孔石莼中防污活性物质的分离纯化与结构鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物污损是一直困扰航海界的棘手问题,全世界每年由污损生物造成的损失无法估计。污损生物增大了船体的自重和摩擦阻力,使航行速度降低,严重影响了船舶的机动性。同时也使燃料消耗增加,费用上升,增加船舶的维修费用,缩短船舶的使用寿命,海生物的代谢介质还会造成船体的腐蚀,影响船舶的安全性。所以防止海生物的污损成为必须要解决的一个重要问题。对船舶而言,外壳水下部位最有效的防污措施是涂装防污涂料,传统防污涂料却以有机锡、氧化亚铜等有毒防污剂的毒杀方式达到防污目的,因此对海洋环境造成严重污染。随着人们的环保意识的增强,新型环保防污涂料成为研究热点。海洋天然产物防污研究因其独特的防污作用机理和高效的防污活性重新引起人们注意。孔石莼作为我国黄渤海沿海常见的大型藻类植物,其自身具有防止其它污损生物附着的能力。本论文即以孔石莼为研究对象,借助现代色谱分离和分析技术,从孔石莼中提取、分离防污活性物质,然后借助红外光谱,核磁共振谱,气相色谱-质谱联用技术等对孔石莼提取物的结构进行分析鉴定,为后续新型防污剂开发提供重要的依据。首先孔石莼乙酸乙酯提取物UPAFS-A经二次硅胶柱层析分离后,得到防污能力最强的UPAFS-A52,UPAFS-A52分别经乙醇、氯仿/乙腈、盐酸/乙酸乙酯处理后,得到四种产物UPAFS-A521、UPAFS-A522、UPAFS-A523、UPAFS-A524。本文利用羽状舟形藻、紫贻贝、石莼孢子和白脊藤壶幼虫等典型污损生物检测了孔石莼提取物及各段分离和纯化产物的防污活性。结果显示:
     (1)UPAFS-A对羽状舟形藻附着完全抑制的最小浓度为0.7 mg/mL,而完全抑制紫贻贝足丝的附着的浓度为0.4 mg/mL,完全抑制石莼孢子附着的浓度为0.4 mg/mL。
     (2)UPAFS-A经柱层析分离得到的六段产物中,对羽状舟形藻抑制最好的部分是UPAFS-A3段,0.3 mg/mL时抑制率就达到90 %以上,其次是UPAFS-A5,0.6 mg/mL时抑制率可达到90 %以上;紫贻贝足丝附着实验中,UPAFS-A3在0.3 mg/mL能完全抑制紫贻贝足丝的附着,UPAFS-A5在0.5 mg/mL能完全抑制紫贻贝足丝的附着,而UPAFS-A6在0.4 mg/mL能完全抑制紫贻贝足丝的附着,且对紫贻贝有毒杀作用;对石莼孢子的抑制试验结果表明,UPAFS-A3对孢子分裂生长的抑制率达到90 %的浓度为0.7 mg/mL,UPAFS-A5为0.2 mg/mL,UPAFS-A6为0.3 mg/mL;白脊藤壶幼虫实验结果表明:UPAFS-A3药效最强,对白脊藤壶幼虫的全部致死浓度≤0.1 mg/mL。UPAFS-A5在0.4 mg/mL时所有白脊藤壶幼虫死亡,其LC50为0.287 mg/mL。UPAFS-A6在0.4 mg/mL时可使所有白脊藤壶幼虫死亡,其LC50为0.311 mg/mL。
     (3)UPAFS-A3、UPAFS-A5进行硅胶柱二次层析得到的八段产物的防污评价显示:防污活性最强的部分是UPAFS-A52,0.3 mg/mL时完全抑制羽状舟形藻、紫贻贝足丝附着,同时也可以完全抑制石莼孢子分裂生长;白脊藤壶幼虫实验中,UPAFS-A52毒性最弱,0.8 mg/mL时仍有白脊藤壶幼虫存活,其LC50为0.550 mg/mL,而UPAFS-A51在0.4 mg/mL时白脊藤壶幼虫已全部死亡,其LC50为0.217 mg/mL;UPAFS-A31在0.2 mg/mL时白脊藤壶幼虫死亡个数大大增加,死亡率高达86.7 %,其LC50为0.158 mg/mL。
     (4)UPAFS-A52纯化后产物UPAFS-A521、UPAFS-A522、UPAFS-A523、UPAFS-A524对羽状舟形藻抑制实验显示,这四种产物均促进羽状舟形藻附着,防污能力显著降低。
     UPAFS-A521~A524经气相色谱-质谱联用、红外波谱、核磁共振波谱检测发现,UPAFS-A521和UPAFS-A522中含有饱和十六酸,UPAFS-A523可能是盐晶体,UPAFS-A524中含有饱和十六酸和饱和十六酸乙酯。结合羽状舟形藻防污评价实验,发现饱和十六酸、饱和十六酸乙酯不具有防污能力,或它们需与UPAFS-A52中其他物质协同作用才能起到较好的防污效果。
Marine biological fouling is a difficult problem in the sailing industry, every year the losses caused by the fouling organisms can not be estimated. Marine fouling organisms live in the marine environment or attach to the ship and various underwater artificial facilities, have the negative impact to human activities, give investors a negative benefit of general, including some large-scale algae, hydra, external anal animal, dragon crustaceans, bivalves, barnacles and sea squirts. It increases the weight and friction of the hull, so that the sailing speed is reduced, and the ship's maneuverability is seriously affected. While the fuel consumption is increased, costs is