桥式起重机智能控制器的设计与防摆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥式起重机作为一种运载工具,广泛应用于各种工业场合。由于起重机自身结构的原因,负载在吊运过程中不可避免产生摆动。以往起重机是由操作者手动控制,一般是等待重物的摆动自然衰减后再进行就位操作,这种消极的消除摆动方式是以降低生产效率为代价的。本文设计了起重机主动防摆控制系统,将防摆和小车的运行控制结合起来考虑,它对起重机快速、安全的运行具有重要意义。
     对起重机吊重系统的动力学分析是解决起重机快速对位问题的基础。根据起重机物理模型,应用理论力学的基本方法,运用拉格朗日方程建立了起重机吊重系统动力学方程,并在线性简化的基础上得出吊重二自由度摆角模型。
     本文结合变频调速技术,设计了以S7-200型PLC为核心的起重机防摆控制系统。变频调速技术在起重机中的应用,极大地提高了起重机控制系统的稳定性和可靠性。PLC以可靠性高、使用灵活、维护工作量少等突出优点在工业领域得到了广泛的应用。
     研究和仿真结果表明,采用常规PID控制方法对桥式起重机吊重防摆进行控制具有一定的局限性。本文应用模糊控制机理,提出了基于模糊控制的起重机防摆控制器。该方法将起重机防摆和定位控制分开设计,采用位置模糊控制器和角度模糊控制器两个控制器实现起重机的准确定位和防摆。降低了运算时间、提高了控制效率。借助MATLAB中的Simulink Fuzzy工具箱对所设计的方案进行仿真分析。结果表明,本文所设计的模糊控制器具有良好的控制性能,在速度和位移的跟踪上优于前者,鲁棒性强,不受外界扰动的影响,是一种较为理想的控制方法。
     针对模糊控制中存在的位置静差和角度幅值偏大问题,本文进而提出了采用模糊自整定PID控制器来消除位置偏差和改善摆角控制。仿真和实验结果显示该方法可以消除系统静差,减小摆角,缩短系统响应时间,抗干扰能力强。
Overhead cranes are widely used in industry for load transfer. As its unique structure, it unavoidably causes swinging as working. Anciently the crane is controlled manually with the manipulator, and the next extent is available before the swing’s complete attenuation unaffectedly. This kind of swing elimination mode costs the efficiency of production. A active anti-swing control system to get the control of both anti-swing and movement of the trolley into account is designed in this paper, and has profound implications to the quick and safe work of crane.
     Dynamic analysis for the crane-load system is the foundation for solving the problem of the crane’s fast contraposition. Aiming at the crane model, the basic method of theoretic mechanics and Lagrange equation was used to establish the crane-load system’s dynamic equations, and the two-degree-of-freedom angle model was derived based on linear simplification for the system’s dynamic equations.
     In this paper, a anti-swing control system was designed which was based on S7-200series PLC according to conditions of variable-frequency speed control technology. The application of variable frequency speed control technology enhanced the stability and the reliability of the crane control system enormously.With the high reliability, the use of flexible and low maintenance working, PLC is widely used in industrial areas.
     The conventional method which is PID control has the shortage in crane anti-swing. In this paper two fuzzy anti-swing controllers were presented by means of the fuzzy control mechanism. Anti-swing and orientation controller was designed respectively. The fuzzy location controller and fuzzy angle controller were used to realize the accurate location and anti-swing. This new method needs little time to compute and gets the high efficiency. And the simulink result shows the good control effect. The fuzzy control effect is better in velocity and position tracking than above one and good robustness when having external disturbance.
     To eliminate the steady-state error and reduce the angle of amplitude in fuzzy control, a method was presented in this paper. In brief, it is using fuzzy auto-tuing PID controller to eliminate steady-state error and improve swing angle control. The results of simulation and actual experiments show the steady-state error can be eliminated, and response time of system can be shortened, the disturbance rejection ability of system can be strengthened.
引文
[1]白传悦.岸边集装箱起重机吊具减摆装置[J].起重运输机械,2005(8):23-25.
    [2]王金诺,徐宝林.集装箱起重机刚性减摇系统的动态仿真[J].铁道学报,1995,Vol.17(1):34-40.
    [3]林致来.岸边集装箱起重机机械减摇系统[J].起重运输机械,1998(8):23-24.
    [4]梁承姬,张纪元.机械式减摇机构的动力学模型及其数值计算[J].上海海运学院学报,2000,Vol.21(4):37-43.
