水性有机硅—聚氨酯嵌段共聚物的合成及其作为织物整理剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常将经过物理或化学改性并赋予其特殊功能的织物称为技术织物或功能织物。这类织物技术含量高,与通用纺织品相比较,价格敏感性低,可获得更高利润。拒水织物和阻燃织物是技术织物中需求量最大、应用面最广的两类织物。随着环境保护的日益加强,绿色环保的无溶剂型水分散织物整理剂的开发已迫在眉睫。
     有机硅具有耐高低温性能好,表面能低、生理惰性等特性,经有机硅处理的织物拒水性好、滑爽、柔软。然而,有机硅织物整理剂存在着与织物粘着力低、机械强度较低、不耐水洗与价格较高的不足之处。聚氨酯具有良好的粘接强度、韧性与耐磨性,已广泛用作皮革与织物的防水透湿涂层剂。
     基于这两种材料的特性,本论文采用有机硅与聚氨酯共聚,将两者有机结合起来,实现上述两种材料优势互补,性能可调。考虑环保因素,研制水分散有机硅-聚氨酯嵌段共聚物作为织物拒水整理剂。利用其在整理织物过程中表面能低的有机硅链段可向织物表面迁移富集,而聚氨酯链段靠近织物,通过氢键和化学键与织物紧密粘接,兼顾实现拒水和与织物粘接性均较好的目的。
     采用端羟基聚二甲基硅氧烷(PDMS)与氨丙基甲基二甲氧基硅烷(DB-912)反应,制备一系列不同分子量的端氨烃基聚二甲基硅氧烷齐聚物(NS)作为扩链剂,从而制备了水分散有机硅-聚氨酯嵌段共聚物(WPSUR)。研究了亲水剂类型、羧基含量、二羟基聚醚类型、蓖麻油用量、扩链剂类型、NS分子量、有机硅含量、水分散液固含量等与WPSUR分散液粒径、稳定性与流变特性的相互关系,考察了其对WPSUR成膜物吸水性、与水的表面接触角、机械性能、耐热稳定性、与织物的粘接性及整理后织物的拒水性、耐静水压与耐水洗等特性的影响。
     本文选用的亲水剂有两种:一种是由丙三醇与马来酸酐反应制备的甘油半酯(GSE),另一种是二羟甲基丙酸(DMPA)。甘油半酯作亲水剂制得的水分散液价格较低,成膜物柔软,但羧基含量需达到2.5wt%以上才可获得稳定的水分散液;而采用DMPA为亲水剂,羧基含量高于1.6wt%时,即可制得稳定的水分散液。采用含有三羟基和长脂肪烃链甘油酯的蓖麻油为原料,在体系中引入内交联以提高拒水性和机械性能等特性。采用NS作扩连剂制得的WPSUR与用脂肪二胺、低分子氨烃基硅烷偶联剂的WPU相比,其薄膜耐水性大大提高,与水的表面接触角可达100°以上,耐热性和机械强度也均有提高。
     采用PDMS与DB-912反应,制备的侧链含有长链有机硅链段的端氨烃基聚二甲基硅氧烷齐聚物(S_3N_2)作为扩链剂,可进一步提高体系中聚硅氧烷链段的含量,提高了薄膜的拒水性且改善了整理剂的手感。研究结果表明,当NS与S_3N_2的比例为75:25、有机硅含量为30wt%、蓖麻油含量为15wt%、羧基含量为1.8wt%、固含量为30wt%时,制备的WPSUR综合性能最佳。经该拒水型WPSUR整理的涤棉织物,静水压可达41KPa,沾水等级和水洗后拒水等级均为3级,与织物的粘接强度高达7.0N/cm,薄膜的拉伸强度达5.2 MPa,脆化温度低至-30℃。表明该拒水型织物整理剂稳定性良好、性能优异、具有良好的应用前景。
     本工作的创新点是:选用了端氨烃基聚硅氧烷齐聚物替代常规脂肪二胺和低分子氨烃基硅烷偶联剂作扩链剂,使合成的WPSUR分子链中有机硅氧烷链段含量大大增加,提高了薄膜的拒水性与耐热稳定性等性能。选用了蓖麻油作为原料,在WPSUR分子中引入内交联和疏水的长脂肪链,进一步提高了耐水性。
     利用有机蒙脱土(MMT)的隔热、增强增韧和阻燃作用,制备了剥离型WPSUR/MMT纳米复合材料。MMT的引入,显著改善了WPSUR薄膜的表面疏水性、机械性能和耐热稳定性。当MMT含量为1wt%时,WPSUR/MMT复合材料的拉伸强度和断裂伸长率较之WPSUR分别提高了22.8%与9.6%,达到了既增强又增韧的效果;其耐热性也有所改善,较之PU,其热失重第二分解峰值温度提高了20℃。
     本文采用分子链中含有磷元素的多元醇为原料,蓖麻油为内交联剂,NS为扩连剂,合成了磷、氮、硅协同阻燃的阻燃型水分散有机硅-聚氨酯嵌段共聚物(P-WPSUR)。该P-WPSUR是一种集酸源、碳源和发泡源于一身的“三位一体”水分散膨胀型阻燃剂。考察了磷、硅含量对水分散液稳定性、流变特性、成膜性、与织物的粘接性,整理织物后的极限氧指数(LOI)、垂直燃烧撕毁长度、阴燃与续燃、耐水洗性、耐热稳定性,成炭率及燃烧后碳残渣的微观形态变化等的影响。结果表明,磷含量的提高比硅含量的提高能更有效地阻燃棉织物。热重分析(TGA)结果表明,无论在空气还是氮气氛围中,P-WPSUR均具有良好的热稳定性及优异的成炭能力。P-WPSUR整理后的棉织物可显著降低质量损失速率,并使材料的LOI大幅提升。经磷含量为7.1 wt%、有机硅含量为20wt%的P-WPSUR整理后的棉织物的综合性能最佳。
     经该P-WPSUR整理后的棉织物,垂直燃烧撕毁长度<100 mm,无阴燃、无续燃,无熔融、滴落;经8次家庭洗涤.烘干循环之后的垂直燃烧撕毁长度<130mm。复合阻燃剂整理后的棉织物,水洗前的氧指数为34,洗涤10次后的氧指数为30。该乳液制备的薄膜拉伸强度达4.2 MPa,脆化温度低至-30℃;与织物的粘接强度(T型剥离试验)高达11.1N/cm,与织物具有良好的粘接性,耐水洗性良好。且薄膜与水的表面接触角>100°,表明该整理剂处理后的织物不但具有良好的阻燃性,还可具有一定的防水性、良好的滑爽性等性能,有良好的应用前景。
Technical textile is physically and chemically modified textile with specialfunctions. Compared with the general textiles, technical textile is profitable. Textileswith high water resistance and fire retardancy are under great demand and applied inmany fields. Industrial pollution is getting more serious and it is imminent to prepareenvironment-friendly finishing agent with non-organic solvent and non-halogen.
