水沙运动及植被影响的三维固液两相双流体湍流模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于连续介质理论框架下的两相流理论,分别建立了直角坐标系和非正交曲线坐标系下的三维κ-ε-A_p和κ-ε-κ_p固液两相双流体湍流模型,研究水沙的运动特性以及泥沙运动引起的床面变形;同时在三维κ-ε-A_p固液两相双流体湍流模型的控制方程中考虑植被对水流的阻力作用以及植被存在诱发的水流湍动动能增加的效果,建立了考虑植被影响的三维κ-ε-A_p固液两相双流体湍流模型,研究水生植被对水流泥沙运动以及床面变形的影响。
     通过全面分析国内外三维水沙数学模型的进展,指出了目前三维水沙数学模型存在的几点不足,提出采用连续介质理论框架下的双流体模型研究固液两相湍流运动的优势,并在周力行和刘大有两位学者所建立的两相流理论的基础上,推导出张量形式的κ-ε-κ_p固液两相双流体湍流模型和考虑植被影响的κ-ε-A_p固液两相双流体湍流模型。
     建立了直角坐标系下的三维κ-ε-A_p和κ-ε-κ_p固液两相双流体湍流模型,采用有限差分法求解模型的控制方程,通过数值计算试验室小型顺直水平和垂直方管内挟沙水流中的泥沙颗粒数密度、液相时均流速、固相时均流速、液相脉动流速和固相脉动流速的三维分布,并与试验测量结果进行比较,验证了所建立的三维κ-ε-A_p和κ-ε-κ_p固液两相双流体湍流模型在研究固液两相湍流方面的可靠性,展示了κ-ε-κ_p固液两相双流体湍流模型相对于κ-ε-A_p固液两相双流体湍流模型的优势。
     建立了非正交曲线坐标系下的三维κ-ε-κ_p固液两相双流体湍流模型,曲线坐标系中的ξ-η平面严格正交,ξ-ζ面和η-ζ平面非正交,采用有限体积法求解模型的控制方程,通过计算S型弯道内的水流运动验证了所建立的模型中液相模块的准确性:通过模拟120°弯道内水流和泥沙的运动验证了所建立的模型中悬沙模块的准确性:通过模拟120°弯道和180°弯道内的水流运动、悬沙运动、床沙运动和床面变形,验证了所建立的模型中床面变形模块的准确性。经过详细比较三维固液两相单流体湍流模型和三维κ-ε-κ_p固液两相双流体湍流模型在水沙两相流动和床面变形数值结果中的异同之后,认为三维κ-ε-κ_p固液两相双流体湍流模型能够更加准确地模拟弯道内水流的横向流速对泥沙横向运动的影响。
     在非正交曲线坐标系下的三维κ-ε-A_p固液两相双流体湍流模型的相关控制方程中添加植被阻力项或者植被诱发的湍动动能生成项,建立了考虑植被影响的三维κ-ε-A_p固液两相双流体湍流模型,通过计算顺直水槽中全部宽度内布置淹没或者非淹没的水生植被后水流的垂直结构、顺直水槽内局部区域布置非淹没的水生植被后水流的平面结构、60°弯曲水槽内局部区域布置非淹没的水生植被后水流的三维运动结构验证了模型中液相模块的准确性;通过计算顺直水槽内布置淹没的水生植被后的水流和悬沙的运动研究了植被对悬沙运动的影响;通过计算顺直水槽内局部区域布置水生植被后的水流泥沙运动和床面变形情况以及60°弯曲水槽内局部区域布置非淹没的水生植被后的水流泥沙运动和床面变形情况验证了模型中床面变形模块的准确性。床面变形的数值结果之间的比较表明考虑植被影响的三维κ-ε-A_p固液两相双流体湍流模型的精度比三维固液两相单流体湍流模型的精度高。
This thesis developed a three-dimensionalκ-ε-A_p and aκ-ε-κ_p solid-liquid two-phase two-fluid turbulence models in both Cartesian coordinate system and non-orthogonal curvilinear coordinate system based on continuum theory to study the water-sediment movement.Furthermore,by taking account the drag force and additional turbulent kinetic energy due to vegetation into the relevant governing equations of above mentioned models,a three-dimensionalκ-ε-A_p solid-liquid two-phase two-fluid turbulence model with the effect of vegetation was constructed to investigate the influence of vegetation on water-sediment movement.
     After reviewing the progress of the three-dimensional water-sediment mathematical models,the disadvantages of one-fluid turbulence model(diffusion model)and the advantages of the solid-liquid two-phase two-fluid turbulence models were analyzed. Following Zhou lixing's and Liu dayou's works,theκ-ε-A_p andκ-ε-k_p solid-liquid two-phase two-fluid turbulence model with interphase actions in tensor form were developed.
     Theκ-ε-A_p andκ-ε-κ_p solid-liquid two-phase two-fluid turbulence model in Cartesian coordinate system were constructed and were solved by finite difference method. Three-dimensional characteristics of particle number density,time-averaged and fluctuation velocities of solid-liquid two phases in both horizontal and vertical rectangular pipes were computed,and the numerical results are in good agreement with measured results.Numerical results also proved the advantages ofκ-ε-κ_p solid-liquid two-phase two-fluid turbulence model overκ-ε-A_p solid-liquid two-phase turbulence model.