rose, and the hulls’corrosion will be caused by the marine biological’s metabolic media, maintenance costs of ships will be increased, the life of the ships will be shorten, and the ship's safety will be affected critically. Therefore, prevention of marine fouling organisms has become an important issue to be addressed. As we know, painting antifouling coating is a most effective measure for the underwater parts of boats. The traditional anti-fouling paints, including organic tin, cuprous oxide antifouling agents, cause serious pollution of the marine environment. Therefore, the toxic antifouling paints will gradually be replaced with the strength of people's awareness of environmental protection and the investigation of new antifouling paint, especially finding the right natural anti-fouling agents, prevent the attachment without destroying the environment. Until recently, Marine natural products have been attracted by people due to its unique antifouling mechanism and efficient antifouling activities to be noticed. Ulva pertusa is a common large-scale algae plant along the coast of Yellow Sea and Bohai Sea, China, which has the capacity to prevent its surface from other fouling organism attachment. In this thesis, ulva pertusa was based as the research object, and the antifouling active substances were extracted and separated by the modern chromatographic separation and analysis technology, then the molecular formulas and structures were identified by IR, NMR, GC-MS, et al. It will provide important evidences for the follow-up development of new anti-fouling agents.
     In this article, the extraction substance UPAFS-A was isolated by silica gel column chromatography for twice, the most powerful antifouling production UPAFS-A52 was obtained, then UPAFS-A52 was elected to further purification processing. After being treated by ethanol, chloroform/acetonitrile, hydrochloric acid/ethyl acetate, UPAFS-A52 got four products UPAFS-A521, UPAFS-A522, UPAFS-A523, UPAFS-A524, respectively.
     We used the N.pinna sp.nov., Mytilus galloprovincialis, Ulva linza zoospores, Balanus albicostatus larvaes as typical fouling organisms to test the antifouling activities of the Ulva pertusa extractions and the paragraphs of separation and purification. The results showed that:
     (1) The smallest concentration of UPAFS-A against N.pinna sp.nov. complete attachment was 0.7 mg/mL, there was no mussel to reattach at the concentration of 0.4 mg/mL, and there was no spore growth on the suface of glass plate at the concentration of 0.4 mg/mL.
