起重机自适应智能防摆控制方法及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消除或控制吊重的摇摆对提高起重机工作效率、减少装卸作业安全生产隐患具有重要意义,采用电子防摆装置,是减轻司机工作强度、改善司机恶劣工作环境的重要途径,也是实现装卸机械自动化的大势所趋。
     论文采用状态反馈、PID控制、LQR最优控制等传统控制方法对起重机防摆问题进行了仿真研究,并在对模糊控制和模糊神经网络理论进行分析研究的基础上,基于工程实际和方便司机操作,提出了“速度跟踪”模糊控制器和“速度位移双跟踪”模糊控制方法,仿真结果表明,模糊控制器既能实现小车的精确定位,又能有效地控制吊具的摆动,而在存在初始扰动的情况下小车的定位存在较大的稳态误差。因此在模糊防摆控制器的基础上,本文进一步深入研究了同时具有模糊控制和神经网络的模糊神经网络控制方法,并设计了T-S型自适应模糊神经网络控制器,该控制器继承了模糊控制器的优点,且在存在初始扰动的情况下能基本消除小车定位的稳态误差,取得了较好的防摆效果。本文的创新点主要体现在以下几个方面:
     (1)利用拉格朗日方法建立了起重机双向防摆的完全的、非线性动力学方程,为研究起重机双向防摆问题提供了理论依据;
     (2)分别采用状态反馈、PID控制、LQR最优控制方法对起重机防摆问题进行了仿真;
     (3)创新性地设计了“速度位移双跟踪”模糊控制器,在不存在初始扰动的情况下取得了理想的防摆效果;
     (4)将模糊技术、神经网络技术和LQR最优控制方法相结合,设计了T-S型自适应模糊神经网络控制器,解决了模糊控制器在存在初始扰动的情况下小车定位的稳态误差较大的问题。
Eliminating and controlling the swing of loads is very important for increasing the work efficiency of crane as well as decreasing safety hazard during loading & unloading operation. It's a main method to lighten the work strength and to improve the bad work condition for the operator by adopting electronic anti-swing device, which also the trend of actualizing the loading & unloading machinery automation.
     The state feedback, PID control, LQR optimal control methods were used in this study for the simulation of the crane anti-swing issues, the "speed follow-up" and the "speed & displacement double follow-up" fuzzy control methods were developed based on learning and studying fuzzy control and fuzzy neural network theory as well as considering the project practice and convenient for driver operation, the simulation result showed that: fuzzy control does either realize the accurate position of the trolley, or control the loads swing. However, there is a significant steady-state error for trolley position when initial disturbance exists. Based on fuzzy anti-swing controller, further studying fuzzy neural network control methods which have both advantage of the fuzzy control and neural network, then the T-S self-adaptive fuzzy neural network controller was designed, which succeed virtue of fuzzy controller, also mostly eliminate the steady-state error during initial disturbance. The study showed that the T-S self-adaptive fuzzy neural network controller is an effective anti-swing method.
     The Innovation results for this study were shown as follows:
     (1) Establishing the absolute and non-linear dynamics equation for crane double-way anti-swing by using Lagrange method could lay the theory foundation in studying crane double-way anti-swing problem.
     (2)The simulation for crane anti-swing issues was carried out by separately adopting the state feedback, PID control and LQR Optimal Control methods.
     (3) The "speed & displacement double follow-up" fuzzy controllers was firstly created with the ideal anti-swing efficiency without initial disturbance.
     (4) The fuzzy technology, neural network technology and LQR Optimal Control method were integrated to design T-S type self-adaptive fuzzy neural network controller, which can resolve the significant steady-state error for trolley position when existing initial disturbance.
引文
[1] 严云福.超巴拿马型岸边集装箱起重机发展的新趋势.港口装卸,2001,(1).
    [2] 符敦鉴.高新技术在集装箱机械上的开发和应用.中国港口,2003,(7).
    [3] 吴宏智.集装箱装卸搬运机械发展概况.物流技术,1994,(5).
    [4] 蒋国仁.港口起重机械.大连:大连海事大学出版社,1995.