     A three-dimensionalκ-ε-κ_p solid-liquid two-phase two-fluid turbulence model in non-orthogonal curvilinear coordinate system was proposed to study water-sediment movement with complicated computational boundaries,which was solved by finite-volume method in adaptive grids.The flow structure in an S-shaped flume was used to validate the liquid-phase module,the movement of water flow and sediment in a 120°bend was used to validate the solid-phase module by computing the sediment concentration,longitudinal velocity,transverse velocity and vertical velocity,the movement of bed-load and channel bed aggradation and degradation processes in 120°and 180°bends were used to validate the bed topography deformation module.Comparisons between numerical results and experimental results show that two-fluid turbulence model describes the effect of secondary flow on the transverse sediment transport better than one-fluid turbulence model.
     A three-dimensionalκ-ε-A_p solid-liquid two-phase two-fluid turbulence model with the effect of vegetation on flow and sediment movement was constructed by adding the drag force or turbulent kinetic energy due to vegetation into relevant control equations. Experimental results in a flume covered with emergent and submerged vegetation validate the vertical flow structure changes due to vegetation.Experimental results in a partly vegetated straight open channel and a partly vegetated 60°channel bend validate the plan flow structure changes and three dimensional flow structure changes due to vegetation.The model also was used to investigate the vertical profiles of sediment concentration and the horizontal velocities of both liquid phase and solid phase in vegetated channels.The bed-load module and bed topography deformation module with the effect of vegetation were validated by sediment movement and channel bed aggradation and degradation processes in a straight partly center-vegetated flume and a 60°partly vegetated channel bend.
引文
[1]倪晋仁,马蔼乃.河流动力地貌学.北京:北京大学出版社,1998.
    [2]胡春宏,惠遇甲.明渠挟沙水流运动的力学和统计规律.北京:科学出版社,1995.
    [3]王光谦,胡春宏.泥沙研究进展.北京:中国水利水电出版社,2006.
    [4]钱宁,万兆惠.泥沙运动力学.北京:科学出版社,1983.
    [5]钱宁,张仁,周志德.河床演变学.北京:科学出版社,1987.
    [6]张海燕著.方铎等译.河床演变工程学.北京:科学出版社,1990.
    [7]王兴奎,邵学军,王光谦,吴保生.河流动力学.北京:科学出版社,2004.
    [8]黄才安.水流泥沙运动基本规律.北京:海洋出版社,2004.
    [9]夏建新,吉祖稳.水沙环境学.北京:海洋出版社,2004.
    [10]倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用.北京:科学出版社,1991.
    [11]Brookes A,Shields F D.River channel restoration.Chichester:John Wiley & Sons,1996.
    [12]Bennett S J,Simon A.Riparian Vegetation and Fluvial Geomorphology.Washington DC:American Geophysical Union,2004.
    [13]Wu W M,Shields F D,Bennett S J,et al.A depth-averaged two-dimensional model for flow,sediment transport,and bed topography in curved channels with riparian vegetation.Water Resources Research,2005,41(3):W03015.
    [14]Bennett S J,Alonso C V.Physically modeling stream channel adjustment to woody riparian vegetation.Fall Meeting,Erosion and sedimentation,American Geophysical Union,2003,84(46),Abstract H52A-1171.
    [15]夏云峰.感潮河道三维水流泥沙数值模型研究与应用:(博士学位论文).南京:河海大学,2002.
    [16]陆永军.三维紊流泥沙数学模型及其应用:(博士后研究报告).南京:河海大学,2002.
    [17]周新民.水沙两相流湍流模式及其应用:(博士学位论文).成都:四川大学,2002.
    [18]陈雄波.挟沙水流数值模拟中若干关键技术的研究:(博士学位论文).南京:河海大学,2004.
    [19]Ruther N.Computational fluid dynamics in fluvial sedimentation engineering:[Dissertation].Trondheim:Norwegian University of Science and Technology,2006.
    [20]WANG S S Y,Wu W M.Computational simulation of river sedimentation and morphology - a review of the state of the art.International Journal of Sediment Research,2005,20(1):7-29.
    [21]白玉川,顾元棪,邢焕政.水流泥沙水质数学模型理论及应用.天津:天津大学出版社,2005.
    [22]陈璧宏.水利枢纽河段模拟.大连:大连理工大学出版社,1999.
    [23]黄国鲜.弯道和分汊河道水沙输运及其演变的三维数值模拟研究:(博士学位论文).北京:清华大学,2006.
    [24]Wu W M,Wang S S Y.Mathematical Models for Liquid-solid Two-phase Flow.International Journal of Sediment Research,2000,15(3):288-298.
    [25]Wu W M.Computational River Dynamics.Oxford:Taylor & Francis Group,2008.
    [26]李鉴初,杨景芳.水力学教程.北京:高等教育出版社,1995.
    [27]Einstein H A,Chien N.Transport of Sediment Mixtures with Large Ranges of Grain Sizes.MRD Sediment Series No.2,U.S.Army Engineer Division,Missouri River,Corps of Engineers,Omaha,Neb.,1953.