    [5]张泰.集装箱起重机减摇系统的分析与计算[J].青岛建筑工程学院学报,1997,Vol.18(1):21-26.
    [6]魏雨龙.岸边集装箱装卸桥吊具减摇装置的研究[D]: [硕士学位论文].上海:上海海事大学,2005.
    [7]徐保林.轨道式集装箱龙门起重机的刚性减摇装置[J].港口装卸,1994(6):6-9.
    [8]钱学清,张惠侨.抓斗起重机电子控摇系统模型的建立[J].起重运输机械,1999(5):5-8.
    [9]何琪敏.集装箱装卸桥吊具控制系统的改进[J].港口装卸,1995(4):22-24.
    [10]高淑玲等.桥式起重机防摆控制[J].自动化技术与应用,1998(7):1-4.
    [11]华克强.桥式起重机模糊防摆控制[J].中国民航学报,2000(3):12-15
    [12]王晓军,邵惠鹤.时变输入整形在桥式起重机防摇控制中的应用[J].系统仿真学报,2007,Vol.19(3):623-626.
    [13]董晓明,梅雪松,姜歌东.一种新型的桥式起重机位置补偿消摆控制策略[J].西安交通大学学报,2005,Vol.39(11):1250-1253.
    [14]谢珺,续欣萤.基于模糊专家系统的智能行车控制[J].太原理工大学学报,2004,Vol.35(5):513-516.
    [15]梁春燕,谢剑英,钟庆昌.具有强鲁棒性的时滞滤波器设计[J].上海交通大学学报,2001,Vol.35(2):259-263.
    [16]梁春燕,谢剑英,魏晨.不确定柔性系统消除残留振荡的时滞滤波器设计[J].机械工程学报,2000,Vol.36(7):23-26.
    [17]薛朵,李宇成.港口集装箱吊车的建模与模糊控制[J].机电一体化,2000(3):42-46.
    [18]刘毅,董宁.基于遗传算法的模糊控制在智能系统中的应用[J].微计算机信息,2003(l):5-6.
    [19] Y.Kijima, R.Ohtsubo, S.Yamada, H.Fujikawa. An optimaization of fuzzy controller and it’s application to overhead crane[J]. Indusrtial electronics, Control and instrumentation proceedings of the 1995 IEEE IECON 21st international conference, 1995 (2): 1508-1513.
    [20] M.S.Vanlandingham, H.F.Beliveau. Expert rule based time optimal control of crane loads moon[J]. Control Applications, Porceedings of the 1996 IEEE international conference, 1996 (4): 602-607.
    [21] Nowacki, Z.Owczarz, D.Wonzniak. On the robustness of fuzzy control of an overhead crane[J]. Industrial electronics, ISIE’96, Proceedings of the IEEE international symposium, 1996 (1): 433-437.
    [22] Suzuki, Y.Yamada, S.Ifujukawa, Anti-swing control of the container crane by fuzzy control[J]. Industrial electronics control. Control and instrumentation, Proceedings of the IECON’93, International conference on 1993 (4): 230-235.
    [23] J.A.Mendez, L.Acosta, Hamilton, G.N.Marichal. Design of a neural network based self-tuning controller for an overhead crane[J]. Control applications, Proceedings of the 1998 IEEE international conference, 1998 (1): 168-171.
    [24] Sung-Kun Cho, Ho-Hoon Lee. An Anti-Sway Control of 3-dimensional overhead crane[J]. Proceedings of the American control conference, 2000 (6): 1037-1041.
    [25] Ho-Hoon Lee. Modeling and control of a three-dimensional overhead crane[J]. Journal of dynamic systems. Measurement and control, 1998 (10): 471-476.
    [26] Ho-Hoon Lee, Sung Kun Cho. A new fuzzy logic anti-Sway control for industral three-deminsional overhead crane[J]. Proceedings of the 2001 IEEE international conference on Robotic&Automation, 2001 (5): 2956-2961.
    [27] T.Burg, D.Dawson, C.Rahn, W.Rhodes. Nonlinear control of an overhead crane via the saturating control approach of teel[J]. Robotics and Automation, Proceedings of 1996 IEEE international conference, 1996 (4): 3155-3160.
    [28] Kiss B Levine, J.Mullhaupt. A simple output feedback PD controller for nonlinear cranes[J]. Decision and Control, Proceedings of the 39th IEEE conference, 2000 (5): 5097-5101.