     Siloxane is an important novel material with peculiar properties, such as excellentheat resistance, cold resistance, weather resistance, aging resistance, water-proof,fire resistance and physiologically inert. Textiles finished with siloxane-basedfinishing agent show excellent water resistance and soft handle. However, theapplication of siloxane-based finishing agent is limited because of the poormechanical properties, low surface adhesive strength and high cost. Polyurethanes(PUs) have been widely used as waterproof and breathable textile coatings due totheir properties of high mechanical strength and toughness, good resistance tochemical attacks and mechanical wear, excellent adhesion and extensibility.However, general PUs exhibit poor thermal stability and surface properties, limitingtheir applications in some fields. Recently, PU modification through siloxane attractsworldwide concern. It is expected to improve thermal stability, water resistance andsurface property of PU without substantially losing PU's excellent mechanicalproperties. The great difference in solubility parameters leads to poor compatibilitybetween PU and siloxane. Besides, the bonding force is weak because of the narrowinterfacial minor region of hard segments. The previous studies mainly focused onthe modification of thermoplastic, thermoset or moisture-curing PU using siloxane.There have been few studies about the synthesis of waterborne polysiloxaneurethanecopolymer as the textile finishing agent.
     In this dissertation, a novel waterborne polysiloxaneurethane copolymer (WPSUR)endued with the advantages of PU and siloxane was synthesized, which was main used as water resistance finishing agent for truerancotton textile. Series of stableWPSUR were prepared using amino-terminated polydimethylsiloxane (NS),dimethylolpropionic acid (DMPA), castor oil, polypropylene glycol and toluenediisocyanate (TDI). Meanwhile, NS with different molecular weights weresynthesized by hydroxyl-terminated polydimethylsiloxane (PDMS) reacting withaminopropylmethyldimethoxyl silane (DB-912) with a ratio of 1:2. Effect ofcarboxyl diols type, carboxyl contents, dihydroxy polyether type, castor oil contents,chain extender type, NS molecular weight, siloxane contents and the polymercontents on the particle size, storage stability and rheological properties of WPSURdispersion, meanwhile, effect of these factors on the water resistance, water contactangle, mechanical properties, heat degradation and stability of WPSUR films andadhesion between WPSUR and textile, were studied. Moreover, the water resistance,hydrostatic pressure resistance and water resistance durance of the truerancottontextile treated by water resistant WPSUR were also examined.
     Two types of carboxyl diols were used. One is glycol semi-ester (GSE)synthesized by glycerol and maleic anhydride, and the other is dimethylolpropionicacid (DMPA). Experiment results reveal that carboxyl contents of WPSUR exceed2.5 wt% and 1.6 wt% when using GSE and DMPA, respectively, and the resultedWPSUR possesses excellent storage stability.
     It is noted that castor oil with unsaturation and hydroxyl function groups has beenwidely used in polyurethane preparation. The multi-functional nature of castor oilmay contribute to the toughness of PU structure, and the long fatty acid chainprovides the properties of high flexibility and water resistance. WPSUR filmsexhibite more excellent water resistance and mechanical properties as compared withPU films. Their water contact angles reach 100°. Moreover, WPSUR films using NSas soft co-segment show high thermal degradation temperature about 413℃,approximately 30℃higher than that of typical PUs using hexamethylene diamine(HDA) and 3-(2-aminoethylamino) propyl dimethoxymethyl silane (APDMS) as thechain extenders. In order to further increase polysiloxane segment contents, longsiloxane side-chain amino-terminated polysiloxane S_3N_2 was synthesized using PDMS and DB-912 (PDMS:DB-912 = 3:2). Because of the higher molecular weightof S_3N_2, the WPSUR dispersions show poor storage stability when S_3N_2 was onlyused as the soft co-segment. WPSUR shows good general performance with thecondition of organic siloxane content being 30 wt%, castor oil content being 15 wt%,carboxyl content being 1.8 wt%, solid content being 30 wt% and the ratio of NS toS_3N_2 being 75:25. Tests of truerancotton textile treated with this kind of WPSUR areas follows: the hydrostatic pressure is 41 KPa, the degree of water resistance is classthree, the bonding strength is 7.0 N/cm, tensile strength is 5.2 MPa, and brittletransition temperature is -30℃. This textile finishing agent presents good stabilityand performance with promising application.
     The main innovation of this dissertation is using NS and S_3N_2 as the softco-segment instead of conventional low molecular weight fatty diamine andammonium alkyl silane coupling agent. The siloxane contents of WPSUR increasesignificantly, resulting in excellent water resistance and mechanical properties forWPSUR. Castor oil is used to get some crosslinking and long fatty hydrophobicchain, improving the water resistance.
     Waterborne polysiloxaneurethane/montmorillonite (WPSUR/MMT) was synthesizedusing castor oil, polypropylene glycol, TDI, DMPA and MMT. Morphology andphysical properties of WPSUR/MMT were tested and analysised by using WXRDand TEM. Results reveal that the clay platelets are fully dispersed and exfoliated.WPSUR/MMT films possess high water resistance and mechanical properties, due tothe ionic interactions between the clay and hard segments of WPSUR. Besides, thetensile strength and elongation at break of WPSUR/MMT composites containing 1wt % MMT are about 23% and 9.6% respectively, higher than those of the pristineWPSUR sample. Moreover, both organic clay and NS soft co-segment can improvethe thermal stability of WPSUR/MMT films.
     Flame retardant WPSUR (P-WPSUR), a novel phosphorous-nitrogen-siloxanecontaining intumescent flame retardant, was synthesized using polyols containingphosphorus, castor oil, polypropylene glycol, TDI, DMPA and NS. The phosphorus,nitrogen and siloxane present synergistic flame-retardant effect. Both phosphorus and siloxane can be used as flame retardant of cotton textile, but the increase ofphosphorus contents is more effective than increase of siloxane contents. P-WPSURpossesses good performance with 7.1 wt% phosphorus content and 20 wt% siloxanecontent. The char length of cotton textile treated with P-WPSUR is less than 100 nmwithout further smolding and continued burning, and the treated cotton textiles showgood flame retardancy property after eight home laundering wash/dry processes. TheLOI is 34 before home laundering wash, and 30 after 10 home laundering wash/dryprocesses. The tensile strength and brittle transition temperature of cotton textiletreated with P-WPSUR are 4.2 MPa and -30℃, respectively. The bonding strengthbetween P-WPSUR and cotton textile is 11.1 N/cm. The flame retardant WPSURalso presents good water resistance.
引文
[1] 陈韶娟,马建伟,技术纺织品,中国纺织出版社,北京,2008.
    [2] 李显波,防水透湿织物生产技术,化学工业出版社,北京,2006.
    [3] P.C. Hiemenz, Principles of colloid and surface chemistry, Marcel Dekker, New York, 1986.
    [4] A.K. Haghi, Transport phenomena in porous media: A review, Theoretical Foundations of Chemical Engineering 40 (2006) 14-26.
    [5] Z. Skenderi, I. Salopek, M. Srdjak, The influence of yarn count to the transfer of heat and vapour through fabrics, in: Z. Dragcevic (Ed.), Dubrovnik, Croatia, 2008, pp. 876-881.
