鳕鱼骨胶原肽与活性钙的制备及其抗骨质疏松活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鳕鱼是全世界年捕捞量最大的鱼类之一,在我国分布广泛,具有重要的经济价值。鳕鱼在加工生产过程中会产生大量的废弃物,其中鱼骨占鳕鱼整体重量的15%。鳕鱼骨中含有丰富的胶原蛋白及多种矿质元素,是一种良好的天然蛋白源与钙源。本论文以太平洋真鳕鱼骨为原料,制备鱼骨胶原蛋白并研究其各项基本理化性质。使用商品蛋白酶水解制备鱼骨胶原肽,并研究不同分子量胶原肽对成骨样MG-63细胞作用机制的影响。本实验研讨鳕鱼骨活性钙的最佳制备条件,并对其生物利用度进行了研究。本论文以去卵巢大鼠为模型,探讨鱼骨胶原肽与活性钙的抗骨质疏松活性。本研究开拓了鳕鱼骨资源的应用领域,为开发新型鱼骨保健食品、推进水产品高值化利用的发展提供了一定的科学依据。
     1.本论文以水产加工下脚料鳕鱼骨为原料,因此首先对其基本组成进行了分析。鳕鱼骨中蛋白质含量较高(14.5%),鳕鱼骨中含有7种必须氨基酸,占总氨基酸含量的26.02%。鳕鱼骨中Ca与P的含量分别达到20.78%和10.09%,其比值接近2:1。扫描电镜观察发现鳕鱼骨表面具有坚固致密的扁平板状的羟基磷灰石结晶;通过Van Gieson染色发现鳕鱼骨中含有大量的胶原蛋白纤维。
     2.以鳕鱼骨为原料,通过不同方法制备胶原蛋白,并对所提取胶原蛋白的理化性质进行分析。使用低温酸法制备得到酸溶性胶原蛋白(Acid-solublecollagen, ASC)。氨基酸组成检测发现ASC中Gly的含量最高,而His、Tyr及Ile的数量很少。SDS-PAGE电泳检测证明ASC为I型胶原蛋白,至少含有两条α (α1和α2)链、一条β链和一条γ链。傅里叶变换红外光谱和X-射线衍射等分析证明ASC较好的保持了天然螺旋结构。扫描电镜观察发现ASC冻干样品具有多孔的网状结构,且存在缠绕复杂的细丝结构。使用热水抽提法制备得到热水抽提胶原蛋白(Hot-water extracted collagen, HEC)。采用正交实验确定了制备的最佳条件:盐酸质量分数4%,酸处理时间18h,提取温度70℃,提取时间8h,样品提取率可达98.02%。制备4种HEC样品:45℃4h,45℃8h,70℃4h和70℃8h,氨基酸组成检测显示4种样品氨基酸组成无显著性差异,凝胶强度随制备温度的升高和时间的延长而显著下降。傅里叶红外变换光谱和扫描电镜观察显示HEC失去天然三螺旋结构。
     3.以鳕鱼骨胶原蛋白为原料,以MG-63细胞碱性磷酸酶增长率作为活性筛选指标,使用胰蛋白酶对胶原蛋白进行酶解以制备鳕鱼骨胶原肽。以正交实验设计确定酶解优化条件参数为:酶解温度50℃,酶解时间90min,加酶量1.5%。在此优化条件下,ALP增长率为43.64%。以水解液为原料超滤获取高、低分子量组分:BCH1:2000Da     4.采用正交实验确定活性钙最佳提取条件为:提取温度100℃,提取时间120min,酸混合比例1:2,酸质量分数15%,在此条件下提取率达到96.15%,其中酸质量分数对结果的影响最为显著。对CCM活性钙样品进行生物利用度实验,结果表明样品对大鼠没有显著毒副作用;与空白对照组相比,CCM低剂量组大鼠骨钙含量明显增加(P<0.05),中剂量、高剂量与碳酸钙组大鼠的骨钙含量增加极为显著(P<0.01);且CCM高剂量组大鼠骨钙含量与相同钙水平的碳酸钙组无明显差异(P>0.05)。钙代谢实验测定结果显示CCM高剂量组钙吸收率显著高于相同钙水平的碳酸钙组(P<0.05)。因此判断CCM样品可作为一种有效的钙营养强化剂。
     5.本实验采用去卵巢大鼠模型,探讨鱼骨胶原肽、活性钙以及肽钙混合复剂对骨质疏松症的预防及作用机理。结果表明各组大鼠的脏器指数与普通生化指标检测未见异常、子宫病理学检测无明显差异,说明样品具有较好的安全性。三种样品均可不同程度的下调血清中ALP和TNF-α的含量,其中BCH高剂量组、CCM与肽钙复剂的低、高剂量组均能显著抑制血清TNF-α含量(P<0.05),这说明受试样品有助于降低摘除卵巢所导致的高骨转换状态,使大鼠的骨重建水平向正平衡状态恢复。与OVX组相比,CCM高剂量组、肽钙复剂的低、高剂量组骨骺端BMD值都有明显增加(P<0.05);CCM与肽钙复剂的低(P<0.05)、高剂量(P<0.01)对股骨钙含量亦有显著的提高作用,表明活性钙与肽钙复剂能够有效削弱卵巢摘除所引起的松质骨的骨转换加快以及相应导致的骨量减少。骨组织形态学观察结果进一步表明,CCM与肽钙复剂均能有效提高骨小梁数目,恢复骨小梁三维网状结构,进而提高骨骼强度,降低卵巢摘除导致的骨质疏松性骨折发生率。RT-PCR实验结果表明BCH与CCM功效因子能够有效抑制RANKL因子的合成,可通过作用于OPG/RANKL/RANK系统对骨代谢进行调节,从而阻止过度的骨吸收,抑制骨质疏松症的发展。
Cod is one of the commercially important fish species in international markets,which distributed extensively in our country and possess a high economic value.Large quantities of by-products have been generated during the production process ofcod with the fast development of aquatic processing industries. Fish bone wastesmake up15%of the raw fish materials. Cod bone contains many essential nutrientsincluding high quality collagen and various mineral elements. Thus cod bone is anexcellent natural source of protein and calcium. In this study, the un-denaturedacid-soluble collagen and denatured hot-water extracted collagen was isolated fromthe bones of pacific cod (Gadus macrocephalus). The characterization and functionalproperties of both collagen samples were investigated. The hydrolyzed collagenpeptides were prepared by appropriate protease as efficacy factor. Utilizing culturedMG-63cells, the osteogenic mechanism of collagen polypeptides with differentmolecular weights was studied in vitro. The optimum condition for the preparation ofactive calcium from cod bone was determined through orthogonal tests and thebiological availability was investigated. Furthermore, the preventive effects of bonecollagen polypeptides and active calcium on osteoporosis of ovariectomized rats wasstudied in vivo. This paper aimed to broaden the research field of fish bone resource,provide experimental evidence for developing fish bone health food and aquaticproduct processing industry. The main results were as follows:
     1. The pacific cod bone was used as research materials and the main compositionswere determined. The proximate analysis of fish bone exhibited that protein content inbone reached14.5%. The content of essential amino acids made up26.02%of thetotal amino acids. The calcium and phosphorous content was20.78%and10.09%, theratio of which was approximately2:1. Tightly and firmly combined hydroxyapatite crystals characterized by the flat tabular shape were found under SEM observation.After decalcification process, large amounts of collagen fibrils in fish bone wereobserved using Van Gieson staining technology.