    [5] 张斌,吴福华,陈迪茂.轮胎式龙门起重机防摇技术.水运工程,2005,(5).
    [6] 冯冬青,谢宋和.模糊智能控制.北京:化学工业出版社,1998.
    [7] 白传悦.岸边集装箱起重机吊具减摆装置.起重运输机械,2005,(8).
    [8] 王金诺,程文明,张质文.集装箱起重机刚性减摇系统的动态仿真.铁道学报,1995,(3).
    [9] 林致来.岸边集装箱起重机机械减摇系统.起重运输机械,1998,(8).
    [10] 梁承姬,张纪元.机械式减摇机构的动力学模型及其数值计算.上海海运学院学报,2000,21(4).
    [11] 张泰.集装箱起重机减摇系统的分析与计算.青岛建筑工程学院学报,1997,18.(1).
    [12] 宋显东,杨丹,李琦.基于动态变量优化的起重机反摆控制研究.机械设计与制造,2004,(8).
    [13] 董明晓,郑康平,张明勤.桥式起重机消摆控制仿真研究.系统仿真学报,2005,(1).
    [14] 薛朵,李宇成.港口集装箱吊车的建模与模糊控制.机电一体化,2000,(3).
    [15] 王晓军,邵惠鹤.基于模糊的桥式起重机的定位和防摆控制研究.系统仿真学报,2005,(4).
    [16] 周勇,黎钧琪.集装箱起重机的模糊防摇控制.交通科技,2003,(1).
    [17] 华克强.桥式吊车模糊防摆技术.中国民航学院学报,2000,(6).
    [18] 李伟.起重机载荷摆振模型的简化条件及误差.山东建筑工程学院学报,1998,13(1).
    [19] 李伟,张桂青.起重机最优消摆对策.山东建筑工程学院学报.1998,13(3).
    [20] 张桂青,李伟,叶卓锋.绳长对起重机载荷消摆影响的计算机仿真.山东科学.1998,(9).
    [21] 李伟,张桂青,陈鹏.基于时间最优的起重机消摆控制策略.山东工业大学学报,1998.28(2).
    [22] 梁承姬,张纪元.机械式减摇机构的动力学模型及其数值计算.上海海运学院学报,2000,(4).
    [23] 沈李建.集装箱装卸桥吊具电子防摇系统.港口装卸,1998,(6).
    [24] 郭建明.模糊控制在港口机械上的应用研究.港口装卸,2001,(2).
    [25] 范其蓬,张晓川,范赣军.模糊控制在集装箱小车电子防摇中的应用.港口装卸,1998,(6).
    [26] 李伟,吕景惠.起重机线性二次型最优消摆控制.电气传动.2003.(2).
    [27] 金耀初.诸静.蒋静坪.神经网络自学习模糊控制及其应用.电工技术学报,1999.(4).
    [28] 郭建明.新型集装箱起重机防摇控制系统研究.交通科技,2000,(6).
    [29] 康赐荣.用人工神经网络(ANN)实现模糊控制.电脑与信息技术,2001,(3).
    [30] 钱学清,张惠侨.抓斗起重机电子控摇系统模型的建立.起重运输机械,1999,(5).
    [31] 何琪敏.集装箱装卸桥吊具控制系统的改进.港口装卸,1995,(4).
    [32] 徐保林.轨道式集装箱龙门起重机的刚性减摇装置.港口装卸,1994,(6).
    [33] 张景元,张荣顺.基于神经网络的模糊控制规则校正方法研究.山东建材学院学报,1997,(3).
    [34] 周勇,李勇智,黄晓兵.利用SIMULINK对集装箱起重机进行建模与仿真.港口装卸,2003.(1).
    [35] 李士勇.模糊控制、神经网络和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998.
    [36] 舒东来.人工神经网络—模糊控制研究近况.兵工自动化,1998,(1).
    [37] 王士同.神经模糊系统及其应用.北京:北京航空航天大学出版社,1998.