    [28]Smith J D,McLean S R.Spatially averaged flow over a wavy surface.Journal of Geophysical Research,1977,83(12):1735-1746.
    [29]van Rijn L C.Sediment Transport,part Ⅱ:Suspended Load Transport.Journal of Hydraulic Engineering,1984,110(11):1613-1641.
    [30]Zyserman J A,Fredsoe J.Data analysis of bed concentration of suspended sediment.Journal of Hydraulic Engineering,1994,120(9):1021-1042.
    [31]Einstein H A.Formulas for the transportation of bed load.Transactions of the American Society of Civil Engineers,1942,107:561-577.
    [32]Einstein H A.The bedload function for sediment transport in open channel flow.Technical Bulletin,United States Department of Agriculture,Soil Conservation Service,1950.No.1026.
    [33]窦国仁.泥沙运动理论.南京:南京水利科学研究所,1963.
    [34]Engelund F,Fredsoe J.A sediment transport model for straight alluvial channels.Nordic Hydrology,1976,7(5):293-306.
    [35]Yalin M S.Mechanics of sediment transport.Oxford:Pergamon Press,1977.
    [36]Meyer-Peter E,Muller R.Formula for bedload transport.Proc.2nd Congress of the International Association for Hydraulic Structure Research,1948,39-64.
    [37]Ackers P,White W R.Sediment transport:new approach and analysis.Journal of the Hydraulics Division,1973,99(HY11):2041-2060.
    [38]Dey S.Experimental study on incipient motion of sediment particles on generalized sloping fluvial beds.International Journal of Sediment Research,2001,16(3):391-398.
    [39]Brookes H N.Discussion of "Boundary shear stress in curved trapezoidal channels" by Ippen A T,Drinker P A.Journal of Hydraulic Engineering,1963,89(3):327-333.
    [40]van Rijn LC.Sediment transport by currents and waves.Technical Report H461.Delft Hydraulics:Delft,The Netherlands.1989.
    [41]Parker G.Discussion of "Lateral bed load transport on side slopes" by Ikeda S.,Journal of Hydraulic Engineering.,1984,110(2):197-203.
    [42]van Rijn L C.Principles of Sediment Transport in Rivers,Estuaries and Coastal Seas.Amsterdam:Aqua Publications,1993.
    [43]Duan J G,Wang S S Y,Jia Y.The applications of the enhanced CCHE2D model to study the alluvial channel migration processes.Journal of Hydraulic Research,2001,39(5):1-12.
    [44]Wang S Y,Adeff S E.Three-dimensional modeling of river sedimentation processes.Proc.of the 3rd Int.Symp,on river sedimentation,The Univ.of Mississippi,1986:1594-1601.
    [45]van Rijn L C.Mathematical modelling of suspended sediment in non-uniform flows.Journal of Hydraulic Engineering,1986,112(6):433-455.
    [46]Demuren A O,Rodi W.Calculation of flow and pollutant dispersion in meandering channels.Journal of Fluid Mechanics,1986,172(11):65-92.
    [47]Demuren A O.Calculation of sediment transport in meandering channels.Tech Session A,Proc.23rd IAHR Congr.,International Association for Hydraulic Research,Delft,The Netherlands,1989.
    [48]Shimizu Y,Yamaguchi H,Itakura T.Three-dimensional computation of flow and bed deformation.Journal of Hydraulic Engineering,1990,116(9):1090-1108.
    [49]Demuren A O.Development of a mathematical model for sediment transport in meandering rivers.Rep.No.693,Dept.of Mechanical Engineering and Mechanics,Old Dominion Univ.1991.
    [50]Fernette R,Dhatt G,Tanguy J M.A three dimensional finite element sediment transport model.Proceedings of 5th International Symposium on River sedimentation,University of Karlsuhe,1992:365-374.
    [51]Prinos P.Compound open flow with suspended sediments.Advance in Hydro-Science and Engineering.Part B,USA,The University of Mississippi,1993,1:1206-1214.
    [52]Olsen N R B,Melaaen M C.Three-dimensional calculation of scour around cylinders.Journal of Hydraulic Engineering,1993,119(9):1048-1504.
    [53]Wang S Y,Jia Y.Computational modeling and hydroscience research.Advances in Hydro-Science and Engineering,Proceedings of 2nd International Conference on Hydro-Science and Engineering,Tsinghua University Press,1995:2147-2157.
    [54]Lin B L,Falconer R A.Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters.Journal of Hydraulic Research,1996,34(4):435-456.
    [55]Dou X,Jones J S,Young G K,et al.Using a 3D model to predict local scour.Proceedings of the international water resources engineering conference,1998,198-203.
    [56]Olsen N R B,Kjellesvig H M K.Three-dimensional numerical flow modeling for estimation of maximum local scour depth.Journal of Hydraulic Research,1998,36(4):579-590.
    [57]Olsen N R B,Kjellesvig H M.Three-dimensional numerical modelling of bed changes in a sand trap.Journal of Hydraulic Research,1999,37(2):189-197.
    [58]Gessler D,Hall B,Spasojevic M,et al.Application of 3D mobile bed,hydrodynamic model.Journal of Hydraulic Engineering,1999,125(7):737-749.