     2. The studies of the extraction methods and physicochemical properties ofcollagen from cod bone were undertaken. Acid-soluble collagen (ASC) was isolatedunder low temperature. Amino acid analysis found that ASC was rich in Gly, whilethe amount of His, Tyr and Ile was relatively low. Electrophoresis revealed twodifferent α (α1and α2) chains, β-component and γ-component. FTIR and X-raydiffraction measurement showed ASC kept in helix structure. Lyophilized ASC had aporous network microstructure with complicated lace-like fibers. Hot-water extractedcollagen (HEC) was prepared from pacific cod bone. The influences of differentextraction parameters, including concentration of hydrochloric acid, acid soaking time,extraction temperature and time on the extraction rate of bone HEC were investigated.On the base of single-factor experiment, the optimum parameters of extraction forHEC were obtained by orthogonal experiment as follows: the concentration ofhydrochloric acid4%, acid soaking time18h, the extraction temperature70℃andtime8h, the yield was98.02%. Four HEC samples were prepared, including45℃for4h,45℃for8h,70℃for4h and70℃for8h. Amino acid analysis showed there wasno significant difference among the four samples. The bloom strength was decreasedsignificantly with the increasing extraction temperature and time. FTIR and SEMobservation showed HEC lost the natural helical structure.
     3. Cod bone collagen was hydrolyzed by trypsin treatment to obtain peptides whichcould promote the alkaline phosphatase activity of MG-63cells. The optimumparameters of hydrolysis conditions were obtained by orthogonal experiment asfollows: hydrolysis temperature at50℃,hydrolysis time at90min,enzyme-to-substrate ratio ([E]/[S])1.5%. The ALP increasing rate under thiscondition was43.64%. The polypeptides were subjected to ultrafiltration using cut-offmembranes to obtain collagen peptides with different molecular weight: BCH1(2000Da     4. The optimum parameters of extraction for active calcium were obtained byorthogonal experiment as follows: the extraction temperature100℃, the extractiontime120min, the acid mixing ratio1:2, the acid concentration15%, the calcium yieldwas96.15%under this condition. The research on bioavailability of CCM calciumsample was carried out in growing rats. Results showed that there were no side effectsof calcium samples. Compared with the control group, CCM low dose groupexhibited a significantly higher femur calcium content (P<0.05), CCM middle andhigh dose as well as calcium carbonate group remarkably promote the femur calciumcontent (P<0.01). There is no statistical difference of bone calcium content betweenCCM high dose group and calcium carbonate group, which possessing the samecalcium level in samples. Calcium metabolism experiment results suggested thecalcium absorption of CCM high dose group was significantly higher than that ofcalcium carbonate group (P<0.05). These results proved that CCM active calciumpossessed excellent bioavailability and could be a natural nutritional supplement ofcalcium.
     5. The effect of collagen peptides, active calcium and peptide-calcium mixture onprevention of osteoporosis in ovariectomized rats was investigated. There was nosignificant difference in viscera index and common serum biochemical index in each group, and no uterine endometrial hyperplasia was observed. These results indicatedthat long-term administration of these three samples has less risk of endometrialhyperplasia and displayed a high security. Results showed that all the three samplescould mitigate the increase of ALP and TNF-α in serum. Compared with OVX group,BCH high dose, CCM and peptide-calcium mixture at all dose levels exhibited mostsignificant inhibitory effect to TNF-α (P<0.05), which indicated the tested samplescould decrease the high bone remodeling (an increase in bone resorption and boneformation) caused by ovariectomy and help to restore the balance. The BMD of femurneck, in animals treated with CCM high dose and peptide-calcium mixture of alldoses levels was higher than that of the OVX group (P<0.05). A significant increasein femoral calcium content was observed in CCM and peptide-calcium mixture bothat low dose groups (P<0.05) and high dose groups (P<0.01). These results indicatedCCM and peptide-calcium mixture treatment may decrease bone turnover and preventagainst the bone mineral loss in cancellous bone after ovariectomy.Histomorphometry analysis further revealed the CCM and peptide-calcium mixturetreatment could significantly prevent trabecular bone loss and keep bettermicroarchitecture as compared to the OVX group. RT-PCR results showed theRANKL mRNA levels of each group were significantly decreased as compared to theOVX group, indicating that BCH and CCM could be effective in the prevention ofbone loss by modeling the expression of OPG/RANKL system. These resultssuggested that the collagen peptides and active calcium treatment could counteractovariectomy-induced bone loss and reduce the risk of osteoporotic fractures.
引文
Adam M., Spacek P., Hulejova H., Galianova A. and Blahos J. Postmenopausal osteoporosis.Treatment with calcitonin and a diet rich in collagen proteins. Cas. Lek. Ces.1996,135:74-78.
    Adibi S.A. Intestinal transport of dipeptides in man: relative importance of hydrolysis and intactabsorption. J. Clin. Invest.1971,50:2266-2275.
    Affenito S.G., Thompson D.R., Franko D.L., Striegel-Moore R.H., Daniel S.R., Barton B.A. et al.Longitudinal assessment of micronutrient intake among African-American and white girls:the National Heart, Lung, and Blood. Institute Growth and Health Study. J. Am. Diet. Assoc.2007,107:1113-1123.
    Ahmad M., Benjakul S., and Nalinanon S. Compositional and physicochemical characteristics ofacid solubilized collagen extracted from the skin of unicorn leatherjacket (Aluterusmonoceros). Food hydrocolloid.2010,24:588-594.
    Aikawa J.K. Magnesium it’s biologic significance.1981, CRC press, Boca Raton. USA.
    Aito-Inoue M. Transport of a tripeptide, Gry-Pro-Hyp, across the porcine intestinal brush-bordermembrane. J. Pept. Sci.2007,13(7):468-474.
    Aitoutkhatar N. Iron tissue storage and hemoglobin levels of deficient rats related with Iron boundto the caseinophosphopeptide1-25of β-casein. J. Agric. Food Chem.1999,47:2786-2790.
    Albright F., Smith P.H. and Richardson A.M. Postmenopausal osteoporosis. J. Am. Med. Assoc.1941,116:2465-2474.
    Alexander J.M., Bab I., Fish S., Muller R., Uchiyama T. and Gronowicz G. et al. Humanparathyroid hormone1-34reverses bone loss in ovariectomized mice. J. Bone Miner. Res.2001,16:1665-1673.
    Allen TM., Manoli A II and LaMont R.L. Skeletal changes associated with copper deficiency. Clin.Orthop.1982,168:206-210.
    Ambrose T.L., et al. The influence of back pain on balance and functional mobility in65to75year old women with osteoporosis. Osteoporos. Int.2002,868-873.
    Anderson D.M., Maraskovsky E., Billingsley W.L. and Dougall W.C. et al. A homologue of theTNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature.1997,390:175-179.
    Andrianarivo A.G., Robinson J.A., Mann K.G. and Tracy R.P. Growth on type I collagen promotesexpression of the osteoblastic phenotype in human osteosarcoma MG-63cells. J. Cell Physiol.1992,153(2):256-265.
    Armelagos,G.J. Disease in ancient Nubia. Science.1969,163:255-259.
    Arnesen J.A. and Gildberg A. Extraction and characterisation of gelatine from Atlantic salmon(Salmo salar) skin. Bioresource Technol.2007,98:53-57.
    Ashmead H.D., Graff D.J. and Ashmead H.H. Intestinal absorption of metal ions and chelates.Charles C. Thomas Publisher, Springfield.1985,11:1-251.
    Babu R.I. and Ganesh K.N. Enhanced triple helix stability of collagen peptides with4R-Aminoprolyl (Amp) residues: relative roles of electrostatic and hydrogen bondingeffects.,J. Am. Chem. Soc.2001,123:2079-2080.
    Bae I., Osatomi K., Yoshida A., Osako K., Yamaguchi A., and Hara K. Biochemical properties ofacid-solubilized collagens extracted from the skins of under-utilised fishes. Food Chem.2008,108:49-54.