    [6] R.N. Wenzei, Surface roughness and contact angle, Journal of Physical Colloid Chemstry 53 (1949) 1466-1467.
    [7] R. Guidoin, M. King, D. Marceau, A. Cardou, D.D.L. Faye, J.M. Legendre, P. Blais, Textile arterial prostheses: Is water permeability equivalent to porosity?, Journal of Biomedical Materials Research 21 (1987) 65-87.
    [8] G. Landells, Modern resin finishing of textiles practice and research, Journal of the Society of Dyers and Coiourists 72 (1956) 137-146.
    [9] S. Mondal, J.L. Hu, Influence of hard segment on thermal degradation of thermoplastic segmented polyurethane for textile coating application, Polymer-Plastics Technology and Engineering 46 (2007) 37-41.
    [10] P. Majumdar, E. Lee, N. Patel, S.J. Stafslien, J. Daniels, B.J. Chisholm, Development of environmentally friendly, antifouling coatings based on tethered quaternary ammonium salts in a crosslinked polydimethylsiloxane matrix, Toronto, Canada, 2007, pp. 405-417.
    [11] F. Breme, J. Buttstaedt, G. Emig, Coating of polymers with titanium-based layers by a novel plasma-assisted chemical vapor deposition process, San Diego, California, 2000, pp. 755-759.
    [12] E.J. Tang, G.X. Cheng, Q. Shang, X.L. Ma, A novel approach to the preparation of powder coating Manufacture of polyacrylate powder coatings via one step minisuspension polymerization, Progress in Organic Coatings 57 (2006) 282-287.
    [13] X.M. Hao, H.C. Zhang, Y.H. Guo, Study of new protective clothing against SARS using semi-permeable PTFE/PU membrane, European Polymer Journal 40 (2004) 673-678.
    [14] S. Brzezinski, G. Malinowska, T. Nowak, H. Schmidt, D. Marcinkowska, A. Kaleta, Structure and properties of microporous polyurethane membranes designed for textile-polymeric composite systems, Fibres & Textiles in Eastern Europe 13 (2005) 53-58.
    [15] 商成杰,功能纺织品,中国纺织出版社,北京,2006.
    [16] 吴森纪,有机硅及其应用,科学技术文献出版社,上海,1990.
    [17] 冯圣玉,张洁,李美江,朱庆增,有机硅高分子及其应用,化学工业出版社,北京,2004.
    [18] E. Shi, W.X. Huang, Z.Y. Xiao, D.H. Li, M. Tang, Influence of binding interface between active and support layers in composite PDMS membranes on permeation performance, Journal of Applied Polymer Science 104 (2007) 2468-2477.
    [19] H.B. Park, C.K. Kim, Y.M. Lee, Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes, Journal of Membrane Science 204 (2002) 257-269.
    [20] M.A. Eddings, B.K. Gale, A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices, Journal of Micromechanics and Microengineering 16 (2006) 2396-2402.
    [21] D.P. Queiroz, M. Norberta de Pinho, Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea hi-soft segment membranes, Polymer 46 (2005) 2346-2353.
    [22] F. Abbasi, H. Mirzadeh, A.A. Katbab, Modification of polysiloxane polymers for biomedical applications: a review, Polymer International 50 (2001) 1279-1287.
    [23] J.M. Wen, G. Somorjai, F. Lim, R. Ward, XPS study of surface composition of a segmented polyurethane block copolymer modified by PDMS end groups and its blends with phenoxy, Macromolecules 30 (1997) 7206-7213.
    [24] T. Akimoto, T. Aoyagi, J. Minoshima, Y. Nagase, Polymeric percutaneous drug penetration enhancer - Synthesis and enhancing property of PEG/PDMS block copolymer with a cationic end group, Journal of Controlled Release 49 (1997) 229-241.
    [25] R.N. Jana, G.B. Nando, In situ compatibilization of the blends of low-density polyethylene (LDPE) and polydimethylsiloxane (PDMS) rubber by ethylene methyl acrylate (EMA) copolymer, Journal of Thermoplastic Composite Materials 20 (2007) 75-92.
    [26] S. Mishima, T. Nakagawa, Characterization of graft polymerization of fluoroalkyl methacrylate onto PDMS hollow-fiber membranes and their permselectivity for volatile organic compounds, Journal of Applied Polymer Science 88 (2003) 1573-1580.
    [27] 幸松民,王一璐,有机硅合成工艺及产品应用,化学工业出版社,北京,2000.
    [28] e. Yiigor I, Poly. Bull, 8 (1982) 535.
    [29] e. Hirokawa K, vol. IP-Koai 平 1-101361, 1989.
    [30] K. H, vol. JP-Kokai 平 5-287077, 1993.
    [31] e. Aoki H, vol. JP-Kokai 平 4-239028, 1992.
    [32] e. Ueno S, 1995, vol. JP-Kokai 平 7-26000.
    [33] e. Shin-Etsu Co, vol. JP-Kokai 昭 59-64670, 1984.
    [34] N. T, vol. EP 448971, 1990.
    [35] J.S. Turner, Y.L. Cheng, pH dependence of PDMS-PMAA IPN morphology and transport properties, Journal of Membrane Science 240 (2004) 19-24.
    [36] J.S. Turner, Y.L. Cheng, Morphology of PDMS-PMAA IPN membranes, Macromolecules 36 (2003) 1962-1966.
    [37] M. Dahrouch, A. Schmidt, L. Leemans, H. Linssen, H. Gotz, Synthesis and properties of poly(butylene terephthalate)-poly(ethylene oxide)-poly(dimethyisiloxane) block copolymers, 4th International Symposium on Polycondensates, Hamburg, Germany, 2002, pp. 147-162.
    [38] A. Nodera, T. Kanai, Flame retardancy of polycarbonate-polydimethylsiloxane block copolymer/silica nanocomposites, Journal of Applied Polymer Science 101 (2006) 3862-3868.
    [39] M. Alexy, M. Hanko, S. Rentmeister, J. Heinze, Disposable optochemical sensor chip for nitrogen dioxide detection based on oxidation of N,N'-diphenyl-1,4-phenylenediamine, Sensors and Actuators B: Chemical 114 (2006) 916-927.
    [40] E.M. Christenson, J.M. Anderson, A. Hiltner, E. Baer, Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers, Polymer 46 (2005) 11744-11754.
    [41] C.P. Chen, S.A. Dai, H.L. Chang, W.C. Su, T.M. Wu, R.J. Jeng, Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures, Polymer 46 (2005) 11849-11857.
    [42] V. Melnig, M.O. Apostu, V. Tura, C. Ciobanu, Optimization of polyurethane membranes: Morphology and structure studies, Journal of Membrane Science 267 (2005) 58-67.
    [43] K.T. Kim BK, Jeong HM., Aqueous dispersion of polyurethane anionomers from H12MDI/IPDI, PCL, BD,and DMPA., Journal of Applied Polymer Science 53 (1994) 371-378.
    [44] Y. Chen, Y.L. Chen, Aqueous dispersions of polyurethane anionomers: Effects of countercation, Journal of Applied Polymer Science 46 (1992) 435-443.