    [29] B.Vikramaditya, R.Rajiamani. Nonlinear control of a trolley crane system[J]. American control conference, Proceedings of the 2000, 2000 (2):1032-1036.
    [30] J.Yanai, M.Murakami, S.Ouchi, K.Z.Liu, Y.Todaka. Anti-sway control system of a rotational crane using the nonlinear controller[J]. Advanced motion control, Proceedings of 6th international workshop. 2002 (7):419-422.
    [31] PARK B, HONG K, HUH C.Time-efficient input shaping control of container crane systems[A]. Proc of the 2001 IEEE Int Conf on Control App1ication[C]. Anchorage, Alaska: IEEE Service Center, IEEE Control System Society, 2000: 80-85.
    [32] YOSHIMI H, MASAKATSU N. Anti-sway and position contro1 of crane system[A]. Proc of 4th Int Workshop on Advanced Motion Control[C]. Marzo, IEEE Service Center, IEEE Industrial Electronics Society, 1996 (2): 657-662.
    [33] WILLIAM S, LISA P, MICHAEL K, et al. Effects of hositing on the input shaping control of gantry cranes[J]. Control Engineering Practice, 2000, Vol.8 (10): 1159-1165.
    [34] RIDOUT A J. Variably damped control of the overhead crane[A]. Proc of 15th Annual Conf of the IEEE Industrial Electronics Society[C]. Philadephia, PA:IEEE Service Center. IEEE Industrial Electronics Society, 1989: 263-269.
    [35] GIUA A, SEATZU C, USAI G. Observer-controller design for cranes via Lyapunov equivalence[J]. Automatica, 1999, Vol.35 (4): 669-678.
    [36] C.L.Teo, C.J.ong, M.Xu. Pulse iInput sequenees for residual vibration redueation[J]. Journal of Soundand Vibration, 1998, Vol.211 (2): 157-177.
    [37] William Singhose, LisaPorter. Effeets of hoisting on the input shaping contro1 of gantry cranes[J]. Control engineering praetice, 2000, Vol.8 (10): 1159-1165.
    [38]周勇,李勇智,黄晓兵.利用SIMULINK对集装箱起重机防摆进行建模与仿真[J].港口装卸,2003(l):29-33.
    [39]周勇,黎钧琪.集装箱起重机的模糊防摇控制[J].交通科技,2O03(1):30-32.
    [40] Kawada, K. Sogo, H. Yamamoto. Variable gain PD sway control of a lifted load for a mobile crane[J]. American control conference, Proceedings of the 2001, 2000 (2): 953-958.
    [42] Albertos, P.Olivares.M. Online learning control of a gantry crane[J]. Intelligent Control, Proceedingsof the 2000 IEEE international symposium, 2000 (6): 157-162.
    [43]程文明,邓斌,王金诺.小车架为弹性结构时门式起重机的动态特性研究[J].西南交通大学学报,2001,Vol.36(2):144-148.
    [44]程文明,王金诺,邓斌.门式起重机结构参数与动态指标耦合关系[J].西南交通大学学报,2002,Vol.37(6):651-654.
    [45]程文明,钟斌,张则强等.集装箱起重机液压油缸式减摇系统的动力学分析[J].中国铁道科学,2007,Vol.28(2):105-109.
    [46]张青,张瑞军.工程起重机结构与设计[M].北京:化学工业出版社,2008.
    [47]田景良.桥式起重机构造与检修[M].北京:化学工业出版社,2008.
    [48]裘为章,吴锡忠.实用起重机电气技术手册[M].机械工业出版社,2001.
    [49]李良仁,王兆晶,汪临伟.变频调速技术与应用[M]. :电子工业出版社,2004.
    [50]三菱电动机株式会社.变频器原理与应用教程[M]. :国防工业出版社,1998.
    [51]廖常初.PLC基础及应用[M]. :机械工业出版社,2007.
    [52]陈浩.案例解说PLC、触摸屏及变频器综合应用[M]. :中国电力出版社,2007.
    [53]张洪润,张亚凡,邓洪敏.传感器原理及应用[M]. :清华大学出版社,2008.
    [54]孙优贤、褚健.工业过程控制技术[M]. :化学工业出版社,2005.
    [55]席爱民.模糊控制技术[M]. :西安电子科技大学出版社,2008.
    [56]张静.MATLAB在控制系统中的应用[M]. :电子工业出版社,2007.
    [57]谢仕宏.MATLAB控制系统动态仿真实例教程[M]. :化学工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700