    Bateman J.F., Lamande S.R., and Ramshaw J.A.M. Collagen superfamily,in: W.D. Comper (Ed.),Extracellular Matrix, Harwood Academic Press, Melbourne,1996, pp:22-67.
    Baxter-Jones A.D., Faulkner R.A., Forwood M.R., Mirwald R.L. and Bailey D.A. Bone mineralaccrual from8to30years of age: an estimation of peak bone mass. J. Bone Miner. Res.2011,26:1729-1739.
    Benjakul S., Oungbho K., Visessanguan W., Thiansilakul Y., Roytrakul S. Characteristics ofgelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus.Food Chem.2009,116:445-451.
    Birk D.E. and Bruckner P. Collagen suprastructures. Top. Curr. Chem.2005,247:185-205.
    Birk D.E., Fitch J.M., Babiarz J.P., and Linsenmayer T.F. Collagen type Ⅰand type Ⅴ arepresent in the same fibril in the avian corneal stroma. J. Cell Biol.1988,106:999-1008.
    Bonar S.K., Tinetti M.E. and Speechley M. et al. Factors associated with short-versus long-termskilled nursing facility placement among community-living hip fracture patients. J. Am.Geriatr. Soc.1990,38:1139-1144.
    Bryan M.A., Brauner J.W., Anderle G., Flach C.R., Brodsky B., and Mendelsohn R. FTIR studiesof collagen model peptides: Complementary experimental and simulation approaches toconformation and unfolding. J. Am. Chem. Soc.2007,129(25):7877-7884.
    Brzozowski A.M., Pike A.C. and Dauter Z. et al. Molecular basis of agonism and antagonism inthe oestrogen receptor. Nature.1997,389:753-758.
    Bucay N., Srosi I. and Dunstan C.R. et al. Osteoprotegerin–deficient mice develop early onsetosteoporosis and arterial calcification. Genes Dev.1998,12:1260-1268.
    Burgess T.L., Qian Y. and Kaufman S. et al. The ligand for osteoprotegerin (OPGL) directlyactivates mature osteoclasts. J. Cell Biol.1999,145:527-538.
    Carter D.R., Hayes W.C. and Schurman D.J. Fatigue life of compact bone-Ⅱ. Effects ofmicrostructure and density. J.Biomechanics.1976,9:211-218.
    Chambers T.J. and Moore A. The sensitivity of isolated osteoclasts to morphologicaltransformation by calcitonin. J. Clin. Endocrinol Metab.1983,57:819-824.
    Chevalley T., Rizzoli R., Nydegger V., Slosman D., Rapin C.H. and Michel J.P. et al. Effects ofcalcium supplements on femoral bone mineral density and vertebral fracture rate in vitamin–D-replete elderly patients. Osteoporosis Int.1994,4:245-252.
    Dawson-Hughes B., Harris S.S., Krall E.A. and Dallal G.E. Effect of calcium and vitamin Dsupplementation on bone density in men and women65years of age or older. N. Engl. J.Med.1997,37:670-676.
    Doherty D.A., Sanders K.M., Kotowicz M.A., Prince R.L. Lifetime and five-year agespecificsrisks of first and subsequent osteoporotic fractures in postmenopausal women. Osteoporos.Int.2001,12:16-23.
    Du X., Zhu K., Trube A., Zhang Q., Ma G. and Hu X., et al. School-milk intervention trialenhances growth and bone mineral accretion in Chinese girls aged10~12years in Beijing. Br.J. Nutr.2004,92:159-168.
    Cui F.X., Xue C.H., Li Z.J., Zhang Y.Q., Dong P., Fu X.Y., and Gao X. Characterization andsubunit composition of collagen from the body wall of sea cucumber Stichopus japonicus.Food Chem.2007,100:1120-1125.
    Damondaran S. Protein-stabilized foams and emulsions. In S. Damodaran and A. Paraf (Eds.).Food proteins and their applications. New York: Marcel Dekker Inc.1997.
    David J.E. and Trevor J.S. Detection and estimation of collagen. J. Sci. Food Agric.1981,32:539-546.
    De Leo V., Ditto A., la Marca A.,Lanzetta D., Massafra C., Morgante G. Bone mineral density andbiochemical markers of bone turnover in peri-and postmenopausal women. Calcif. Tissue Int.2000,66(4):263-267.
    Doyle B.B., Bendit E.G., and Blout E.R. Infrared spectroscopy of collagen and collagen-likepolypeptides. Biopolymers.1975,14:937-957.
    Ervin R.,Wang C.Y., Wright J.D. and Kennedy-Stephenson J. Dietary intake of selected mineralfor the United States population:1999~2000. National Center for Health Statistics,Hyattsville, MD: Advance data from Vital and Health Statistics;2004.
    Etherington, D.J. and Sims, T.J. Detection and estimation of collagen. J. Sci. Food Agric.1981,32:539-546.
    Etcheverry P. Calcium, Zinc and iron bioavailabilities from commercial human milk fortifier: acomparison study. J. Dairy Sci.1998,87:3629-3637.
    Fairweather-Tait S., Prentice A. and Heumann K.G. et al. Effect of calcium supplements and stageof lactation on the calcium absorption efficiency of lactating women accustomed to lowcalcium intake. Am. J. Clin. Nutr.1995,62(7):1188-1192.
    Farrell H.M., Wickham E.D., Unruh J.H., Qi P.X., and Hoagland P.D. Secondary structuralstudies of bovine caseins: temperature dependence of β-casein structure as analyzed bycircular dichroism and FTIR spectroscopy and correlation with micellization. Foodhydrocolloid.2001,15:341-354.
    Feige U. Osteoprotegerin. Ann. Rheum. Dis.2001,60:81-84.
    Fernandez-Diaz M.D., Montero P. and Gomez-Guillen M.C. Gel properties of collagens fromskins of cod (Gadus morhua) and hake (Merluccius merluccius) and their modification by thecoenhancers magnesium sulphate, glycerol and transglutaminase. Food Chem.2001,74(2):161-167.
    Ferraretto A., Signorile A., Gravaghi C., Fiorilli A., Tettamanti G. Casein phosphopeptidesinfluence calcium uptake by cultured human intestinal HT-29tumor cells. J. Nutr.2001,131:1655-1661.
    Ferreira S.H., Bartet D.C. and Greene L.J. Isolation of bradykinin-potentiating peptides fromBothrops jararaca venom. Biochemistry.1970,9:2583-2593.
    Fledelins C., Riis B.J. and Overgaard K. et al. The diagnostic validity of urinary free pyridinolinesto indentify women at risk of osteoporosis. Calcif. Tissue Int.1994,54:381-384.
    Fleisch H. Bisphosphonates: mechanism of osteoporosis. Clin. Geriatr. Med.2003,19:395-414.
    Fleischmajer R., Macdonald E.D., Perlish J.S., Burgeson R.E., and Fisher L.W. Dermal collagenfibrils are hybrids of typeⅠand type Ⅲ collagen molecules. J. Strut. Biol.1990,105:162-169.
    Foegeding E.A., Lanier T.C. and Hultin H.O. Characteristics of edible muscle tissues. In O.R.Fennema (Ed.), Food Chem.1996:879-942.
    Foegeding E.A., Lanier T.C., and Hultin H.O. Collagen. In: Food chemistry. Fennema, O.R.(Ed.)Marcel Dekker, New York.1996, pp.902-906.
    Frenkel S.R., Toolan B., Menche D., Pitman M.I., and Pachence J.M. Chondrocyte transplantationusing a collagen bilayer matrix for cartilage repair. J. Bone Jt. Surg.1997,79B:831-836.