     (2) After column chromatography separation, six productions of UPAFS-A were obtained, the best inhibition part to N.pinna sp.nov. was UPAFS-A3, the inhibition rate was more than 90 % at the concentration of 0.3 mg/mL, the following was UPAFS-A5, its inhibition rate was more than 90 % at the concentration of 0.6 mg/mL; The Mytilus galloprovincialis test indicated that, UPAFS-A3 could inhibit Mytilus galloprovincialis to reattach at the concentration of 0.3 mg/mL. For UPAFS-A5, there was no Mytilus galloprovincialis to reattach at the concentration of 0.5 mg/mL. For UPAFS-A6, there was no Mytilus galloprovincialis to reattach at the concentration of 0.4 mg/mL, but it was toxic; The Ulva linza zoospores inhibition test results indicated that the inhibition rate of UPAFS-A3 was more than 90 % at the concentration of 0.7 mg/mL. For UPAFS-A5, the inhibition rate to Ulva linza zoospores was more than 90 % at the concentration of 0.2 mg/mL, and for production UPAFS-A6, the inhibition rate of growth of Ulva linza zoospores split up to 90 % at the concentration of 0.3 mg/mL; Balanus albicostatus larvaes tests revealed that UPAFS-A3 had the strongest effect, because all the larvaes were dead at the concentration less than 0.1 mg/mL. When UPAFS-A5 was at the concentration of 0.4 mg/mL, there was no larva to live, and its LC50 was 0.287 mg/mL. For UPAFS-A6, there was no larva to live at the concentration of 0.4 mg/mL, its LC50 was 0.311 mg/mL.
     (3) The bioassays of eight productions from UPAFS-A3 and UPAFS-A5 indicated that: UPAFS-A52 had the strongest antifouling activities, the attachment of the N.pinna sp.nov. and Mytilus galloprovincialis could be completely inhibited at the concentration of 0.3 mg/mL, and there was no Ulva linza zoospore to split growth at the same concentration. Balanus albicostatus larvaes experimental results indicated that, UPAFS-A52 had the weakest toxicity, there were larvaes still alive at the concentration of 0.8 mg/mL, and its LC50 was 0.550 mg/mL. For UPAFS-A51, there was no larva alive at 0.4 mg/mL, its LC50 was 0.217 mg/mL. For UPAFS-A31, at the concentration of 0.2 mg/mL, the death greatly increased and the mortality rate was as high as 86.7 %, and its LC50 was 0.158 mg/mL.
     (4) The N.pinna sp.nov. inhibition experiments of purification products UPAFS-A521, UPAFS-A522, UPAFS-A523, UPAFS-A524 had shown that this four kinds of products promoted the N.pinna sp.nov. attachment, and the antifouling ability reduced significantly.
     In this article, UPAFS-A521, UPAFS-A522, UPAFS-A523, UPAFS-A524 after being detected by GC-MS, IR, NMR indicated that, UPAFS-A521 and UPAFS-A522 contained the saturated sixteen acid, UPAFS-A523 might be the salt crystals, UPAFS-A524 contained the saturated sixteen acid and saturated sixteen acid ethyl ester. Combined with the N.pinna sp.nov. inhibition experiment, it was found that saturated sixteen acid and saturated sixteen acid ethyl ester do not have antifouling ability, or they might play better antifouling effect just with other substances in UPAFS-A52.
引文
[1]刘会会,郑纪勇,付玉彬.天然产物防污剂及分离鉴定方法的研究现状[J].涂料工业, 2010, 40(9): 71-74.
    [2]刘会会,郑纪勇,付玉彬.具有防污活性的海洋藻类天然产物研究进展[J].上海涂料, 2010, 48(9): 31-34.
    [3] IMO News, The Magazine of the International Maritime Organization, London. UK. No. 4: 8-10(1998).
    [4] Kenneth S, Dario D, Aldis V. Copper Emissions from Antifouling Paint on Recreational Vessels[J]. Marine Pollution Bulletin, 2004, (48): 371-377.
    [5] Radford J L, Hutchinson A E, Burandt M, et al. Effects of Metal-Based Environmental Pollutants on Tunicate Hemocytes[J]. Journal of Invertebrate Pathology, 2000, (76): 242-248.
    [6]郭虹,翟玉春,辛喆,徐馨阳.防污剂的研究进展[J].材料与冶金学报, 2006, 5(2): 157-160.