    [45] R. Narayan, D.K. Chattopadhyay, B. Sreedhar, K. Raju, N. N. Mallikarjuna, T.M. Aminabhavi, Synthesis and characterization of crosslinked polyurethane dispersions based on hydroxylated polyesters., Journal of Applied Polymer Science 99 (2006) 368-380.
    [46] W.G. Hourston DJ, Satguru R, Padget DJ, Pears D., Structure-property study of polyurethane anionomers based on various polyols and diisocyanates., Journal of Applied Polymer Science 66 (1997) 2035-2044.
    [47] 许戈文,水性聚氨酯材料,化学工业出版社,北京,2006.
    [48] C.H. Yang, S.M. Lin, T.C. Wen, Application of statistical experimental strategies to the process optimization of waterborne polyurethane, Polymer Engineering and Science 35 (1995) 722-730.
    [49] B.K. Kim, T. K. Kim, H. M. Jeong, Aqueous dispersion of polyurethane anionomers from MDI/IPDI, PCL, BD, and DMPA, 53 (1994) 371-378.
    [50] J.C.L. Byung Kyu Kim, Waterborne polyurethanes and their properties, 34 (1996) 1095-1104.
    [51] T.K.K. Byung Kyu Kim, Aqueous dispersion of polyurethanes from HMDI, PTAd/PPG, and DMPA: Particle size of dispersion and physical properties of emulsion cast films, 43 (1991) 393-398.
    [52] B.K.K. Jong Cheol Lee, Basic structure-property behavior of polyurethane cationomers, 32 (1994) 1983-1989.
    [53] G. G(u|¨)ng(o|¨)r, M. Gafaroullar, Highly branched and tartaric acid-based water-borne resins, Journal of Applied Polymer Science 80 (2001) 604-612.
    [54] 许伟萍,水性涂料,化学工业出版社,北京,2005.
    [55] J.H. Saunders, Frisch K.C., Polyurethanes: chemistry and technology, High polymers, Part Ⅰ., Wiley, New York, 56 (1962).
    [56] Schollenberger C. S., Dinbergs K. J., Thermoplastic urethane molecular weight-property relations., Journal of Elastoplatic 5 (1973) 225-251.
    [57] Aneja A., W.G.L., On the issue of urea phase connectivity in formulations based on molded flexible polyurethane foams., Journal of Applied Polymer Science 85 (2002) 2956-2967.
    [58] Wamprecht C, S. M., Polyester polyols and their use as a binder component in two-component polyurethane coating compositions., U.S. Patent 6423816,2002.
    [59] Santos D, M. A., Polyester polyols and their use as the polyol component in two-component polyurethane paints., vol. US patent 6184332,2001.
    [60] Blackwell J, Nagarajan MR, H. TB., Structure of polyurethane elastomers: effect of chain extender length on the structure of MDI/diol hard segments., Polymer 23 (1982)950-956.
    [61] Hong JL, Lillya CP, C. JCW., Degree of phase separation in polyether-polyurethane copolymers with different chemical structures of hard segments., Polymer 33 (1992) 4347-4351.
    [62] Pandya MV, Deshpande DD, H. DC, Thermal behavior of cast polyurethane elastomers., Journal of Applied Polymer Science 35 (1988) 1803-1815.
    [63] Kothandaraman H, Venkatarao K, T. BC, Crosslinking studies of polyether-ester-based polyurethane systems., Journal of Applied Polymer Science 39 (1990) 943-954.
    [64] Spirkova M, Matejka L, Hlavata D, Meissner B, P. J., Polybutadiene-based polyurethanes with controlled properties: preparation and characterization., Journal of Applied Polymer Science 77 (2000) 381-389.
    [65] Paulmer RDA, Shah CS, Patni M J, P. MV., Effect of crosslinking agents on the structure and properties of polyurethane millable elastomer composites., Journal of Applied Polymer Science 43 (1991) 1951-1959.
    [66] Y.S. Lu, R.C. Larock, New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization, Biomacromolecules 8 (2007) 3108-3114.
    [67] M.S. Yen, H.C. Tsai, P.D. Hong, Effect of soft segment composition on the physical properties of nonionic aqueous polyurethane containing side chain PEGME, Journal of Applied Polymer Science 105 (2007) 1391-1399.
    [68] H. Du, Y.H. Zhao, Q.F. Li, J.W. Wang, M.Q. Kang, X.K. Wang, H.W. Xiang, Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI, Journal of Applied Polymer Science 110 (2008) 1396-1402.
    [69] H. Du, Y.H. Zhao, N. Yin, Q.F. Li, J.W. Wang, M.Q. Kang, H.W. Xiang, X.K. Wang, Preparation and properties of waterborne polyurethane adhesives modified by polystyrene, Journal of Applied Polymer Science 110 (2008) 3156-3161.
    [70] Palanisamy A., D. B. Rohini Kumar, Anionomeric waterborne poly(urethane semicarbazide) dispersions and their adhesive properties, Journal of Applied Polymer Science 110 (2008) 2833-2840.
    [71] J.K. Yun, H.J. Yoo, H.D. Kim, Prepaation and properties of waterborne polyurethane-urea/sodium alginate blends for high water vapor permeable coating materials, Journal of Applied Polymer Science 105 (2007) 1168-1176.
    [72] Z. Hu, G. Dong, J. Yan, B. Zhu, Waterborne alkyd resin latex emulsion for use as finishing or base paint, comprises emulsified resin and alkyd resin, Changzhou Painting Chem Ind Res Inst China Head Office Chem, 2008.
    [73] W.J. Oh, J.H. Lee, O. Kim, D.U. Kim, Thin film composition used for plastic interior finish in automobile comprises albumin filler, polysiloxane antifoaming agent, polysiloxane surface wetting agent, water-dispersing acrylic urethane resin and polyethylene resin, Hyundai Mobis Co Ltd, 2008.
    [74] C.C.M. Ma, Y.L. Huang, H.C. Kuan, Y.S. Chiu, Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites, Journal of Polymer Science Part B: Polymer Physics 43 (2005) 345-358.
    [75] N. Dolmaire, F. Mechin, E. Espuche, J.P. Pascault, Modification of a hydrophilic linear polyurethane by crosslinking with a polvdimethylsiloxane. Influence of the crosslink density and of the hydrophobic/hydrophilic balance on the water transport properties, Journal of Polymer Science Part B-Polymer Physics 44 (2006) 48-61.
    [76]M.S. Yen, P.Y. Tsai, Effects on the structure and properties of membranes formed by blending polvdimethylsiloxane polyurethane into different soft-segment waterborne polyurethanes, Journal of Applied Polymer Science 102 (2006) 210-221.
    [77] B. Ward, J. Anderson, M. Ebert, R. McVenes, K. Stokes, Biostability of polysiloxane polyether polyurethanes: Resistance to metal ion oxidation, Journal of Biomedical Materials Research Part A 77A (2006) 380-389.
    [78] H.M. Jiang, Z. Zheng, W.H. Song, X.L. Wang, Moisture-cured polyuretha ne/polvsiloxane copolymers: Effects of the structure of polyester diol and NCO/OH ratio, Journal of Applied Polymer Science 108 (2008) 3644-3651.