    Friess W. and Lee G. Basic thermoanalytical studies of insoluble collagen matrices. Biomaterials.1989,17:2289-2294.
    Cadogan J., Eastell R., Jones N. and Barker M.E. Milk intake and bone mineral acquisition inadolescent girl: randomized, controlled intervention trial. BMJ.1997,315:1225-1260.
    Gelse K., Poschl E., and Aigner T. Collagens-structure, function, and biosynthesis. Adv. DrugDelivery Rev.2003,55:1531-1546.
    Gildberg A., Arnesen J.A., and Carleh g M. Utilisation of cod backbone by biochemicalfractionation. Process Biochem.2002,38:475-480.
    Giraud-Guille M.M., Besseau L., Chopin C., Durand P. and Herbage D. Structural aspects of fishskin collagen which forms ordered arrays via liquid crystalline states. Biomaterials.2000,21:899-906.
    Gómez-Guillén M.C. and Montero P. Extraction of gelatin from megrim (Lepidorhombus boscii)skins with several organic acids. J. Food Sci.2001,66:213-216.
    Gomez-Guillen M.C., Turnay J., Fernandez-Diaz M.D., Ulmo N., Lizarbe M.A. and Montero P. etal. Structural and physical properties of gelatin extracted from different marine species: acomparative study. Food Hydrocolloid.2002,16(1):25-34.
    Goulding A., Rockell J.E., Black R.E., Grant A.M., Jones I.E. and Williams S.M. Children whoavoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J. Am. Diet.Assoc.2004,104:250-253.
    Grano M., Faccio R., and Colucci S. et al. Extracellular Ca2+sensing is modulated by pH inhuman osteoclast-like cells in vitro. Am. J. Physiol.1994,267: C961-968.
    Greenspan S.L., Myers E.R., Kiel D.P., Parker R.A., Hayes W.C. and Resnick N.M. Fall direction,bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly.Am. J. Med.1998,104(6):539-545.
    Gueguen L. and Pointillart A. The bioavailability of dietary calcium. J. Am. Coll. Nutr.2000,19(2):119-136.
    Guillerminet F., Beaupied H., Fabien-Soule V., Tome D., Benhamou C.L., Roux C. and Blais A.Hydrolyzed collagen improves bone metabolism and biomechanical parameters inovariectomized mice: An in vitro and in vivo study. Bone.2010,46:827-834.
    Hansen M., Sandstrom B., Lonnerdal B. et al. Casein phosphopevtides improve zinc and calciumabsorption from rice based but not from whole grain infant cereal. J. Pediatr. Gastr. Nutr.1997,24:56-62.
    Hao L.H. and Li B.F. Extraction of collagen from body wall of Asterias amurensis. J. Fish Sci.Chin.1999,6(2):18-21.
    Han X.L., Xu Y.J., Wang J.B., Pei X.R., Yang R.Y., Li N. and Li Y. Effects of cod bone gelatin onbone metabolism and bone microarchitecture in ovariectomized rats. Bone.2009,44:942-947.
    Heaney R.P. Mineral bioavailability in dairy products. Bulletin of the IDF.1998,336:41-43.
    Horne W.C. Toward a more complete molecular description of the osteoclast. Bone1995,17(2):107-109.
    Honda A., Umemura Y. and Nagasawa S. Effect of high-impact and low-repetition training onbones in ovariectomized rats. J. Bone Miner. Res.2001,16:1688-1693.
    Huang Y.R., Shiau C.Y., Chen H.H., and Huang B.C. Isolation and characterization of acid andpepsin-solubilized collagens from the skin of ballon fish (Diodon holocanthus). FoodHydrocolloid.2011,25:1507-1513.
    Hwang J.H., Mizuta S.S., Yokoyama Y.H., and Yoshinaka R.J. Purification and characterization ofmolecular species of collagen in the skin of skate (Raja Kenojei). Food Chem.2007,100:921-925.
    Hwang S.J., Lai Y.H., Chen H.C. and Tsai J.H. Comparison of the effects of Calcium inHemodalysis Patients. Am. J. Kidney Dia.1992,19(1):57.
    Ikeda T., Utsuyama M., Hirokawa K. Expression profiles of receptor activator of nuclear factorkappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messengerRNA in aged and ovariectomized rat bones. J. Bone Miner. Res.2001,16(8):1416-1425.
    Ikoma T., Kobayashi H., Tanaka J., Walsh D., and Mann S. Physical properties of type I collagenextracted from fish scales of Pagrus major and Oreochromis niloticas. Int. J. Biol.Macromol.2003,32:199-204.
    Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC:National Academy of Sciences:2010.
    Ito S., Ishida H., Uenishi K., Murakami K. and Sasaki S. The relationship between habitual dietaryphosphorus and calcium intake, and bone mineral density in young Japanese women: across-sectional study. Asia Pac. J. Clin. Nutr.2011,20:411-417.
    Iwai K., Hasegawa T. and Taguchi Y. et al. Identification of food-derived collagen peptides inhuman blood after oral ingestion of gelatin hydrolysates. J. Agric. Food Chem.2005,53(16):6531-6536.
    Jackson M.J. The assessment of bioavailability of micronutrients: Introduction. Eur. J. Clin. Nutr.1997,51(1):1-2.
    Jackson M., Choo L.P., Watson P.H., Halliday W.C., and Mantsch H.H. Beware of connectivetissue proteins: Assignment and implications of collagen absorptions in infrared spectra ofhuman tissues. Biochim. Biophys. Acta, Mol. Basis Dis.1995,1270:1-6.
    Jacobsen S.J., Goldberg J., Miles T.P. et al. Regional variation in the incidence of hip fracture:U.S. white women aged65years and older. JAMA.1990,264:500-502.
    Jane E.K., Kimberly O.B. and Kad I. Dietary protein and intestinal calcium absorption. Am. J.Clin. Nutr.2001,73(5):990-991.
    Je J.Y., Qian Z.J., Lee S.H. et al. Purification and antioxidant properties of Bigeye Tuna (Thunnusobesus) dark muscle peptide on free radical-mediated oxidative systems. J. Med. Food.2008,11:629-637.
    Jiang B. and Mine M. Preparation of novel functional oligophosphopeptides from hen egg yolkphosvitin. J. Agric. Food Chem.2000,48:990–994.
    Johnston C.C., Miller J.Z., Slemenda C.W., Reister T.K., Hui S., Christian J.C. and Peacock M.Calcium supplementation and increases in bone mineral density in children. N. Engl. J. Med.1992,327:82-87.
    Johnson T.M. and Zabik M.E. Egg albumin proteins interactions in an angel food cake system. J.Food Sci.1981,46(4):1231-1236.
    Jongjareonrak A., Benjakul S., Visessanguan W., Nagai T., and Tanaka M. Isolation andcharacterization of acid and pepsin-solubilised collagens from the skin of Brownstripe redsnapper (Lutjanus vitta). Food Chem.2005,93:475-484.
    Jongjareonrak A., Benjakul S., Visessanguan W. and Tanka M. Skin gelatin from bigeye snapperand brownstripe red snapper: chemical compositions and effect of microbial transglutaminaseon gel properties. Food Hydrocolloids.2006,20:1216-1222.
    Jung W.K., Karawita R., Heo S.J., Lee B.J., Kim S.K. and Jeon Y.J. Recovery of a novelCa-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone bypepsinolytic hydrolysis. Process Biochem.2006,41:2097-2100.
    Jung W.K., Park P.J., Byun H.G., Moon, S.H. and Kim, S.K. Preparation of hoki (Johniusbelengerii) bone oligophosphopeptide with a high affinity to calcium by carnivorous intestinecrude proteinase. Food Chem.2005,91:333–340.