    [59]Fang H,Wang G.Three-dimensional Mathematical Model of Suspended Sediment Transport.Journal of Hydraulic Engineering,2000,126(8):578-592.
    [60]Wu W,Rodi W,Thomas W.3D numerical modeling of flow and sediment transport in open channels,Journal of Hydraulic Engineering,2000,126(1):4-15.
    [61]Li C W,Ma F X.3D simulation of deposition patterns due to sand disposal in flowing water,Journal of Hydraulic Engineering,2001,127(3):209-218.
    [62]马福喜,李志伟.水中抛沙床面三维淤积形态研究.水利学报,2001,32(10):72-77.
    [63]Zedler E A,Street R L.Large-eddy simulation of sediment transport:Currents over ripples.Journal of Hydraulic Engineering,2001,127(6):444-452.
    [64]陆永军,窦国仁,韩龙喜等.三维紊流悬沙数学模型及应用.中国科学,E辑,2004,34(3):311-328.
    [65]Kamil H M A,Othman K.Simulation of flow around piers.Journal of Hydraulic Research,2002,40(2):161-174.
    [66]Shams M,Ahmadi G,Smith D H.Computational Modeling of Flow and Sediment Transport and Deposition in Meandering Rivers.Advances in Water Resources,2002,25(6):689-699.
    [67]Oisen N R B.3D CFD Modeling of a Self-Forming Meandering Channel.Journal of Hydraulic Engineering,2003,129(5):366-372.
    [68]Ruether N,Olsen N R B.CFD modeling of alluvial channel instabilities.Proc.of the 3rd IAHR Symposium on River,Coastal,and Estuarine Morphodynamics,Barcelona,Spain,2003,636-642.
    [69]Zeng J,Constantinescu G,Weber L.A fully 3D nonhydrostatic model for prediction of flow,sediment transport and bed morphology in open channels.Proceedings of the 31st IAHR Congress,Seoul,South Korea,2005,1327-1338.
    [70]Nagata N,Hosoda T,Nakato T,et al.Three-dimensional numerical model for flow and bed deformation around river hydraulic structures.Journal of Hydraulic Engineering,2005,131(12):1074-1087.
    [71]Ruether N,Olsen N R B.Modelling free-forming meander evolution in a laboratory channel using three-dimensional computational fluid dynamics.Geomorphology,2007,89(3-4):308-319.
    [72]Khosronejad A,Rennie C D,Salehi N A A,et al.3D Numerical Modeling of Flow and Sediment Transport in Channel Bend.Journal of Hydraulic Engineering,2007,133(10):1123-1134.
    [73]Lesser G R,Roelvink J A,van Kester J A,et al.Development and validation of a three-dimensional morphological model.Coastal Engineering,2004,51(8-9):883-915.
    [74]Kleinhans M,Jagers B,Mosselman E,et al.Effect of upstream meanders on bifurcation stability and sediment division in 1D,2D and 3D models.International Conference on Fluvial Hydraulics,Lisbon,Portugal,Taylor and Francis/Balkema,London,UK,2006,1355-1362.
    [75]Jorge D A,Marcelo H G.Hydrodynamics in Kinoshita-generated meandering bends:Importance for river-planform evolution.4th IAHR Symposium on River,Coastal and Estuarine Morphodynamics,Urbana,Illinois,October,2005,4-7.
    [76]Brethour J M.Transient 3D Model for Lifting,Transporting,and Depositing Solid Material.Proc.3rd International Environmental Hydraulics,Tempe,AZ,Dec.2001,5-8.
    [77]http://www.dhigroup.com/Software/WaterResources/MIKE11.aspx
    [78]Scott S,Jia Y,Wang S S Y.3D numerical simulation of flow in Mississippi River and validation using field data.Proc.XXIX IAHR Congress Theme D:Hydraulics of Rivers,Water and Machinery,Beijing,2001,Vol.1,183-188.
    [79]Wu W M,Wang S S Y.Development and Application of Ncche's Sediment Transport Models.US-China Workshop on Advanced Computational Modelling in Hydrnscience & Engineering,Oxford,Mississippi,USA,September,2005,19-21.
    [80]http://folk.ntnu.no/nilsol/ssiim
    [81]http://folk.ntnu.no/nilsol/cfd/
    [82]http://chl.wes.army.mil/software/ch3d/
    [83]Engel J J,Rollin H H,Brad R H.Three Dimensional Sediment Transport Modeling Using CH3D Computer Model.Proceedings of the First Internatiunal Water Resources Engineering Conference,American Society of Civil Engineers,New York,1995,628-632.
    [84]http://www.fluent.com
    [85]Landsberg A,Chtchelkanova A,Lind C,et al.Fast3D user and programmer reference manual.1998.
    [86]张瑞瑾.河流泥沙动力学.北京:水利电力出版社,1997.
    [87]谢鉴衡,魏良瑛.河流泥沙数学模型的回顾与展望.泥沙研究,1987,(3):1-13.
    [88]谢鉴衡.河流模拟.北京:水利电力出版社,1990.
