.Yang, Y., Chen, S., Han, J et al. The nutritional evaluation of genetically modified rice-comparative feeding study of minipigs. Acta Nutrimenta Sinica,2005,27,38-41, 45
    23O.Ye G Y, ShuQY, CuiHR, et al. A leaf-section bioassay for evaluating rice stem borer resistance in transgenic rice containing a synthetic crylAb gene from Bacillis thuringiensis Berliner. Bulletin of Entomological Research, 2000,90:179-182
    231. Ye GY, Yao HW, Shu QY et al. High levels of stable resistance in transgenic rice with a Cryl Ab gene from Bacillus thuringiensis Berlier to rice leaffohler, Cnaphalocrosis medinalis under field conditions. Crop Prot,2003,22:171-178
    232.Zaidi MA, Gongyin Ye, Hongwei Yao. Transgenic Rice Plants Expressing a Modified crylCal Gene are Resistant to Spodoptera litura and Chilo suppressalis. Molecular Biotechnology,2009,43(3):232-242
    233.Zhang Z B. Effects of agricultural chem icals on farm land Eco system (1). J ou rnal of E cology,1988,7 (3):25-29
    234.Zhang, H.M., Yang, H., Rech, E.L et al. Transgenic rice plants produced by electroporation mediated plasmid uptake into protoplasts. Plant Cell Report, 1988,7:379-383
    235.Zhang, W. and Wu, R. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in plants. Theor. Appl. Genet.76,835-840
    236.Zhao JZ, Cao J,Li YL et al. Transgenic plants expressing two Bacillus thuringiensis toxins delayinsect resistence evolution. Nat. Biotechnol.2003,21:1493-1497
    237.Zhao, Z., Yang, L.,et al. Influence of genetically modified rice containing codA gene on physiological metabolism and genetic horizontonal transformation in fed rats. J. Agri. Biotechnol,2005,13:341-346
    238.Zhao,J.Z.,H.L.Collins,J.D.Tang et al. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Crylc Apply. Environ. Microbiol,2000,66:3784-3789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700