    Kalkwarf H.J., Khoury J.C. and Lanphear B.P. Milk intake during childhood and adolescence,adult bone density, and osteoporotic fractures in US women. Am. J. Clin. Nutr.2003,77:257-265.
    Kalu D.N. Evaluation of the pathogenesis of skeletal changes in ovariectomized rats.Endocrinology.1984,115:507-512.
    Kanis J., Melton L. and C.C. The diagnosis of osteoporosis. J. Bone Miner. Res.1994,8:1137-1141.
    Keshawarz N.M. and Recker R.R. Expansion of the marrow cavity at the expanse of cortex inpostmenopausal osteoporosis. Metab. Bone Dis. Relat. Res.1984,5:223-228.
    Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology.2001,142:5050-5055.
    Kimura S. Wide distribution of the skin type I collagen α3chain in bony fish. Comp. Biochem.Physiol.1992,102B:255-260.
    Kimura S., Miyauchi Y., and Uchida N. Scale and bone type I collagens of carp (Cyprinus carpio).Comp. Biochem. Physiol.1991,99B:473-476.
    Kimura S. and Ohno Y. Fish type I collagen: Tissue specific existence of two molecular forms,(α1)2α2andα1α2α3, inAlaska pollack. Comp. Biochem. Physiol.1987,88B:409-413.
    Kittiphattanabawon P., Benjakul S., Visessanguan W., Nagai T., and Tanaka M. Characterisation ofacid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). FoodChem.2005,89:363-372.
    Kittiphattanabawon P., Benjakul S., Visessanguan W., Kishimura H., and Shahidi F. Isolation andCharacterisation of collagen from the skin of brownbanded bamboo shark (Chiloscylliumpunctatum). Food Chem.2010a,119:1519-1526.
    Kittiphattanabawon P., Benjakul S., Visessanguan W., and Shahidi F. Comparative study oncharacteristics of gelatin from the skins of brownbanded bamboo shark and blacktip shark asaffected by extraction conditions. Food Hydrocolloid.2010b,24:164-71.
    Kong X., Zhou H., Hua Y., et al. Preparation of wheat gluten hydrolysates with high opioidactivity. Eur. Food Res. Technol.2008,227:51-517.
    Kostenuik P.J. Osteoprotegerin and RANKL regulate bone resorption, density, geometry andstrength. Curr. Opin. Pharmacol.2005,5:618-625.
    Kostenuik P.J. and Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor ofbone resorption. Curr. Pharm. Des.2001,7:613-635.
    Krimm S. and Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides,and proteins. Adv. Protein Chem.1986,38:181-364.
    Kristinsson H.G. and Rasco B.A. Biochemical and functional properties of Atlantic salmon (Salmosalar) muscle proteins hydrolyzed with various alkaline proteases. J. Agric. Food Chem.2000,48:657-666.
    Kolodziejska I., Sikorski Z.E., and Niecikowska C. Parameters affecting the isolation of collagenfrom squid (Illex argentinus) skins. Food Chem.1999,66:152-157.
    Kuhn K. The collgen family-variations in the moleculer and supermolecular structure.Rheumatology.1986,10:29-69.
    Lacey D.L., Timms E., Tan H.L., Kelley M.J., Dunstan C.R. and Burgess T. et al. Osteoprotegerinligand is a cytokine that regulates osteoclast differentiation and activation. Cell.1998,93:165-176.
    Lacroix: The Internal Remodeling of Bones.1971, New York and London: Academic Press.
    Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophageT4. Nature.1970,227:680-685.
    Ledward D.A. Gelation of gelatin. In J.R.Mitchell, D.A.Ledward (Eds.), Functinal properties offood macromolecules.1986:233-289.
    Levenson D.I., Bockman R. A review of calcium preparation. Nutr. Rev.,1994,52(2):221-232.
    Li H., Liu B.L., Gao L.Z., and Chen H.L. Studies on bullfrog skin collagen. Food Chem.2004,84:65-69.
    Liu D.C., Zhang L.W. and Hu X.H. The functional properties of soybean protein products rich inselenium. China Oils.1994,19(3):3-7.
    Liu H.Y., Li D., and Guo S.D. Studies on collagen from the skin of channel catfish (Ictaluruspunctaus). Food Chem.2007,101:621-625.
    Liu J., Xu G., Yuan S. and Jiang P. The effect of macromolecules on foam stability in sodiumdodecyl sulfate/cetylpyridinium bromide mixtures. J. Disper. Sci. Technol.2003,24:779-787.
    Lobstein J. Traite D’anatomie Pathologique.1829, Paris and Strasbourg.
    Lynch M.P., Stein J.L., Stein G.S. and Lian J.B. The influence of type I collagen on thedevelopment and maintenance of the osteoblast phenotype in primary and passaged ratcalvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion,and extracellular matrix mineralization. Exp. Cell Res.1995,216(1):35-45.
    Maeda M., Tani S., Sano A. and Fujioka K. Microstructure and release characteristics of theminipellet, a collagen based drug delivery system for controlled release of protein drugs. J.Controlled. Rel.1999,62:313-324.
    Mark H.V., Aumailley M., Wick G., Fleischmajer R. and Timpl R. Immunochemistry, genuinesize and tissue localization of collagen Ⅵ. Eur. J. Biochem.1984,142:493-502.
    Mark K.V. Structure, biosynthesis and gene regulation of collagens in cartilage and bone. In:Dynamics of Bone and Cartilage Metabolism. Academic Press, Orlando.1999, pp:3-29.
    Matthews D.M. Intestinal absorption of peptides. Physiol.1975,55:537-608.
    Mayne R. Cartilage collagens-what is their function, and are they involved in articular disease?Arthritis Rheum.1989,32(3):241-246.
    Milch R.A. Infra-red spectra of deuterated gelatin sols. Nature.1964,202:84-85.
    Montero P., Femandez-Diaz M.D. and Gomez-Guillen M.C. Characterization on of gelatin gelsinduced by high pressure. Food Hydrocolloid.2002,16:197-205.
    Moreno M.C.M. and Cuadrado V.F. Enzymic hydrolysis of Vegetable proteins: mechanism andkinetics. Proc. Biochem.1993,28:481-490.
    Muyonga J.H., Cole C.G.B. and Duodu K.G. Characterisation of acid soluble collagen from skinsof young and adult Nile perch (Lates niloticus). Food Chem.2004,85:81-89.
    Muyonga J.H., Cole C.G.B. and Duodu K.G. Extraction and physicochemical characterisation ofNile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids.2004,18:581-592.
    Nagai T. and Suzuki N. Isolation of collagen from fish waste material-skin, bone and fins. FoodChem.2000,68:277-281.
    Nagai T. and Suzuki N. Preparation and Characterization of several fish bone collagens. J. FoodBiochem.2000,24(5):427-436.
    Nagai T., Suzuki N., and Nagashima T. Collagen from common minke whale (Balaenopteraacutorostrata) unesu. Food Chem.2008,111(2):296-301.
    Nalinanon S., Benjakul S., Visessanguan W., and Kishimura H. Use of pepsin for collagenextraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chem.2007,104(2):593-601.
    National health and medical research council (Australia), new Zealand, Ministry of Health.Australia, Dept. of Health and Ageing. Nutrient reference values for Australia and NewZealand: including recommended dietary intakes. Canberra, ACT: National Health andMedical Research Council;2006.
    NIH consensus development panel on osteoporosis prevention, Diagnosis, and Therapy. J AMA.2001,285:785-795.
    Nishi T., Hara H., Asano K. and Tomita F. The soybean beta-conglycinin beta51-63fragmentsuppresses appetite by stimulating cholecystokinin release in rats. J. Nutr.2003,133:2537-2542.