    [79] Liu J., Pan Z. Q., Gao Y., Study on the morphology structure and properties of aqueous polyurethane modified by poly(dimethyl siloxane), Journal of Applied Polymer Science 105(2007)3037-3046.
    [80] R. Ward, Anderson J, McVenes R, Stokes Ken, Biostability of polysiloxane polyether polyurethanes: Resistance to biologic oxidation and stress cracking, Journal of Biomedical Materials Research Part A 77A (2006) 580-589.
    [81] D. Tyagi, J.E. McGrath, G.L. Wilkes, Segmented organosiloxane copolymers: 2 Thermal and mechanical properties of siloxane-urea copolymers, Polymer 25 (1984) 1807-1816.
    [82] D.K. Chattopadhyay, K.V.S.N. Raju, Structural engineering of polyurethane coatings for high performance applications, Progress in Polymer Science 32 (2007) 352-418.
    [83] L. Chen, Yu X.H., C.Z. Yang, Chinese Journal of Polymer Science 14 (1996) 295-3030.
    [84] H.Z. Zhuang, J.A. Gardella, D.M. Hercules, Determination of the Distribution of Poly(dimethylsiloxane) Segment Lengths at the Surface of Poly[(dimethylsiloxane)-urethane] Segmented Copolymers by Time-of-Flight Secondary Ion Mass Spectrometry, 30 (1997) 1153-1157.
    [85] L.F. Wang, Q. Ji, T.E. Glass, T.C. Ward, J.E. McGrath, M. Muggli, G. Burns, U. Sorathia, Synthesis and characterization of organosiloxane modified segmented polyether polyurethanes, Polymer 41 (2000) 5083-5093.
    [86] Chen H, Fan QL, Chen DZ, Y. X.H., Synthesis and properties of polyurethane modified with an aminoethylaminopropyl-substituted polydimethylsiloxane. Ⅱ. Waterborne polyurethanes, Journal of Applied Polymer Science 79 (2001) 295-301.
    [87] I. Klammer, et al., Long-term stability of PDMS-based microfluidic systems used for biocatalytic reactions, Journal of Micromechanics and Microengineering 16 (2006) 2425-2428.
    [88] Chen R. S., Chang C. J., Chang Y. H., Study on siloxane-modified polyurethane dispersions from various polydimethylsiloxanes, Journal of Polymer Science, Part A: Polymer Chemistry 43 (2005) 3482-3490.
    [89] Yilgor. E., Yilgor. I., Hydrogen bonding: a critical parameter in designing silicone copolymers, Polymer 42 (2001) 7953-7959.
    [90] Yu Xue-Hai, M. R. Nagarajan, T. G. Grasel, P. E. Gibson, S. L. Cooper, Polydimethylsiloxane-polyurethane elastomers: Synthesis and properties of segmented copolymers and related zwitterionomers, 23 (1985) 2319-2338.
    [91] P.A.G.S.J.M.G.F.M. Raju Adhikari, Effect of chain extender structure on the properties and morphology of polyurethanes based on HMDI and mixed macrodiols (PDMS-PHMO), 74 (1999) 2979-2989.
    [92] R. Adhikari, P. A. Gunatillake, S. J. McCarthy, G. F. Meijs, Mixed macrodiol-based siloxane polyurethanes: Effect of the comacrodiol structure on properties and morphology, Journal of Applied Polymer Science 78 (2000) 1071-1082.
    [93] G. F. Fei, Y. D. Shen, H. H. Wang, Y. Shen, Effects of polydimethylsiloxane concentration on properties of polyurethane/polydimethylsiloxane hybrid dispersions, Journal of Applied Polymer Science 102 (2006) 5538-5544.
    [94] Y. H. Lin, N. K. Chou, K. F. Chen, G. H. Ho, C. H. Chang, S. S. Wang, S. H. Chu, K.H. Hsieh, Effect of soft segment length on properties of hydrophiiic/hydrophobic polyurethanes, Polymer International 56 (2007) 1415-1422.
    [95] S. Subramani, J. M. Lee, I. W. Cheong, J.H. Kim, Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions, Journal of Applied Polymer Science 98 (2005) 620-631.
    [96] Klanica J.A., R. B.K., vol. 0132909, U.S.A, 2002.
    [97] C.C. Anderson, Schell B.A., W. Y.C., vol. EP0911695,1999.
    [98] N. Uyanik, N. Kizilcan, A. Akar, ABA-type block copolymers containing poly(dimethylsiloxane) and ketonic resins, Journal of Applied Polymer Science 67 (1998)643-648.
    [99] M. Pegoraro, F. Severini, R. Gallo, L. Zanderighi, Gas transport properties of siloxane polyurethanes, Journal of Applied Polymer Science 57 (1995) 421-429.
    [100] S. Sakurai, S. Nokuwa, M. Morimoto, M. Shibayama, S. Nomura, Changes in structure and properties due to mechanical fatigue for polyurethanes containing poly(dimethyl siloxane), Polymer 35 (1994) 532-539.
    [101] H. Ni, et al., Moisture-curing alkoxysilane-functionalized isocyanurate coatings, Macromolecular Chemistry and Physics 201 (2000) 722-732.
    [102] M. Rochery, I. Vroman, T. Lam, Kinetic model for the reaction of ipdi and macrodiols: Study on the relative reactivity of isocyanate groups, Journal of Macromolecular Science-Pure and Applied Chemistry 37 (2000) 259-275.
    [103] 张军,聚合物燃烧与阻燃技术,化学工业出版社,北京, 2005.
    [104] M.R. Nyden, J.W. Gilman, Molecular dynamics simulations of the thermal degradation of nano-confined polypropylene, Computational and Theoretical Polymer Science 7 (1997) 191-198.
    [105] E.P. Giannelis, Polymer layered silicate nanocomposites, Advanced Materials 8 (1996) 29.
    [106] J. Lee, T. Takekoshi, E.P. Giannelis, Fire retardant polyetherimide nanocomposites, Nanophase and Nanocomposite Materials Ii 457 (1997) 513-518.
    [107] J.W. Gilman, T. Kashiwagi, J.D. Lichtenhan, Nanocomposites: A revolutionary new flame retardant approach, Sampe Journal 33 (1997) 40-46.
    [108] V. Babrauskas, R.D. Peacock, Heat Release Rate - the Single Most Important Variable in Fire Hazard, Fire Safety Journal 18 (1992) 255-272.
    [109]漆宗能,尚文宇,聚合物/层状硅酸盐纳米复合材料理论与实践,化学工业出版社,北京,2002.
    [110] J. Du, J. Zhu, C.A. Wilkie, J. Wang, An XPS investigation of thermal degradation and charring on PMMA clay nanocomposites, Polymer Degradation and Stability 77 (2002) 377-381.
    [111] J. Du, J. Wang, S. Su, C.A. Wilkie, Additional XPS studies on the degradation of poly(methyl methacrylate) and polystyrene nanocomposites, Polymer Degradation and Stability 83 (2004) 29-34.