    [7] Cintia Lhullier, Miriam Falkenberg, Efstathia Ioannou, Antonio Quesada, Panagiota Papaza?ri, Paulo Antunes Horta, Eloir Paulo Schenkel, Constantinos Vagias, Vassilios Roussis. Cytotoxic Halogenated Metabolites from the Brazilian Red Alga Laurencia catarinensis[J]. J. Nat. Prod., 2010, 73(1): 27-32.
    [8] Bernardo A.P. da Gama, Ana G.V. Carvalho, et al. Antifouling activities of natural products from Brazilian seaweeds[J]. Botanica Marina, 2008, 51(3): 191-201.
    [9] Gabriele M. Konig, Anthony D. Wright Laurencia rigida: Chemical Investigations of Its Antifouling Dichloromethane Extract[J]. J. Nat. Prod., 1997, 60 (10): 967-970.
    [10] Claire Hellio, Christelle Simon-Colin, Anthony S Clare, Eric Deslandes. Isethionic Acid and Floridoside Isolated from the Red Alga, Grateloupia turuturu, Inhibit Settlement of Balanus Amphitrite Cyprid Larvaes[J]. Biofouling, 2004, 20(3): 139-145.
    [11] Erwan Plouguerne, Clare Hello, Eric Deslandes, Benoit Veron and Valerie Stiger-Pouvreau. Anti-microfouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum[J]. Botanica Marina, 2008, 51(3): 202-208.
    [12] Denys R, Steinberg P D, Willemsen P, et al. Broad spectrum effects of secondary metabolites from the red alga Delisea pulchrain antifouling assays[J]. Biofouling, 1995, (8): 259-271.
    [13] Lau SCK, Qian PY. Inhibitory effect of phenolic compounds and marine bacteria on larvalsettlement of the barnacle Balanus Amphitrite Darwin[J]. Biofouling, 2000, (16): 47-58.
    [14] Wisespongpand P, KuniyoskiM. Bioactive phloroglucinols from the brown alga Zonaria diesingiana[J]. Journal of Applied Phycology, 2003, (15): 225-228.
    [15] Todd J T, Zimmerman R C, Crews P, et al. The antifouling activity of natural and synthetic phenolic acid sulphate eaters[J]. Phytochemistry, 1993, 34(2): 401-404.
    [16] Yannick Viano, Dominique Bonhomme, Mercedes Camps, Jean-Franc? ois Briand, Annick Ortalo-Magne, Yves Blache, Louis Piovetti, Gerald Culioli. Diterpenoids from the Mediterranean Brown Alga Dictyota sp. Evaluated as Antifouling Substances against a Marine Bacterial Bio?lm[J]. J. Nat. Prod., 2009, 72(7): 1299-1304.
    [17] Gerald Culioli, Annick Ortalo-Magne, Robert Valls, Claire Hellio, Anthony S. Clare, Louis Piovetti. Antifouling Activity of Meroditerpenoids from the Marine Brown Alga Halidrys siliquosa[J]. J. Nat. Prod., 2008, 71(7): 1121-1126.
    [18] Redouane Mokrini, Ben Mesaoud, Mohammed Daoudi, Claire Hellio, Jean-Philippe Mare chal, Mohamed El Hattab, Annick Ortalo-Magne, Louis Piovetti, Gerald Culioli. Meroditerpenoids and Derivatives from the Brown Alga Cystoseira baccata and Their Antifouling Properties[J]. J. Nat. Prod., 2008, 71(11): 1806-1811.
    [19] Marechal JP, CulioliG, Hellio C, et al. Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria fifurcata(Cystoseiraceae) against cyprids of Balanus amphitriteand the marine bacteriaCobetia marina and Pseudoalteromonas haloplanktis[J]. Journal of Experimental Marine Biology and Ecology, 2004, 313(2): 47-62.