    Niyibizi C. and Eyre D.R. Bone type Ⅴ collagen: chain composition and location of a trypsincleavage site. Connect. Tissue Res.1989,20:247-250.
    Nordin B.E., Need A.G., Steurer T., Morris H.A., Chatterton B.E. and Horowitz M. Nutrition,osteoporosis, and aging. Ann. N Y Acad. Sci.1998,854:336-351.
    Norland R.E. Fish gelatin. In M.N. Voight and J.K. Botta (Eds.), Advances in fisheries technologyand biotechnology for increased profitability. Lancaster: Technomic Publishing Co.1990:325-333.
    Norman A.W. Intestinal calcium absorption: a vitamin-D hormone-mediated adaptive response.Am. J. Clin. Nutr.1990,51:290-300.
    Norton L.A. and Rovetti L.A. Calcium incorporation in cultured chondroblasts perturbed by anelectromagnetic field. J. Orthop. Res.1998,6(4):559-566.
    Payne K.J. and Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions:deconvolution of the amide I band for conformational studies. Biopolymers.1988,27:1749-1760.
    Paech K., Webb P. and Kuiper G.G. et al. Differential ligand activation of estrogen receptorsERalpha and ERbeta at AP1sites. Science.1999,277:1508-1510.
    Patel M.T., Kilara A. Studies on when protein concentrates.2. Foaming and emulsifying propertiesand their relationships with physicochemical properties. J. Dairy Sci.1990,73:2731-2740.
    Pearce K.N. and Kinsella J.E. Emulsifying properties of proteins: evaluation of a turbidimetrictechnique. J. Agri. Food Chem.1978,26:716-723.
    Pei X., Yang R., Zhang Z., Gao L., Wang J., Xu Y. et al. Marine collagen peptide isolated fromChum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6Jmice. Food Chem.2010,118:333-340.
    Piez K.A. Molecular and aggregate structure of the collagens. In: Pietz K.A., Reddi H.(Eds.),Extracellular Matrix Biology. Elsevier, New York.1984, pp:1-39.
    Plepis A.M.D.G., Goissis G., and Das-Gupta D.K. Dielectric and pyroelectric characterization ofanionic and native collagen. Polym. Eng. Sci.1996,36(24):2932-2938.
    Pomeranz Y. Functional properties of food components. San Diego: Academic Press, Inc.1991.
    Prince R.L. Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis.Endocr. Rev.1994,15:301-309.
    Prince R., Devine A., Dick I., Criddle A., Kerr D. and Kent N. et al. The effects of calciumsupplementation (milk powder or tablets) and exercise on bone density in postmenopausalwomen. J. Bone Miner. Res.1995,10:1068-1075.
    Ramachandran G.N. Stereochemistry of collagen. Int. J. Peptide Protein Res.1988,31:1-16.
    Recker R.R., Lapper J.M., Davies K.M. and Kimmel O.B. Changes in bone mass immediatelybefore menopause. J. Bone Miner. Res.1992,7:857-862.
    Recker R.R., Lapper J.M. and Davies K.M. et al. Characterization of perimenopausal bone loss: aprospective study. J. Bone Miner. Res.2000,15:1965-1973.
    Reddy G.K., and Enwemeka C.S. A simplified method for the analysis of hydroxyproline inbiological tissues. Clin. Biochem.1996,29:225-229.
    Regenstein J.M. and Zhou P. Collagen and gelatin from marine by-products. In: Maximising thevalue of marine by-products. Shahidi, F.(Ed.) Woodhead Publishing Limited, Cambridge.2007, pp.279-303.
    Renugopalakrishnan V., Chandarakasan G. and Moore S. et al. Bound water in collagen. Evidencefrom Fourier transform infrared and Fourier transform infrared photoacoustic spectroscopicstudy. Macromolecules.1989,22:4124-4142.
    Rest M.V. and Garrone R.. Collagen family of proteins, FASEB J.1991,5:2814-2823.
    Richard D. Effect of ovarian hormones on energy balance and brown adipose tissue thermogenesis.Am. J. Physiol.1986,250(2pt2):245-249.
    Rigby B.J. Amino-acid composition and thermal stability of the skin collagen of the Antarcticice-fish. Nature.1968,219:166-167.
    Riggs B.L., Hodgson S.F., Fallon W.M. et al. Effect of fluoride treatment on the fracture rate inpostmenopausal women with osteoporosis. N. Engl. J. Med.1990,322:802-809.
    Riggs B.L., O’Fallon W.M., Muhs J., O’Connor M.K., Kumar R. and Melton J. Long-term effectsof calcium supplementation on serum parathyroid hormone level, bone turnover, and boneloss in elderly women. J. Bone Miner. Res.1998,13:168-174.
    Roggia C., Gao Y., Cenci S. et al. Up-regulation of TNF-producing T cells in the bone marrow: akey mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Nati. Acad. Sci.USA.2001,98(24):13960-13965.
    Rossert J., Crombrugghe B.D. TypeⅠcollagen: structure, synthesis and regulation. In: BilezkianJ.P., Raisz L.G., Rodan G.A.(Eds.), Principles in Bone Biology, Academic Press,Orlando.2002, pp:189-210.
    Rosso R., Minisola S., Scarda A. et al. Temporal relationship between bone loss and increasedbone turnover: a longitudinal study following natural menopause. J. Endnerinol Invest.1995,18(9):723-728.
    Sadowska M., Kolodziejska I., and Niecikowska C. Isolation of collagen from the skin of Balticcod (Gadus morhua). Food Chem.2003,81:257-262.
    Sato K., Yoshinaka R., Sato M., and Shimizu Y. Isolation of native acid-soluble collagen from fishmuscle. Nippon Suisan Gakk.1987,53:1431-1436.
    Schubring R. DSC studies on deep frozen fishery products. Thermochim. Acta.1999,337:89-95.
    Schuppan D., Schmid M., Somasundaram R., Ackermann R., Ruehl M., Nakamura T., andRiecken E.O. Collagens in the liver extracellular matrix bind hepatocyte growth factor,Gastroenterology.1998,114:139-152.
    Satake T. Effect of pulsed electromagnetic fields (PEMF) on osteoblast-like cells. Alternations ofintracellular Ca2+. Kanagawa shigaku.1990,24(4):692-701.
    Schweitzer M.H., Zheng W., Organ C.L., Avci R., Suo Z. and Freimark L. et al. Biomolecularcharacterization and protein sequences of the campanian hadrosaur B. canadensis. Science.2009,324:626-631.
    Seeman E. Bone quality: the material and structural basis of bone strength. J. Bone Miner. Metab.2008,26:1-8.
    Sexson S.B. and Lehner J.T. Factors affecting hip fracture mortality. J. Orthop. Trauma.1988,1:298-302.
    Shahidi F., Xiao Q.H. and Synowiecki J. Production and characteristics of protein hydrolysatesfrom capelin (Mallotus villosus). Food Chem.1995,53:285-293.
    Shankar V.S., Simon B.J. and Bax C.M. et al. Effects of electromagnetic stimulation on thefunctional responsiveness of isolated rat osteoclasts. J. Cell Physiol.1998,176(3):537-544.
    Shea B., Wells G., Cranney A., Zytaruk N. and Robinson V. Meta-analyses of therapies forpostmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for theprevention of postmenopausal osteoporosis. Endocr. Rev.2002,23:552-529.
    Silverthorn D.U. Human Physiology: An Integrated Approach,2nded.2001. Prentice-Hall Inc,Upper Saddle River, New Jersey.
    Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M. and Chang M.S. et al. Osteoprotegerin: anovel secreted protein involved in the regulation of bone density. Cell.1997,89:309-319.