    [38] 冯刚,吴海帆,宋甲宗等.卸船机抓斗有控摆动的策略及运动分析.起重运输机械,2001,(12).
    [39] 肖鹏,王冰.基于MEMS微加速度计的无视觉传感器防摇控制系统研究.机电工程,2005,(1).
    [40] 倪春木.张阿卜,赵晓锋等.模糊神经网络在小车摆系统辨识中的应用.厦门大学学报(自然科学版),2001,40(1).
    [41] 刘远.变结构模糊神经网络在信息融合中的应用.哈尔滨理工大学学报,2004,9(3).
    [42] 丛爽.几种模糊神经网络关系的对比研究.信息与控制,2001,30(6).
    [43] 赵恒平,俞金寿.一种基于TS模糊模型的自适应建模方法及其应用.华东理工大学学报,2004,30(4).
    [44] 黄金杰,李士勇,左兴权.一种TS型粗糙模糊控制器的设计与仿真明.系统仿真学报,2004,16(3).
    [45] 张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998.
    [46] 刘增良.模糊技术与神经网络技术选编.北京:北京航空航天大学出版社.1999.
    [47] 赵振宇.模糊理论和神经网络的基础与应用.北京:清华大学出版社,1996.
    [48] 王士同.模糊系统、模糊神经网络及应用程序设计.上海:上海科学技术文献出版社.1998.
    [49] 周春光.梁艳春.计算智能·人工神经网络·模糊系统.长春:吉林大学出版社,2001.
    [50] 张国良.模糊控制及其MATLAB应用.西安:西安交通大学出版社,2002.
    [51] 闻新等.MATLAB神经网络仿真与应用.北京:科学出版社,2003.
    [52] 雷英杰,张善文,李续武等.Matlab遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005.
    [53] Sakawa Y, Shindo Y. Optimal Control of Container Cranes [J]. Automatica, 1982, 18(3): 257-266.
    [54] Auering J W, Troger H. Time Optimal Control of Overhead Cranes with Hoisting of the Load [J]. Automatica, 1987, 23(4): 437-447.
    [55] Corriga G, Giua A. An Implicit Gain-scheduling Controller for Cranes [J]. IEEE Transaction on Control systems Technology, 1998, 6(1): 15-20.
    [56] Boustany F, d'Andrea-Novel B. Adaptive Control of an Overhead Crane Using Dynamic Feedback Linearization and Estimation Design [C]. Pro. of the 1992 IEEE International Conferene on Robotics and Automation, Nice, France, 1992, 1963-1968.
    [57] Butler H, Honderd G, Van Amerongen J. Model Reference Adaptive Control of a Gantry Scale Model [J]. IEEE Control system Magazine, 1991, 57-62.
    [58] Fliess M, Levine J, Rouchon P. A Simplified Approach of Crane Control via Generalized State Space Mode. In: Proceedings of the 30th IEEE Conference on Decision and Control, 1991, 1: 736-741.
    [59] Benhidjeb A, Gissinger G L. Fuzzy Control of an Overhead Crane Performance Comparision with Classic Control [J]. Control Engineering Practice, 1995, 3(12): 1687-1696.
    [60] Nally M, Trabia M B. Control of Overhead Cranes Using a Fuzzy Logic Controller [J]. Journal of Intelligent and Fuzzy Systems, 2000, 8(1): 7-18.
    [61] Nowacki Z, Owezarz D. On the Roustness of Fuzzy Control of an Overhead Crane [C]. Proceedings of the IEEE International Symposium on Industrial Electronics, 1996, 433-437.
    [62] Mahfouf M, Kee C H, Abbod M F, Linkens D A. Fuzzy Logic-Based Anti-Sway Control Design for Overhead cranes. Neural Computing&Applications, 2000, (9): 38-43.
    [63] Filipic, B. /Urbancic, T. /Krizman, V. A combined machine learning and genetic algorithm approach to controller design. Egineering Applications of Artificial Intelligence, 1999, 12(4): 401-409.
    [64] Ho-Hoon Lee, Sung-Kun Cho. A new fuzzy-logic anti-swing control for industrial three-dimensional overhead cranes. Proc. of the 2001 IEEE International Conference on Robotics and Automation, 2001, (3): 2956-2961.