    [20] Tilman Harder, Pei-Yuan Qian. Waterborne Compounds from the Green Seaweed Ulva reticulata as Inhibitive Cues for Larval Attachment and Metamorphosis in the Polychaete Hydroides elegans[J]. Biofoulitig, 2000, 16(2-4): 205-214.
    [21] Vangelis Smyrniotopoulos, Dennis Abatis, Leto-A, Tziveleka, Christina Tsitsimpikou, Vassilios Roussis, Anargyros Loukis, Constantinos Vagias. Acetylene Sesquiterpenoid Esters from the Green Alga Caulerpa prolifera[J]. J. Nat. Prod., 2003, 66(1): 21-24.
    [22] Zheng Jiyong, Lin Cunguo, Di Lanlan. Natural Antifouling Materials from Marine Plants Ulva Pertusa[J]. Advaned Materials Research, 2009, 79-82: 1079-1082.
    [23]南春容,张海智.孔石莼水溶性抽提液抑制3种海洋赤潮藻的生长[J].环境科学学报, 2004, (4): 703-705.
    [24] Targett, N. M. et al. Antifouling Agent Against the Marine Diatom, Navicula salinicola Homarine from the Gorgonians Leptogorgia virgulata and L. setacea and Analogs[J]. Chem. Ecol., 1983, 9 (7): 817-829.
    [25] Standing J, Hooper I R, Costlow J D. Inhibition and induction of barnacle settlement by natural product present in octocorals[J]. Chem Ecol, 1984, 10: 823-834.
    [26] Tomono Y, Hirota H, Fusetani N. Isogosterones A-D, antifouling 13, 17-Secosteroids from an octocoral Dendronephthya sp.[J]. J Org Chem, 1999, 64: 2272-2275.
    [27] Claire Hellio, Naria Tsoukatou, Jean Philippe Marecha1. Inhibitory Efects of Mediterranean Sponge Extracts and Metabolites Oil Larval Settlement of the Barnacle balanus am-phitrite[J]. Marine Biotechnology, 2005, 7(4): 297-305.
    [28] Hattori T, Adachi K, Shizuri Y. New ceramide from marine sponge Haliclona koremella and related compounds as antifouling substances against macroalgae[J]. Nat Prod, 1998, 61: 823-826.
    [29] Sera Y, Adachi K, Nishida F, Shizuri Y. A new sesquiterpene as an antifouling substance from a Palauan marine sponge, Dysidea herbacea[J]. Nat Prod, 1999, 62: 395-396.
    [30] Goto R, Kado R, Muramoto K, et al. Furospongolide: an antilouling substance from the marine sponge Phyliospongia papyracea against the barnacle Balanus amphitrite[J]. Nippon Suisan Gakkaishi, 1993, 59: 1953.
    [31] Hirota H, Okino T, Yoshimura E, Fusetani N. Five new antifouling sesquiterpenes from two marine sponges of the Genus Axinyssa and the Nudibranch Phyllidia pustulosa[J]. Tetrahedron, 1998, 54: 13971-13980.
    [32] Bers AV, D Souza F, Klijnstra JW, etal. Chemical defence in mussels: Antifouling effect of crude extracts of the periostracum of the blue mussel Mytilus edulis[J]. Biofouling, 2006, 22(4): 251-259.
    [33] DavisAR, WrightAE. Inhibition of larval settlement by natural products from the ascidian Eudistoma olivaceum[J]. Journal of Chemical Ecology, 1990, 16: 1349-1358.
    [34] Kon-ya, Shimidzu N, Miki W. Indole derivatives as potent inhibitors of laval settlement by the barnacle Balanus Amphitrite[J]. Biosci Biochem, 1994, 58: 2178-2181.
    [35] Jia-Hui Pan, E.B. Gareth Jones, Zhi-Gang She, Ji-Yan Pang and Yong-Cheng Lin. Review of bioactive compounds from fungi in the South China Sea[J]. Botanica Marina, 2008, 51(3):179-190.
    [36] Holmstr m C, Kjelleberg S. The effect of external biological factors on settlement of marine invertebrate and new antifouling technology[J]. Biofouling, 1994, 8: 147-160.