    Sionkowska A., Skopinska-Wisniewska J., and Wisniewski M. Collagen-synthetic polymerinteractions in solution and in thin films. J. Mol. Liq.2009,145:135-138.
    Soichi A., Maeda A., Matsumura M. et al. Enlarged-scale production of a low-phenylalaninepeptide substance as a foodstuff for patients with phenylketonuria. Agri. Biol. Chem.1986,50:2929-2931.
    Spadaro J.A. and Bergstrom W.H. In vivo and vitro effects of a pulsed electromagnetic field on netcalcium flux in rat calvarial bone. Calcif. Tissue Int.2002,70(6):496-502.
    Stevens A., and Lowe J. Histologie humaine. DeBoeck and Larcier.1997, Bruxelles.
    Straub D.A. Calcium supplementation in clinical practice: a review of forms, doses, andindications. Nutr. Clin. Pract.2007,22(3):286-296.
    Strauss G., Gibson S.M. Plant phenolics as cross-linkers of gelatin gels and gelatin-basedcoacervates for use as food ingredients. Food Hydrocolloids.2004,18:81-89.
    Su X.R., Sun B., Li Y.Y., and Hu Q.H. Characterization of acid-soluble collagen from thecoelomic wall of Sipunculida. Food Hydrocolloid.2009,23:2190-2194.
    Suda T., Takahashi N. and Udagawa N. et al. Modulation of osteoclast differentiation and functionby the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev.1999,20:345-357.
    Suetsuna K., Ukeda H., and Ochi H.. Isolation and characterization of free radical scavengingactivities peptides derived from casein. J. Nutr. Biochem.2000,11:128-131.
    Surewicz W.K. and Mantsch H.H. New insight into protein secondary structure from resolutionenhanced infrared spectra. Biochim. Biophys. Acta.1988,952:115-130.
    Surh J., Decker E.A. and McClements D.J. Properties and stability of oil-in water emulsionsstabilized by fish gelatin. Food Hydrocolloids,2006,20:596-606.
    Tang B.M., Eslick G.D., Nowson C., Smith C. and Bensoussan A. Use of calcium or calcium incombination with vitamin D supplementation to prevent fracture and bone loss in peopleaged50years and older: a meta-analysis. Lancet.2007,370:657-666.
    Taranta A., Brama M., Teti A., De luca V., Scandurra R., Spera G., Agnusdei D., Termine J.D. andMigliaccio S. The selective estrogen receptor modulator raloxifene regulates osteoclast andosteoblast activity in vitro. Bone.2002,30(2):368-376.
    Te Nigenhuis, K. Thermoreversible networks: viscoelastic properties and structure of gels. Adv.Polym. Sci.1997,130:1-267.
    Teitelbaum S.L. Bone resorption by osteoclasts. Science.2000,289:1504-1508.
    Turner R.T., Riggs B.L. and Spelsberg T.C. Skeletal effects of estrogen. Endocr. Rev.1994,15:275-300.
    Van der Meulen M.C., Jepsen K.J. and Mikic B. Understanding bone strength: size isn’teverything. Bone.2001,29:101-104.
    Verborgt O., Gibson G.J. and Schaffler M.B. Loss of osteocyte integrity in association withmicrodamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res.2000,15(1):60-67.
    Wakitani S., Kimura T., Hirooka A., Ochi T., Yoneda M., Yasui N., Owaki H., Ono K. Repair ofrabbit articular surfaces with allograft chodnrocytes embedded in collagen gel. J. Bone Jt.Surg.1989,71-B:74-80.
    Watanabe H., Yanagisawa T., Sasaki J. Cytoskeletal architecture of rat calvarial osteoclasts;microfilaments, and intermediate filaments, and nuclear matrix as demonstrated by detergentperfusion. Anat. Rec.1995,243(2):165-174.
    Wang L., An X.X., Yang F.M., Xin Z.H., and Hu Q.H. Isolation and characterization of collagensfrom the skin, scale and bone of deep-sea redfish (Sebastes mentella). Food Chem.2008,108:616-623.
    Wong B.R., Josien R., Lee S.Y., Sauter B., Li H.L., Steinman R.M. and Choi Y. TRANCE (tumornecrosis factor [TNF]-related activation-induced cytokine), a new TNF family memberpredominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med.1997,186:2075-2080.
    Wronski T.J., Schenek P.A., Cintron M. and Walsh C.C. Effect of body weight on osteopenia inovariectomized rats. Caicif. Tissue Int.1987,40:155-159.
    Xu E., Katayama S., Mine Y. Antioxidant activity of tryptic digests of hen egg yolk phosvitin. J.Sci. Food Agric.2007,87:2604-2608.
    Xu J., Tan J.W. and Huang L. et al. Cloning, sequencing, and functional characterization for the rathomologue of receptor activator of NF-kappa B ligand. J. Bone Miner. Res.2000,15:2178-2186.
    Yan M., Li B., Zhao X., Ren G., Zhuang Y., Hou H., Zhang X., Chen L., and Fan Y.Characterization of acid-soluble collagen from the skin of pacific cod (Gadusmacrocephalus). Food Chem.2008,107:1581-1586.
    Yang R.Y., Zhang Z.F., Pei X.R. et al. Immunomodulatory effects of marine oligopeptidepreparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chem.2009,113:464-470.
    Yasuda H., Shima N. and Nakagawa N. et al. Osteoclast differentiation factor is a ligand forosteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.Pro. Natl. Acad. Sci. USA.1998,95:3597-3602.
    Yasuda H., Shima N. and Nakagawa N. et al. Identity of osteoclastogenesis inhibitory factor(OCIF) and osteoprotegein (OPG): a mechanism by which OPG/OCIF inhibitsosteoclastogenesis in vitro. Endocrinology.1998,139:1329-1337.
    Yata M., Yoshida C., Fujisawa S., Mizuta S., and Yoshinaka R. Identification and characterizationof molecular species of collagen in fish skin. Food Chem. Toxicol.2001,66(2):247-251.
    Yaylaoglu M.B., Yildiz C. and Korkusuz F. et al. A novel osteochondral implant. Biomaterials.1999,20:1513-1520.
    Yoshihiro N., Shinzi T., Yasuhiro I., and Kunio S. Effect of transglutaminase on reconstructionand physicochemical properties of collagen gel from shark type I collagen.Biomacromoleculars.2001,2(1):105-110.
    Zaidi M., Datta H.K., Moonga B.S. and Maclntyre I. Evidence that the action of calcitonin on ratosteoclasts is mediated by two G proteins acting via separate post-receptor pathways. J.Endoctrinol.1990,26(3):473-481.
    Zayas J.F. Functionality of proteins in food. Berlin: Springer.1997.
    Zhai F., Yang X. and Ge K. Report of Chinese National Survey of Nutrition and Health in2002,Dietary Intake. Beijing: People’s Health Press;2006.
    Zhang M., Liu W., and Li G. Isolation and characterization of collagens from the skin of largefinlongbarbel catfish (Mystus macropterus). Food Chem.2009,115:826-831.
    Zhang Y., Liu W. T., Li G. Y., Shi B., Miao Y. Q., and Wu X. H. Isolation and partialcharacterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodonidella). Food Chem.2007,103:906-912.
    Zhang Z. K., Li G. Y., and Shi B. Physicochemical properties of collagen, gelatin and collagenhydrolysate derived from bovine limed split wastes. J. Soc. Leath. Tech. Ch.2006,90:23-28.
    Zhu K., Devine A., Suleska A., Tan C.Y., Toh C.Z. and Kerr D. et al. Adequacy and change innutrient and food intakes with aging in a seven-year cohort study in elderly women. J. Nutr.Health Aging.2010,14:723~729.