    [89]Simons D B,Li R M.Erosion,Sedimentation,and Debris Analysis of Proposed Boulder Creek Floodway,Boulder,Colorado.Proc.Intl Symp.on Urban Storm Runoff,1979,341-348.
    [90]U.S.Army Corps of Engineers.HEC-6,Scour and deposition in rivers and reservoirs.Users Manual,Hydrologic Engineering Center,Davis,California,1977.
    [91]韩其为,何明民.水库淤积与河床演变的(一维)数学模型.泥沙研究,1987,(3):14-29.
    [92]林秉南.关于一维动床数学模型的讨论.三峡工程泥沙问题研究成果汇编(160-180m蓄水位方案),水利电力部科学技术司,1988.
    [93]李义天,尚全民.一维不恒定流泥沙数学模型研究.泥沙研究,1998,(1):81-87.
    [94]杨国录.河流数学模型.北京:海洋出版社,1993.
    [95]杨国录,吴卫民.一维河流数值模拟算法的概述.泥沙研究,1995,(4):34-41.
    [96]Cao Z,Day R,Egashira S.Coupled and decoupled numerical modeling of flow and morphological evolution in alluvial rivers.Journal of Hydraulic Engineering,2002,128(3):306-321.
    [97]Wu W M,Vieira D A,Wang S S Y.One-Dimensional Numerical Model for Nonuniform Sediment Transport under Unsteady Flows in Channel Networks.Journal of Hydraulic Engineering,2004,130(9):914-923.
    [98]李义天,赵明登,曹志芳.河道平面二维水沙数学模型.北京:中国水利水电出版社.2001.
    [99]吴巍.一般曲线坐标系下平面二维水沙数学模型的研究:(硕士学位论文).西安:西安理工大学,2006.
    [100]刘嘉夫.同位网格下平面二维水沙数学模型的研究:(硕士学位论文).西安:西安理工大学,2007.
    [101]解刚.山区河流平面二维泥沙数学模型:(硕士学位论文).成都:四川大学,2004.
    [102]徐林春.河道平面二维水沙数值模拟及其动态显示技术的研究:(硕士学位论文).武汉:武汉大学,2004.
    [103]曹振轶.长江口平面二维非均匀全沙数学模型:(硕士学位论文).上海:华东师范大学,2002.
    [104]Minh Duc B,Wenka T,Rodi W.Numerical modeling of bed deformation in laboratory channels.Journal of Hydraulic Engineering 2004,130(9):894-904.
    [105]Odgaard J A,Bergs M.Flow processes in a curved alluvial channel.Water Resources Research,1988,24(1):45-56.
    [106]Yen C,Lee K.Bed topography and sediment sorting in channel bend with unsteady flow.Journal of Hydraulic Engineering,1995,121(8):591-599.
    [107]Wu W,Wang S.Depth-averaged 2D calculation of flow and sediment transport in curved channels.Journal of Sediment Research,2004,19(4):241-257.
    [108]Neary V S,Wright S A,Bereciartua P.Case study:Sediment transport in proposed geomorphic channel for napa river.Journal of Hydraulic Engineering,2001,127(11):901-910.
    [109]Guo Q C,Jin Y C.Modeling sediment transport using depth-averaged and moment equations.Journal of Hydraulic Engineering,1999,125(12):1262-1269.
    [110]吴福生,王文野,姜树海.含植物河道水动力学研究进展.水科学进展,2007,18(3):456-461.
    [111]Bennett,S J,Pirim T,Barkdoll B D.Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel.Geomorphology,2002,44(1-2):115-126.
    [112]Dunn C,Lopez F,Garcia M.Mean flow and turbulence structure induced by vegetation:Experiments.In:Hydraulic Engineering Series,UILU-ENG 96-2009,Dept.of Cir.Engrg.,University of Illinois at Urbana-Champaign,Urbana,I11,1996,No.51.
    [113]Lopez F,Gaycia M.Mean Flow and-Turbulence Structure of Open-Channel Flow through Non-Emergent Vegetation.Journal of hydraulic engineering,,2004.127(5):392-402.
    [114]Pasche E,Rouve G.Overbank Flow with Vegetatively Roughened Flood Plains.Journal of.Hydraulic Engineering 1985,111(9):1262-1278.
    [115]Nepf H M,Vivoni E R.Flow structure in depth-limited,vegetated flow.Journal of Geophysical Research,2000,105(C12):28547-28557.
    [116]Velasco D,Bateman A,Redondo J M,et al.An Open Channel Flow Experimental and Theoretical Study of Resistance and Turbulent Characterization over Flexible Vegetated Linings.Flow,Turbulence and Combustion.2003.70(1-4):69-88.
    [117]Huang B S,Lai G W,Qiu J,Lin S Z.Hydraulics of compound channel with vegetated flood-plains.Journal of Hydrodynamics,Ser.B,2002,14(1):23-28
    [118]Tsujimoto T,Kitamura T.Velocity profile of flow in vegetated-bed channels.KHL Progressive Report,Hydraulic Laboratory,Kanazama University,Japan.1990..
    [119]时钟,李艳红.含植物河流平均流速分布的实验研究.上海交通大学学报,2003,37(8):1263-1268.
    [120]杨克君,刘兴年,曹叔尤等.植被作用下的复式河槽流速分布特性.力学学报,2006,38(2):246-250.