    [112] J. Du, D. Wang, C.A. Wilkie, J. Wang, An XPS investigation of thermal degradation and charring on poly(vinyl chloride)-clay nanocomposites, Polymer Degradation and Stability 79 (2003) 319-324.
    [113] J. Wang, J. Du, J. Zhu, C.A. Wilkie, An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites, Polymer Degradation and Stability 77 (2002) 249-252.
    [114] M. Lewin, E.M. Pearce, K. Levon, A. Mey-Marom, M. Zammarano, C.A. Wilkie, B.N. Jang, Nanocomposites at elevated temperatures: migration and structural changes, Polymers for Advanced Technologies 17 (2006) 226-234.
    [115] J. Zhu, F.M. Uhl, A.B. M organ, C.A. Wilkie, Studies on the mechanism by which the formation of nanocomposites enhances thermal stability, Chemistry of Materials 13 (2001)4649-4654.
    [116] N. Sonobe, T. Kyotani, A. Tomita, Formation of graphite thin film from polyfurfuryl alcohol and polyvinyl acetate carbons prepared between the lamellae of montmorillonite,Carbon 29 (1991) 61-67.
    [117] R.W. Zong, Y. Hu, N. Liu, S. Li, G.X. Liao, Investigation of thermal degradation and flammability of polyamide-6 and polyamide-6 nanocomposites, Journal of Applied Polymer Science 104 (2007) 2297-2303.
    [118] W. Dong, X. Zhang, Y. Liu, Q. Wang, H. Gui, J. Gao, Z. Song, J. Lai, F. Huang, J. Qiao, Flame retardant nanocomposites of polyamide 6/clay/siIicone rubber with high toughness and good flowability, Polymer 47 (2006) 6874-6879.
    [119] S.D. Kadhiravan Shanmuganathan, Nicholas Dembsey, Qinguo Fan, Paul D. Calvert, Steven B. Warner, Prabir K. Patra, Flame retardancy and char microstructure of nylon-6/layered silicate nanocomposites, Journal of Applied Polymer Science 104 (2007) 1540-1550.
    [120] Y. Tang, Y. Hu, L. Song, R. Zong, Z. Gui, W. Fan, Preparation and combustion properties of flame retarded polypropylene-polyamide-6 alloys, Polymer Degradation and Stability 91 (2006) 234-241.
    [121] M. Valera-Zaragozaa, E. Ramirez-Vargasa, F.J. Medellin-Rodriguezb, B.M. Huerta-Martineza, Thermal stability and flammability properties of heterophasic PP-EP/EVA/organoclay nanocomposites, Polymer Degradation and Stability 91 (2006) 1319-1325.
    [122] H. Qin, S. Zhang, C. Zhao, G. Hu, M. Yang, Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene, Polymer 46 (2005) 8386-8395.
    [123] A.B. Morgan, L.L. Chu, J.D. Harris, A flammability performance comparison between synthetic and natural clays in polystyrene nanocomposites, Fire and Materials 29 (2005) 213-229.
    [124] J.W. Gilman, R.H. Harris, J.R. Shields, T. Kashiwagi, A.B. Morgan, A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char, Polymers for Advanced Technologies 17 (2006)263-271.
    [125] G. Chigwada, D. Wang, C.A. Wilkie, Polystyrene nanocomposites based on quinolinium and pyridinium surfactants, Polymer Degradation and Stability 91 (2006) 848-855.
    [126] L. Qiu, W. Chen, B. Qu, Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites, Polymer 47 (2006) 922-930.
    [127] J.G. Zhang, C.A. Wilkie, Polyethylene and polypropylene nanocomposites based on polymerically-modifled clay containing alkylstyrene units, Polymer 47 (2006) 5736-5743.
    [128] M.C. Costache, D.D. Jiang, C.A. Wilkie, Thermal degradation of ethylene-vinyl acetate coplymer nanocomposites, Polymer 46 (2005) 6947-6958.
    [129] H.F. Zhang, Y.Q. Wang, Y.P. Wu, L.Q. Zhang, J. Yang, Study on flammability of montmorillonite/styrene-butadiene rubber (SBR) nanocomposites, Journal of Applied Polymer Science 97 (2005) 844-849.
    [130] L. Yang, Y. Hu, H.D. Lu, L. Song, Morphology, thermal, and mechanical properties of flame-retardant silicone rubber/montmorillonite nanocomposites, Journal of Applied Polymer Science 99 (2006) 3275-3280.
    [131] X.X. Zheng, D.D. Jiang, D.Y. Wang, C.A. Wilkie, Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clay, Polymer Degradation and Stability 91 (2006) 289-297.
    [132] M.C. Costache, D.Y. Wang, M.J. Heidecker, E. Manias, C.A. Wilkie, The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes, Polymers for Advanced Technologies 17 (2006)272-280.
    [133] L. Song, Y. Hu, Y. Tang, R. Zhang, Z.Y. Chen, W.C. Fan, Study on the properties of flame retardant polyurethane/organoclay nanocomposite, Polymer Degradation and Stability 87 (2005) 111-116.
    [134] Z. Wang, T.J. Pinnavaia, Nanolayer reinforcement of elastomeric polyurethane, Chemistry of Materials 10 (1998) 3769.
    [135] T.K. Chen, Y.I. Tien, K.H. Wei, Synthesis and characterization of novel segmented polyurethane clay nanocomposite via poly(epsilon-caprolactone)/clay, Journal of Polymer Science Part A: Polymer Chemistry 37 (1999) 2225-2233.
    [136] T.K. Chen, Y.I. Tien, K.H. Wei, Synthesis and characterization of novel segmented polyurethane/clay nanocomposites, Polymer 41 (2000) 1345-1353.
    [137] Y.I. Tien, K.H. Wei, Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios, Polymer 42 (2001) 3213-3221.
    [138] G.H. Hsiue, Y.L. Liu, H.H. Liao, Flame-retardant epoxy resins: An approach from organic-inorganic hybrid nanocomposites, Journal of Polymer Science Part A: Polymer Chemistry 39 (2001) 986-996.
    [139] M. Zammarano, M. Franceschi, S. Bellayer, J.W. Gilman, S. Meriani, Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides, Polymer 46 (2005) 9314-9328.
    [140] G. Beyer, Flame retardancy of nanocomposites - from research to reality - Review, Addcon World Conference, Amsterdam, Netherlands, 2005, 529-537.
    [141] S. Bourbigot, S. Duquesne, C. Jama, Polymer nanocomposites: How to reach low flammability?, 8th European Symposium on Polymer Blends and Eurofillers, Brugge, Belgium, 2005, 180-190.
    [142] S. Bourbigot, S. Duquesne, Fire retardant polymers: recent developments and opportunities, Journal of Materials Chemistry 17 (2007) 2283-2300.
    [143] A.B. Morgan, Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems, Polymers for Advanced Technologies 17 (2006) 206-217.
    [144] 贾修伟,纳米阻燃材料,化学工业出版社,北京,2005.
    [145] 黄瑞,王旭,李忠明,纳米塑料,中国轻工业出版社,北京,2002.
    [146] 张玉清,彭淑鸽,插层复合材料,科学出版社,北京,2008.