    [37] Lewis JA. Marine biofouling and its prevention on under-water surface[J]. Materials Forum, 1998, 22: 41-61.
    [38] Guenther J, Walker-Smith G, Waren A, et al. Fouling-resistant surfaces of tropical sea stars[J]. Biofouling, 2007, 23(6): 413-418.
    [39] Stupak ME, Garcia MT, Perez MC. Non-toxic alternative compounds for marine antifouling paints[J]. Int Biodeterior Biodegr, 2003, 52: 49-52.
    [40] Perez M, Garcia M, Blustein G, Stupak M. Tannin and tannate from the quebracho tree: an eco-friendly alternative for controlling marine biofouling[J]. Biofouling, 2007, 23: 151-159.
    [41] Angarano MB, McMahon RF, Hawkins DL, Schetz JA. Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel(Dreissena polymorpha) macrofouling[J]. Biofouling, 2007, 23: 295-305.
    [42]张熊禄,陈厚辉,史燃云,等.微波法从茶叶中提取茶多酚[J].林产化工通讯, 2001, 35(5): 20-22.
    [43]冯丹青,柯才焕,李少菁,周时强.生姜提取物的防污活性研究[J].厦门大学学报, 2007, 46(1): 135-140.
    [44]陈俊德.红树植物角果木的化学成分及其防污活性研究[M].厦门大学,硕士论文, 2008.
    [45] Palagiano, Elio, Zollo, et al. Isolation of 20 Glycosides from the Starfish Henricia downeyae, Collected in the Gulf of Mexico[J]. Journal of Natural Products, 1996, 59(4): 348-354.
    [46]刘晓鹏,姜宁.微波辅助提取辣椒中辣椒素的研究[J].江西师范大学学报, 2008, 32(3): 286-289.
    [47] Fatemeh Nazari, Samad Nejad Ebrahimi, et al. Multivariate Optimisation of Microwave-assisted Extraction of Capsaicin from Capsicum frutescens L. and Quantitative Analysis by 1H-NMR[J]. Phytochemical Analysis, 2007, 18: 333-340.
    [48] Gianpaolo Andricha, Ugo Nesti, et al. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp.[J]. Eur. J. Lipid Sci. Technol, 2005, 107: 381-386.
    [49]陈庶来.干红辣椒的综合开发利用[J].江苏理工大学学报, 1997, 18(1): 61-64.
    [50] George G, Harrigan, Gilles H. Goetz, et al. Dysideaprolines A-F and Barbaleucamides A-B, Novel Polychlorinated Compounds from a Dysidea Species[J]. J. Nat. Prod., 2001, 64: 1133-1138.
    [51]狄兰兰.孔石莼中防污活性物质的提取与分离[硕士学位论文].中国海洋大学, 2009.
    [52]江和源,程启坤,杜琪珍.调节pH值对HSCCC分离茶黄素分离的影响[J].茶叶化学, 2003, 23(增刊): 88-91.
    [53]王发松,黄世亮.姜油的分子蒸馏与化学成分分析[J].中国医药工业杂志, 2003, 34(3): 125-127.
    [54] Etoh H, Kondoh T, et al. Shogaols from Zingiber officinale as Promising Antifouling Angents[J]. Bioscience, Riotechnology and Biochemistry, 2002, 66(8): l748-1750.
    [55] Nw uha V. Novel studies on membrane extraction of bioactive components of green tea in organic solvents: part I [J]. Journal of Food Engineering, 2000, 44: 233-238.
    [56]席晓光.质谱在有机化学及天然产物研究中的应用[J].沈阳师范学院学报, 1998, (2): 43-47.
    [57]朱斌,单磊,刘荔荔,陆峰.近红外光谱技术及其在天然产物分析中的应用[J].药学实践杂志, 2002, 20(3): 176-179.
    [58]张嫚丽,史清文,顾玉诚.核磁共振技术及其在天然产物结构鉴定中的应用[J].河北医科大学学报, 2006, 27(4): 314-317.