    [121]Tsujimoto T,Kitamura T,Tsujikura H.Development of sand island with vegetation by repetition of flood and low-stage water.In:Abt S R.Young-Pezeshk J,Watson C C,eds.Water Resource Engineering'98,No.318,Baltimore:ASCE Publications,1998.ISBN 0-7844-0359-7.
    [122]Tominaga A,Nagao M,Nezu I.Effects of vegetation on flow structures and bed profiles in curved open channels.In:Lee J H W,Jayawaydena A W,Wang Z Y,eds.Environmental Hydraulics.Rotterdam:A.A.Balkema Publishers,1998.329-334,ISBN 90 5809 035 3.
    [123]Millay R G.Influence of bank vegetation on channel patterns.Water Resource Research,2000,36(4):1109-1118.
    [124]Brooks A P,Brierley G J.Mediated equilibrium:The influence of riparian vegetation and wood on the long-term evolution and behaviour of a near-pristine river.Earth Surf.Processes Landforms,2002,27(4):343-367.
    [125]拾兵,付强,曹叔尤.植物对明渠水流的影响.西南民族学院学报(自然科学版),1998,24(4):354-357.
    [126]Simon A,Bennett S J,Neary V S.Riparian vegetation and fluvial geomorphology:Problems and opportunities.In:Bennett S.J,Simon A.Riparian Vegetation and Fluvial Geomorphology,Water Sci.Appl.Set.,AGU,Washington D.C,2004,8:1-10.
    [127]Montgomery D R,Piegay H.Wood in dyers:Interactions with channel morphology and processes.Geomorphology,2003,51(1-3):1-5.
    [128]Shields F D J,Morin N,Cooper C M.Large woody debris structures for sand bed channels.Journal of Hydraulic Engineering,2004,130(3):208-217.
    [129]Kutija V,Hong H T M.A Numerical Model for Assessing the Additional Resistance to Flow Introduced by Flexible Vegetation.Journal of Hydraulic Research,1996,34(1):99-114.
    [130]Darby S E.Effect of riparian vegetation on flow resistance and flood potential.Journal of Hydraulic Engineering,1999,125(5):443-454.
    [131]Nadaoka K,Yagi H.Shallow-water Turbulence Modeling and Horizontal Large-eddy Computation of river flow.Journal of Hydraulic Engineering,1988,124(5):493-500.
    [132]宿晓辉.带有植物的河道水流紊流运动大涡模拟:(博士学位论文).大连:大连理工大学,2002.
    [133]宿晓辉,张建新,李志伟等.带有植物的河道水流浅水紊流运动大涡模拟.大连理工大学学报,2003,43(2):223-229.
    [134]Chen F G.Turbulent Shear Flow in Shallow Open Channel with Training Structures:(博士学位论文).日本东京:东京技术学院,1996.
    [135]Simoes F J,Wang S S Y.Three-dimensional modelling of compound eharmels with vegetated flood plains.In:Wang S.S.Y.27th IAHR Congress on Environmental and Coastal Hydraulics:Protecting the Aquatic Habitat,San Francisco,CA,1997,(2):809-814.
    [136]Shimizu Y,Tsujimoto T.Numerical analysis of turbulent open channel flow over a vegetation layer using a k-ε turbulence model.Journal of Hydroseienee & Hydraulic Engineering,JSCE,1994,11(2):57-67.
    [137]Shimizu Y,Tsujimoto T.Suspended sediment concentration affected by organized motion near vegetation zone.In:Wang S.S.Y.27th IAHR Congress on Environmental and Coastal Hydraulics:Protecting the Aquatic Habitat,San Francisco,CA,1997,(2):1384-1389.
    [138]Naot D,Nezu I,Nakagawa H.Hydrodynamic Behavior of partly Vegetated Open Channels.Journal of Hydraulic Engineering,1996,122(11):625-663.
    [139]Fiseher-Antze T,Stoesser T,Bates P,et al.3D numerical modelling of open-channel flow with submerged vegetation.Journal of Hydraulic Research,2001,39(3):303-310.
    [140]程莉.植树护岸条件下河道水流的数值模拟:(硕士学位论文).南京:河海大学,2002.
    [141]Neary V S.Numerical Solution of Fully Developed Flow with Vegetative Resistance,Journal of Engineering Mechanics,2003,39(3):303-310.
    [142]Erduran K S,Kutija V.Quasi-three-dimensional numerical model for flow through flexible,rigid,submerged and nonsubmerged vegetation.Journal of Hydroinformatics 2003,5(3):189-202.
    [143]Kang H,Choi S U.3D numerical simulation of compound open channel flows with vegetated floodplains by Reynolds stress model.The 2004 World Water and Environmental Resources Congress,Salt Lake City,Utah,USA,June 27 -July 1,2004.
    [144]刘锋.植物“柔性坝”过流水动力学特性的数值模拟:(硕士学位论文).新疆:新疆农业大学,2006.
    [145]Wang C,Zhu P,Wang P F.Effects of aquatic vegetation on flow in the Nansi Lake and its flow velocity modeling.Journal of Hydrodynamics,Ser.B,2006,18(6):640-648.