    [65] J. Yu~*, F. L. Lewis~*, and T. Huang. Nonlinear Feedback Control of a Gantry Crane. Proceedings of the American Control Conference, Seatle, Washington, June 1995.
    [66] Giorgio Bartolini, Alessandro Pisano, Elio Usai. Second-order sliding-mode control of container cranes. Automatica 2002, (38): 1783-1790.
    [67] Masoud Z, Nayfeh A.Sway reduction on container cranes using delayed feedback controller[J].Nonlinear Dynamics,2003, 34(2): 347-358.
    [68] Diantong Liu, Jianqiang Yi, Dongbin Zhao, and Wei Wang. Swing-Free Transporting of Two-Dimensional Overhead Crane Using Sliding Mode Fuzzy Control. Proceeding of the 2004 American Control Conference Boston, Massachusetts June 30~July 2, 2004.
    [69] Hanafy M. Omara, AN H. Nayfehb. Gantry cranes gain scheduling feedback control with friction compensation. Journal f Sound and Vibration, 2005, (28): 11-20.
    [70] Guangfu Sun a,~*, Michael Kleeberger b, Jie Liu c. Complete dynamic calculation of lattice mobile crane during hoisting motion. Mechanism and Machine Theory, 2005, (40): 447-466.
    [71] C. Chung and J. Hauser. Nonlinear Control of a Swinging Pendulum. Automatica, 1995, 31(6): 851-862.
    [72] H. Lee. Modeling and Control of a Three-Dimensional Overhead Cranes. ASME Trans, on Dynamic Systems, Measurement, and Control, Vol. 120, pp. 471-476,1998.
    [73] R. Lozano, I. Fantoni, D. J. Block. Stabilization of the Inverted Pendulum Around Its Homoclinic Orbit. Systems & Control Letters, 2000, 40(3): 197-204.
    [74] S. C. Martindale, D. M. Dawson, J. Zhu, and C.Rahn. Approximate Nonlinear Control for a Two degree of Freedom Overhead Crane. Theory and Experimentation, Proc.American Control Conference, pp. 301-305, 1995.
    [75] K.A.F. Moustafa and A. M. Ebeid. Nonlinear Modeling and Control of Overhead Crane Load Sway. ASME Trans. on Dynamic Systems, Measurement, and Control,Vol. 110, pp. 266-271, 1988.
    [76] Y. Sakawa and H. Sano. Nonlinear Model and Linear Robust Control of Overhead Traveling Cranes. Nonlinear Analysis, 1997, 30(4): 2197-2207.
    [77] J. J. E. Slotine and W. Li. Applied Nonlinear Control. Englewood Cliff, NJ: Prentice Hall, Inc., 1991.
    [78] Q. Wei, W. P. Dayawansa and W. S. Levine. Nonlinear Controller for An Inverted Pendulum Having Restricted Travel. Automatica, 1995, 31(6): 841-850.
    [79] K. Yoshida and H. Kawabe. A Design of Saturating Control with a Guaranteed Cost and Its Application to the Crane Control System. IEEE Transactions on Automatic Control, 1992, 37(1): 121-127.
    [80] K. Yoshida, Nonlinear Controller Design for a Crane System with State Constraints, Proc. American Control Conference, pp. 1277-1283, 1998.
    [81] Park BJ, Hong KS, Huh CD. Time-e.cient input shaping control of container crane systems. ln:Proceedings of IEEE. International Conference on Control Application, 2000. p. 80-85.
    [82] Singhose W, Porter L, Kenison M, Kriikku E. Effects of hoisting on the input shaping control of gantry cranes. Control Eng. Practice, 2000, 8(10):1159-65.
    [83] Hua KQ. Fuzzy anti-swing technology for overhead crane. J Civil Aviation Univ China, 2000, 18(3):12-23.
    [84] Kakoub MA, Zribi M. Robust control schemes for an overhead crane. J Vib Control, 2001, 7(7):395-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700