    Zhu K. and Prince R.L. Calcium and bone. Clin. Biochem.2012,45:936-942.
    Zittermann A., Bock P. and Drummer C. et al. Lactose does not enhance calcium bioavailability inlactose-tolerant healthy adults. Am. J. Clin. Nutr.,2000,71(4):931-936.
    保健食品检验与评价技术规范,2003版,中华人民共和国卫生部.
    陈亚非,陈金显,朱韶娟,徐文霞.酪蛋白磷酸肽促进人体钙吸收的作用研究.食品科学,2002,23:130-132.
    崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究:[博士学位论文].青岛:中国海洋大学,2007.
    戴伟,孙宇立,郑勇英,洪新宇,肖萍,侯明.增加骨密度类保健食品功能评价方案联合应用的探讨.环境与职业医学.2010,27(6):360-362.
    邓红文,刘耀中.骨质疏松学前言.北京:高等教育出版社,2005.
    杜林,李亚娜.生物活性肽的功能与制备研究进展.中国食物与营养,2005,8:18-21.
    耿秀芳,李耀辉,张义军,李桂芝,王守训,孙晓丽,任维栋.猪骨胶原蛋白降压成分的提取与生物活性的研究.西安医科大学学报,2001,22(5):418-421.
    公维菊,李国英.胶原交联改性的研究现状.皮革化工,2007,24(5):21-30.
    郭昱,吴梧桐,巫冠中.鲨肝肽对小鼠免疫性肝损伤的保护作用及免疫调节作用.中国新药杂志.2001,10(1):29-31.
    侯虎.狭鳕免疫活性肽的可控制备及其免疫活性研究:[博士学位论文].青岛:中国海洋大学,2011.
    黄冬香,李林,于新.罗非鱼蛋白自溶水解条件优化.西南大学学报(自然科学版),2009,31(5):93-97.
    黄栩林,庞广昌,杨静静. Trpi免疫调节功能的研究.食品科学,2008,29(4):381-385.
    黄治本,顾其胜.新型交联剂京尼平在生物医学中的应用与发展.上海生物医学工程,2003,24(1):21-25.
    霍健聪,邓尚贵,童国忠.鳕鱼骨钙片的制备及其生物利用.水产学报.2010,3(4):382-388.
    贾晓波,庞会从,赵瑞芹. L-羟脯氨酸用于减肥的实验研究.中国药科大学学报,2003,34(3):276-278.
    蒋挺大.胶原与胶原蛋白.北京:化学工业出版社,2006.
    蒋与刚.锌与应激反应.微量元素与健康研究,1995,12(1):56.
    李勇.肽临床营养学.北京:北京大学医学出版社,2012.
    黎观红,晏向华.食物蛋白源生物活性肽--基础与应用.北京:化学工业出版社,2010.
    廖颖敏,冯祖德,张其清.胶原变性对骨的变形和断裂的影响.国外医学生物医学工程分册,2004,27(4):224-228.
    刘小玲,许时婴.从鸡骨中制取明胶的加工工艺.食品与发酵工业,2004,30(5):48-53.
    刘晓芳,张沪生,王昭平,卓婕.慢性阻塞性肺气肿患者骨代谢改变的观察.中国骨质疏松杂志.1997,3(2):42-44.
    刘晓萍,王玉贞,韩彦弢,于业军,王跃军,王春波.扇贝多肽在体外对免疫细胞活性的影响及其抗紫外线的氧化损失作用.海洋与湖沼.2001,32(4):67-72.
    鲁军,陈海华.狭鳕鱼皮明胶提取工艺的研究.粮油加工,2009,11:141-142.
    罗玉君,王小云.绝经后骨质疏松症的西医诊断技术进展和中西医治疗现状.第九次全国中医妇科学术大会论文集,2009.
    吕立力.瘤胃细菌体外发酵面筋蛋白产物及改善草鸡产蛋性能及产阿片肽菌株筛选的研究:[硕士学位论文].扬州:扬州大学,2005.
    吕渭清.钙制剂的选择.中国药师,2000,3(2):103-104.
    马克昌,冯坤,朱太咏.骨生理学.郑州:河南医科大学出版社,2000.
    孟飞.沙蛰组织构造和物性学特性研究:[硕士学位论文].青岛:中国海洋大学,2010.
    曲剑英,管境.高温灰化消解-火焰原子吸收法测定骨钙制品中钙含量.职业与健康,2002,18(4):41.
    邵明栓,陶敏,向蔚,孟昌伟,林琳,叶应旺,姜绍通,陆剑锋.斑点叉尾鮰鱼骨脱脂及其制备CMC活性钙的工艺优化.食品科学,2010,31(20):111-115.
    宋文蔚.骨质疏松症的诊断和治疗.浙江省中西医结合学会第二届老年病专业委员会第一次年会学术论文集,2007.
    苏蕾,亓俊忠.钙制品的研究现状及展望.山东食品科技,2001,4:31-33.
    汤克勇.胶原物理与化学.科学出版社,2012.
    陶天遵,陶树清,吕嵩.维生素K对去卵巢大鼠骨质疏松防治作用的研究.中国骨质疏松杂志,1996,2:27-29.
    王建中,邓仁芳,朱瑞龙.淡水鱼鱼头与鱼骨的利用.食品科学.1994,15(2):47-50.
    王众,张志文.钙与人体机能.生物学通报,2001,36(6):14-17.
    吴燕燕,李来好,林洪.罗非鱼骨制备CMC活性钙的工艺及生物利用的研究.食品科学.2005,26(2):114-117.
    谢详,王婷婷,马良,等.巴沙鱼皮明胶提取工艺研究.西南师范大学学报(自然科学版),2010,35(2):185-189.
    谢肇.仿生脉冲电磁场治疗绝经后骨质疏松症的实验研究:[博士学位论文].重庆:第三军医大学,2004.
    徐勤虎,王振铎.人体缺钙与钙营养强化剂的选用.山西食品工业,1998,4:40-43.
    徐涛,张建新,兰漫野,吴树勋. L-羟脯氨酸的减肥作用.河北医药杂志,1995,17(1):27-28.
    严敏.原发性骨质疏松症指南解读.第三届浙江省疼痛学术研讨会资料汇编,2010.
    闫明艳.狭鳕鱼皮胶原蛋白结构和物理特性研究:[博士学位论文].青岛:中国海洋大学,2009.
    余海,廖小宜,周志瑜.鼠尾肌腱胶原蛋白提取及凝胶的制备.海南医学,2000,11(3):64-65.
    于洋,方旭波.罗非鱼皮明胶的制备及性质研究.中国食物与营养,2009,1:26-29.
    张其清,王彭延,朱明华,朱太文,辛学军,王福君.胶原材料的生物学评价.生物医学工程学杂志,1989,6(3):216-218.
    张铁华,殷涌光,刘静波,陈玉江,叶海青,王海波.高F值寡肽抗疲劳作用的研究及其饮料的开发.食品科学,2007,28(5):308-312.
    朱碧英,毛秀珍.鲢鱼蛋白酶解肽分子组成及其降血脂作用的初步研究.营养学报,2005,27(5):422-424.
    中国营养学会.中国居民膳食营养素参考摄入量.北京:中国轻工业出版社,2000:193.
    庄斌.由氯化钙制备纳米酸钙研究.化学矿物与加工,2007,2:45-47.
    庄永亮,赵雪,林琳,李八方.复合酶制备鳕鱼皮梯级胶原肽的初步研究.食品研究与开发,2009,10:15-18.
    庄永亮.海蜇胶原蛋白理化性质及其胶原肽的护肤活性研究:[博士学位论文].青岛:中国海洋大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700