    [59]薛松,胡皆汉,张卫,袁权.核磁共振的差谱在天然产物研究中的应用(I)[J].波谱学杂志, 2003, 20(4): 379-385.
    [60] WeiDong He, Luc Van Puyvelde, Jan Bosselaers, Norbert De Kimpe, Marc Van Der Flaas, Annemie Roymans, Francis P Mudida. Antifouling Substances of Natural Origin: Activity of Benzoquinone Compounds from Maesa lanceolata against Marine Crustaceans[J]. Biofouling, 2001, 17: 221-226.
    [61] Martin Sandvoss, et al. The Technology of Micro-column Liquid Chromatography[J]. Eur JOrg Chem, 2000: 1253-1263.
    [62] Tabatabaie T, Vasquez-Weldon A, Moore D R, et al. Free radicals and the pathogenesis of type1 diabetesβ-cell cytokine-mediated free radical generation via cyclooxygenase-2[J]. Diabetes, 2003, 52(8): 1994-1999.
    [63]罗广华,王爱国,柯德森.海藻中清除氧自由基的物质[J].热带亚热带植物学报, 1998,6(1): 15-18.
    [64] Qi H M, Zhang Q B, Zhao T. T. et al. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa(Chlorophyta) in vitro[J]. International Journal of Biological Macromolecules, 2005, 37(4): 195-199.
    [65] Qi H M, Zhang Q B, Zhao T. T. et al. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa(Chlorophyta)[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(9): 2441-2445.
    [66]李妍,田晓华,丛建波等.海藻多糖抑制白细胞呼吸暴发作用研究[J].生物化学与生物物理进展, 1999, 26(2): 162-164.
    [67] Shigenobu and K. Takashi. Effect of edible seaweeds on cholesterol metabolism in rats[J]. Proc Int Seaweed Symp, 7th, 1971.
    [68]吴志军,徐祖洪,李智恩等.孔石莼(Ulva pertusa Kjellm)调血脂作用的初步研究[J].海洋与湖沼, 2004, 35(2): 138-140.
    [69]王艳梅,李智恩,牛锡珍等.孔石莼多糖降血脂活性的初步研究[J].中国海洋药物, 2003, 91(2): 33-35.
    [70] Yu P. Z, Li N, Liu X. G. et al. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa(Chlorophyta)[J]. Pharmacological Research, 2003, 48(6): 543-549.
    [71] Liu Z.Y, Xie L.Y, Wu Z. J. et al. Purification and Characterization of an Anti-TMV Protein from a Marin Algae Ulva pertusa[J]. Acta Phytopathologica Sinica, 2005, 35(3): 256-261.
    [72]徐秀丽,范晓,宋福行.中国经济海藻提取物生物活性[J].海洋与湖沼, 2004, 35(1): 55-63.
    [73] H.Noda, H.Amano, K.Arashima, et al. Atitumor activity of marine algae[J]. Hydrobiologia, 1990, 204: 577-584.
    [74]牛荣丽,范晓,韩丽君.海藻甲醇提取物免疫调节作用的初步研究[J].中国免疫学杂志, 2003, 19(10): 669-671, 676.
    [75] Jin Q, Dong S. L. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense[J]. Journal of Experimental Marine Biology and Ecology., 2003, 293: 41-55.
    [76]南春容.大型海藻孔石莼与微藻间竞争的实验研究.青岛海洋大学博士学位论文, 2002,91-129.
    [77]南春容,张海智,董双林.孔石莼水溶性抽提液抑制3种海洋赤潮藻的生长[J].环境科学学报, 2004, 24(4): 702-706.
    [78] Jin Q, Dong S. L. and Wang C. Y. Allelopathic growth inhibition of Prorocentrum micans(Dinophyta) by Ulva pertusa and Ulva linza(Chlorophyta) in laboratory cultures[J]. Eur. J. Phycol, 2005, 40(1): 31-37.
    [79]丁慧,蔺存国,郑纪勇,周英彦,何开棘.孔石莼提取物对海洋硅藻生长的影响[J].海洋环境科学, 2009, 28(6): 620-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700