    [147] E. Ayres, R.L. Orefice, Nanocomposites derived from polyurethane aqueous dispersion and clay: Influence of the clay on the morphology and mechanical properties, Polimeros-Ciencia E Tecnologia 17 (2007) 339-345.
    [148] E. Ayres, R.L. Orefice, D. Sousa, Influence of bentonite type in waterborne polyurethane nanocomposite mechanical properties, World Polymer Congress-MACRO 2006, 2007, pp. 330-336.
    [149] K. Hsu-Chiang, C.C.M. Ma, C. Wen-Ping, S. Hsun-Yi, Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites, Journal of Polymer Science, Part B (Polymer Physics) 43 (2005) 1-12.
    [150] B.K. Kim, J.W. Seo, H.M. Jeong, Morphology and properties of waterborne polyurethane/clay nanocomposites, European Polymer Journal 39 (2003) 85-91.
    [151] M.M. Rahman, H.D. Kim, W.K. Lee, Preparation and Characterization of Waterborne Polyurethane/Clay Nanocomposite: Effect on Water Vapor Permeability, Journal of Applied Polymer Science 110 (2008) 3697-3705.
    [152] K. Hsu-Chiang, C. Wen-Ping, M.M. Chen-Chi, C. Chin-Lung, W. Han-Lang, Synthesis and characterization of a clay/waterborne polyurethane nanocomposite, Journal of Materials Science 40 (2005) 179-185.
    [153] H.M. Jeong, S.H. Lee, Properties of waterborne polyurethane/PMMA/clay hybrid materials, Journal of Macromolecular Science: Physics B42 (2003) 1153-1167.
    [154] B.K. Kim, J.W. Seo, H.M. Jeong, Properties of waterborne polyurethane/nanosilica composite, Macromolecular Research 11 (2003) 198-201.
    [155] H. Lee, J. Hwang, H. Liu, C. Tsai, An antibacterial waterborne polyurethane/clay nanoscale dispersion and method of production therefore, TW254055-B1, 2007.
    [156] J.M. Yeh, C.T. Yao, C.F. Hsieh, L.H. Lin, P.L. Chen, J.C. Wu, H.C. Yang, C.P. Wu, Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings, European Polymer Journal 44 (2008) 3046-3056.
    [157] H.T. Lee, L.H. Lin, Waterborne polyurethane/clay nanocomposites: Novel effects of the clay and its interlayer ions on the morphology and physical and electrical properties, Macromolecules 39 (2006) 6133-6141.
    [158] H. Lee, J. Hwang, H. Liu, C. Tsai, A flame-retardant waterborne polyurethane/clay composite dispersion, method of production therefore and for coating application, vol. TW261594-B1, 2007.
    [159] S. Subramani, J.Y. Lee, S.W. Choi, J.H. Kim, Waterborne trifunctionalsilane-terminated polyurethane nanocomposite with silane-modified clay, Journal of Polymer Science Part B: Polymer Physics 45 (2007) 2747-2761.
    [160] 鲍治宇,董延茂,膨胀阻燃技术及应用,哈尔滨工业大学出版社,哈尔滨,2005.
    [161] G. Camino, L. Costa, L. Trossarelli, Study of the mechanism of intumscence in fire retardant polymers. 2. Mechanism of action in polypropylene-ammonum polyphosphate pentaerythritol mixtures, Polymer Degradation and Stability 7 (1984) 25o31.
    [162] G. Camino, G. Martinasso, L. Costa, R. Gobetto, Thermal-degradation of pentaerythritol diphosphate, model-compound for fire retardant intumescent systems. 2. Intumescence step, Polymer Degradation and Stability 28 (1990) 17-38.
    [163] G. Camino, L. Costa, E. Casorati, G. Bertelli, R. Locatelli, The oxygen index method in fire retardance studies of polymeric materials, Journal of Applied Polymer Science 35 (1988) 1863-1876.
    [164] B. Li, C.Y. Sun, X.C. Zhang, An investigation of flammability of intumescent flame retardant polyethylene containing starch by using cone calorimeter, Chemical Journal of Chinese Universities: Chinese 20 (1999) 146-149.
    [165] M. LeBras, S. Bourbigot, Y. LeTallec, J. Laureyns, Synergy in intumescence - Application to beta-cyclodextrin carbonisation agent intumescent additives for fire retardant polyethylene formulations, Polymer Degradation and Stability 56 (1997) 11-21.
    [166] F. Xie, Y.Z. Wang, B. Yang, Y. Liu, A novel intumescent flame-retardant polyethylene system, Macromolecular Materials and Engineering 291 (2006) 247-253.
    [167] Y.H. Chen, Q. Wang, Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batehes in situ prepared in twin-screw extruder, Polymer Degradation and Stability 92 (2007) 280-291.
    [168] G. Liu, J.Q. Zhao, Y.H. Zhang, S.M. Liu, H. Ye, Synthesis and application in polypropylene of a novel nitrogen-containing intumescent flame-retardant, Polymers & Polymer Composites 15 (2007) 191-198.
    [169] C. Siat, S. Bourbigot, M. Le Bras, Thermal behaviour of polyamide-6-based intumescent formulations - a kinetic study, Polymer Degradation and Stability 58 (1997) 303-313.
    [170] M. Le Bras, S. Bourbigot, E. Felix, F. Pouille, C. Slat, M. Traisnel, Characterization of a polyamide-6-based intumescent additive for thermoplastic formulations, Polymer 41 (2000) 5283-5296.
    [171] 欧育湘,吴俊毫,王建龙,冯美平,彭治汉,中国塑料17(2003)61-64.
    [172] 王建荣,欧育湘,刘治国,李锦,三聚氰胺聚磷酸盐对玻纤增强PA66的膨胀阻燃作用,阻燃材料与技术6(2003)1-4.
    [173] 王慧芳,张立平,中国塑料15(2001)63-65.
    [174] C. Slat, M. Le Bras, S. Bourbigot, Combustion behaviour of ethylene vinyl acetate copolymer-based intumescent formulations using oxygen consumption calorimetry, Fire and Materials 22 (1998) 119-128.
    [175] M. Le Bras, S. Bourbigot, B. Revel, Comprehensive study of the degradation of an intumescent EVA-based material during combustion, Journal of Materials Science 34 (1999) 5777-5782.
    [176] A. Riva, G. Camino, L. Fomperie, P. Amigouet, Fire retardant mechanism in intumescent ethylene vinyl acetate compositions, 2nd International Conference on Polymer Modification Degradation and Stabilization (MODEST 2002), Budapest, Hungary, 2002, pp. 341-346.
    [177] M. Bugajny, M. Le Bras, S. Bourbigot, R. Delobel, Thermal behaviour of ethylene-propylene rubber/polyurethane/ammonium polyphosphate intumescent formulations - a kinetic study, Polymer Degradation and Stability 64 (1999) 157-163.
    [178] M. Bugajny, M. Le Bras, S. Bourbigot, Thermoplastic polyurethanes as carbonization agents in intumescent blends. Part 2: Thermal behavior of polypropylene/thermoplastic polyurethane/ammonium polyphosphate blends, Journal of Fire Sciences 18 (2000) 7-27.