    [146]拾兵,曹叔尤.植物治沙动力学.青岛:青岛海洋大学出版社,2000.
    [147]Van De Wiel M J,Darby S E.Numerical modelling of bed topography and bank erosion along tree-lined meandering rivers.In:Bennett S J,Simon A,eds.Riparian Vegetation and Fluvial Geomorphology,Water Sci.Appl.Set.,Washington,DC:American Geophysical Union,2004,267-282.
    [148]Kitamura T,Jia Y F,Tsujimoto T,et al.Sediment Transport Capacity in Channels with Vegetation Zone.In:Abt S R,Young-Pezeshk J,Watson C C,eds.Water Resource Engineering'98,No.326,Baltimore:ASCE Publications,1998.ISBN 0-7844-0359-7.
    [149]Lopez F,Garcia M.Open-channel flow through simulated vegetation:Suspended sediment transport modeling.Water Resources Research,1998,34,(9):2341-2352.
    [150]Wu W M,Wang S S Y.A depth-averaged two-dimensional numerical model of flow and sediment transport in open channels with vegetation.In:Bennett S J,Simon A,eds.Riparian Vegetation and Fluvial Geomorphology,Water Sci.Appl.Ser.,Washington,DC:American Geophysical Union,2004.253-265.
    [151]王光谦.固液两相流与颗粒流的运动理论及实验研究:(博士学位论文).北京:清华大学,1989.
    [152]王光谦,倪晋仁.固液两相流流速分布特性的试验研究.水利学报,1992,(11):43-49.
    [153]刘青泉.水-沙两相流运动机理的试验和研究:(博士后研究工作报告).北京:中科院力学所,1995.
    [154]刘青泉.水-沙两相流的激光多普勒分相测量和试验研究.泥沙研究,1998,(2):72-80.
    [155]曾庆华.弯道的河床演变:(博士学位论文).莫斯科:捷米利亚农学院,1963.
    [156]曾庆华.关于弯道的底沙运动问题.泥沙研究,1982,(3):59-65.
    [157]曾庆华.中国利用弯道环流取水防沙的若干经验.泥沙研究,1997,(2):1-9.
    [158]Hooke R L.Distribution of Sediment Transport and Shear Stress in a Meander Bend.Journal of Geology,1975,83:543-565.
    [159]Drew D A,Segel L A.Averaged field equations for two-phase media.Studies in Appl.Math.1971,50(3):133-166.
    [160]Ishill M,Mishima K.Two-fluid model and hydrodynamic constitutive relations.Nuclear Engineering and Design,1984,82(2-3):107-126.
    [161]Soo S L.Multiphase fluid dynamics.Hong Kong:Science Press.1990.
    [162]刘大有.二相流体动力学.北京:高等教育出版社,1993.
    [163]曹志先.水沙两相流立面二维数学模型及数值方法研究:(博士学位论文).武汉:武汉水利电力学院,1991.
    [164]曹志先,魏良琰,谢鉴衡.明渠挟沙水流的两相流模式.水利学报,1995,(4):1-12.
    [165]刘小兵.固液两相流动及在涡轮机械中的数值模拟.北京:中国水利电力出版社,1996.
    [166]倪浩清,周力行,周俊洋.悬沙淤积问题的湍流液固两相流动的数值模拟.水利学报,1998,(11):57-62.
    [167]吴玉林,曹树良,何燕雨等.水轮机转轮内部的三维固液两相紊流计算.工程热物理学报,1997,18(5):580-583.
    [168]吴玉林,曹树良,吴伟章等.水轮机转轮三维泥沙流动两相紊流计算.大电机技术,1999,(4):57-61.
    [169]吴伟章,吴玉林.水轮机转轮内部磨损预测.工程热物理学报,2000,21(6):709-712.
    [170]Wu W,Zhan Y.The governing equations and constitutive relations of diffusion model for water/sediment two-phase flow.The 94' Chinese Conference on Hydrodynamics.Ocean Publish,1994.
    [171]周新民,赵文谦,李嘉.利用相间滑移考虑固相泥沙沉降效应.水动力学研究与进展A辑,2004,19(5):593-597.
    [172]刘士和,赵世来,罗秋实.基于两相流理论的低浓度挟沙水流运动数值模拟:Ⅰ-数学模型.武汉大学学报:工学版,2007,40(4):1-4.
    [173]刘士和,赵世来,罗秋实.基于两相流理论的低浓度挟沙水流运动数值模拟:Ⅱ-数学模型的求解与验证.武汉大学学报:工学版,2007,40(4):5-8.
    [174]吴坷,孙志林,毛根海等.静水中泥沙云团运动的数值模拟.水电发电学报,2005,24(4):52-57.
    [175]Laux H,Ytrehus T.Computer simulation and experiments on two-phase flow in an inclined sedimentation vessel.Powder Technology,1997,94(1):35-49.
    [178]Massoudi M M,Phuoc T X.The effect of slip boundary condition on the flow of granular materials:a continuum approach.International Journal of Non-Linear Mechanics,2000,35(4):745-761.
    [177]Ookawara S,Street D,Ogawa K.Numerical study on development of particle concentration profiles in a curved microchannel.Chemical Engineering Science,2006,61(11):3714-3724.
    [178]Shirvanian P A,Calo J M,Hradil G.Numerical simulation of fluid-particle hydrodynamics in a rectangular spouted vessel.International Journal of Multiphase Flow,2006,32(6):739-753.
    [179]Wang G Q,Ni J R.The kinetic theory for dilute solid-liquid two-phase flow.Int.J.Multiphase Flow 1991,17(2):273-281.
    [180]Wang G Q,Ni J R.Kinetic theory for particle concentration distribution in two-phase flows.Journal of Engineering Mechanics,1990,116(12):2738-2748.
    [181]Ni J R.Wang G Q,Borthwick A G L.The kinetic theory for vertical profile of particle concentration in dilute and dense solid-liquid flows.Journal of Hydraulic Engineering,2000,126(12):893-903.
    [182]傅旭东,王光谦.低浓度固液两相流理论分析与管流数值计算.中国科学:E辑,2001,31(6):556-565.
    [183]夏建新,倪晋仁.水沙流中颗粒脉动特性.水利学报,2003,(3):7-13.
    [184]刘小兵,程良骏.固液两相湍流和颗粒磨损的数值模拟.水利学报,1996,(11):20-27.
    [185]刘小兵.固液两相流动及在涡轮机械中的数值模拟.北京:中国水利电力出版社,1996.
    [186]彭维明.水轮机转轮中轴对称固液两相流计算.水电发电学报,1994,(1):44-52.
    [187]李嘉,赵文谦.计算泥沙颗粒在沉沙池中运动的新方法.水利学报,1994,(11):31-36.
    [188]徐姚,张政,程学文等.旋转圆盘上液固两相流冲刷磨损数值模拟研究.北京化工大学学报,2002,29(3):12-16.
    [189]王宏,王曾璇,马振宗等.水力机械转轮内固液两相流的三维贴体数值模拟研究.水电发电学报,1998,(3):43-51.
    [190]周力行.湍流两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994.
    [191]周力行.多相湍流反应流体力学.北京:国防工业出版社,2000.
    [192]Torrey M D,Mjolsness R C,Stein L R.NASA-VOF 3D:a three-dimensional computer program for incompressible flow with free surface.New Mexico,USA:Los Alamos Laboratory Tech.Rep.LA-11009-MS,1987.
    [193]Liu Q Q,Singh V P.Fluid-Solid Interaction in Particle-Laden Flows.Journal of Engineering Mechanics,2004,130(1):1476-1485.
    [194]Liu Q Q,Singh V P.Closure to "Fluid-Solid Interaction in Particle-Laden Flows" by Liu Q Q,Singh V P.Journal of Engineering Mechanics,2006,132(4):464.
    [195]杨烨,李定凯等.κ-ε-A_p两相湍流模型用于模拟悬浮床两相流动.热力发电,2003,(2):16-19.
    [196]倪浩清,沈永明.工程湍流流动、传热及传质的数值模拟.北京:中国水利水电出版社,1996.
    [197]Fletcher C A J.Computational Techniques for Fluid Dynamics:Volume 2:Specific Techniques for Different Flow Categories.Set.Computational Physics,Springer,1996.
    [198]陶文铨.数值传热学.第2版.西安:西安交通大学出版社,2001.
    [199]Zhou L X,Chen T.Simulation of swirling gas-particle flows using USM and κ-ε-κ_p two-phase turbulence models.Powder Technology,2001,114:1-11.
    [200]van Rijn L C.Mathematical modeling of morphological processes in the case of suspended sediment transport.Delft Hydr.Communication No.382.1987.
    [201]吴修广.曲线坐标系下水流和污染物扩散输移的湍流模型:(博士学位论文).大连:大连理工大学,2004.
    [202]韩其为,何明民.论非均匀悬移质二维不平衡输沙方程及其边界条件.水利学报,1997,(1):1-10.
    [203]Ghanmi A.Modeling of flows between two consecutive reverse curves.Journal of Hydraulic Research,1999,37(1):121-135.
    [204]Tu J Y,Fletcher C A J,Behnia M.Numerical modelling of three-dimensional fly-ash flow in power utility boilers.International Journal for Numerical Methods in Fluids,1997,24(8):787-807.
    [205]熊治平.悬移质泥沙级配沿垂线分布公式探求.武汉水利电力大学学报,1999,32(3):51-54.
    [206]王召兵,周家俞,段金曦等.影响悬移质粒径沿垂向分布因素的研究.人民长江,2007,38(6):116-120.
    [207]彭瑞善,李慧梅,刘玉忠等.泥沙的动水沉速及对准静水沉降法的改进.泥沙研究,1997,(2):74-78.
    [208]王士强.床壁对颗粒沉速及悬移质浓度垂线分布的影响.泥沙研究,1993,(2):34-40.
    [209]许建林,曹叔尤.弯曲河道泥沙悬移质扩散方程及含沙量分布的研究.全国第一届计算水力学学术讨论会论文集,大连,1991,425-430.
    [210]唐洪武,吕升奇,龙涧川.刚性植物条件下静水中粗颗粒泥沙沉速研究.水利学报,2007,38(10):1214-1220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700