    [179] M. Bugajny, M. Le Bras, A. Noel, S. Bourbigot, Use of thermoplastic polyurethanes as carbonisation agents in intumescent blends. Part 3: Modification of the dynamic properties of polypropylene/thermoplastic polyurethane/ammonium polyphosphate formulations with heat and stress, Journal of Fire Sciences 18 (2000) 104-129.
    [180] J.C. Wang, S.L. Yang, G. Li, J.M. Jiang, Synthesis of a new-type carbonific and its application in intumescent flame-retardant (IFR)/polyurethane coatings, Journal of Fire Sciences 21 (2003) 245-266.
    [181] J.C. Wang, G. Li, S.L. Yang, J.M. Jiang, New intumescent flame-retardant agent: Application to polyurethane coatings, Journal of Applied Polymer Science 91 (2004) 1193-1206.
    [182] B.K. Kandola, A.R. Horrocks, P. Myler, D. Blair, The effect of intumescents on the burning behaviour of polyester-resin-containing composites, Composites Part A: Applied Science and Manufacturing 33 (2002) 805-817.
    [183] X. Li, Y.X. Ou, Y.S. Shi, Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate, Polymer Degradation and Stability 77 (2002) 383-390.
    [184] S. Bourbigot, E. Devaux, X. Flambard, Flammability of polyamide-6/clay hybrid nanocomposite textiles, Polymer Degradation and Stability 75 (2002) 397-402.
    [185] 王锦城,江建明,膨胀型阻燃剂的阻燃机理、最新进展与发展方向,阻燃材料与技术5(2001)5-10.
    [186] M. Jimenez, S. Duquesne, S. Bourbigot, Multiscale experimental approach for developing high-performance intumescent coatings, Industrial & Engineering Chemistry Research 45 (2006) 4500-4508.
    [187] 肖新颜,膨胀型阻燃剂(膨胀阻燃体系)研究进展,化学工业与工程17(2000)369-371.
    [188] A.R. Horrocks, B.K. Kandola, P.J. Davies, S. Zhang, S.A. Padbury, Developments in flame retardant textiles - a review, Polymer Degradation and Stability 88 (2005) 3-12.
    [189] 李绍雄,刘益军,聚氨酯树脂及其应用,化学工业出版社,北京,2002.
    [190] K.-S.K. Yong-Chul Chun, Jae-Sup Shin, Kyung-Ho Kim,, Synthesis and characterization of poly(siloxane-urethane)s, Polymer International 27 (1992) 177-185.
    [191] S.-c.K. Meng-shung Yen, PCL-PEG-PCL triblock ester-ether copolydiol-based waterborne polyurethane.Ⅱ. Effect of NCO/OH mole ratio and DMPA content on the physical properties, Journal of Applied Polymer Science 67 (1998) 1301-1311.
    [192] K. Mequanint, R. Sanderson, Self-assembling metal coatings from phosphated and siloxane-modified polyurethane dispersions: An analysis of the coating-air interface, Journal of Applied Polymer Science 88 (2003) 893-899.
    [193] A.K. Nanda, D.A. Wicks, The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process, Polymer 47 (2006) 1805-1811.
    [194] D. Dieterich, Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties, Progress in Organic Coatings 9 (1981) 281-340.
    [195] S. Sundar, N. Vijayalakshmi, S. Gupta, R. Rajaram, G. Radhakrishnan, Aqueous dispersions of polyurethane-polyvinyl pyridine cationomers and their application as binder in base coat for leather finishing, Progress in Organic Coatings 56 (2006) 178-184.
    [196] V. Bulacovschi, A. Stanciu, I. Rusu, A. Cailean, F. Ungureanu, Thermal stability and the behaviour in organic solvents of some poly(ester-siloxane)urethanes, Polymer Degradation and Stability 60 (1998) 487-491.
    [197] C.X. Zhao, W.D. Zhang, Preparation of waterborne polyurethane nanocomposites: Polymerization from functionalized hydroxyapatite, European Polymer Journal 44 (2008) 1988-1995.
    [198] M. Rutnakornpituk, P. Ngamdee, Surface and mechanical properties of microporous membranes of poly(ethylene glycol)-polydimethylsiloxane copolymer/chitosan, Polymer 47(2006)7909-7917.
    [199] S. loan, G. Grigorescu, A. Stanciu, Dynamic-mechanical and differential scanning calorimetry measurements on crosslinked poly(ester-siloxane)-urethanes, Polymer 42(2001) 3633-3639.
    [200] G.G. S. loan, A. Stanciu, Effect of segmented poly(ester-siloxane)urethanes compositional parameters on differential scanning calorimetry and dynamic-mechanical measurements, European Polymer Journal, Volume 38 (2002) 2295-2303.
    [201]#12
    [202] Y.-J.W. Ten-Chin Wen, Tsung-Tien Cheng, Chien-Hsin Yang, The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes, Polymer 43 (1999) 1402-1414.
    [203] T.K.C. Byoung Chul Chun, Yong-Chan Chung, Enhanced mechanical and shape memory properties of polyurethane block copolymers chain-extended by ethylene diamine, European Polymer Journal 42 (2006) 3367-3373.
    [204] A.K. Magdalena Rogulska, Wawrzyniec Podkoscielny, Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. Ⅱ. Synthesis and characterization of segmented polyurethanes from HDI and MDI, European Polymer Journal 43 (2007) 1402-1414.
    [205] A.R. Horrocks, Flame retardant cellulosic textile, in Fire Retardancy of Polymers, The Use of Intumescence. Ed: ted by Bras, M. Le, etal. , The Royal Socity of Chemistry. Information Serices (1998).
    [206] 凌秀珍,阻燃剂与阻燃纺织产品的动向,青岛:全国首届阻燃学术报告会论文(1997).
    [207] W. Gianelli, G. Camino, D. Tabuani, V. Bortolon, T. Savadori, O. Monticelli, Fire behaviour of polyester-clay nanocomposites, Fire and Materials 30 (2006) 333-341.
    [208] M. Tortora, G. Gorrasi, V. Vittoria, G. Galli, S. Ritrovati, E. Chiellini, Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites, Polymer 43 (2002) 6147-6157.
    [209] K.J. Yao, M. Song, D.J. Hourston, D.Z. Luo, Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites, Polymer 43 (2002) 1017-1020.
    [210] R.C.R. Nunes, R.A. Pereira, J.L.C. Fonseca, M.R. Pereira, X-ray studies on compositions of polyurethane and silica, Polymer Testing 20 (2001) 707-712.
    [211] 董炎明,高分子分析手册,中国石化出版社,北京,2004.
    [212] Q. Z. Zhu, S. Y. Feng, C. Zhang, Synthesis and thermal properties of polyurethane-polysiloxane crosslinked polymer networks, Journal of Applied Polymer Science 90 (2003) 310-315.
    [213] A.R. Horrocks, Fiber-intumescent interactive systems for barrier textiles, in: T.B.P. Federation (Ed.), Flame Retardants'94, London, 1994, pp. 117-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700