具有混沌局部搜索策略的粒子群优化算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何改进粒子群优化(Particle swarm optimization, PSO)算法,并将其用于解决现实世界的各类优化问题已成为当前的研究热点。在众多的改进方法中,一种重要的形式就是混沌PSO算法。本文对混沌PSO算法进行了定义和分类,分析了各类混沌PSO算法的特点,指出了混沌局部搜索的PSO算法是各类混沌PSO算法中最为有效的一种方法。目前,研究者们虽然提出了很多形式的混沌局部搜索算法,但是这些算法都有一个共同的特点,即每次混沌搜索时,被指定的搜索解向量的每一维都会改变。当指定的搜索解向量维数较多时,这种每维改变的方式很难实现精细搜索,为此提出了一种单维的混沌局部搜索算法。基于单维混沌局部搜索算法、PSO算法以及其它一些策略,提出了4种混合算法以解决不同类型的优化问题,具体如下:
     1、提出了一种单维混沌局部搜索和多样性维持策略的混沌PSO算法用于解决无约束的单目标连续函数优化问题,其中采用单维的混沌局部搜索算法以增强PSO算法的局部搜索能力,采用混沌序列替换PSO算法的某些参数以增强PSO算法的全局搜索能力。同时,当混合算法陷入早熟收敛时,采用多样度维持策略改进PSO算法的多样性。提出的算法与其它三种混沌PSO算法分别对10维和30维的8个经典测试函数进行了50次求解,仿真实验结果表明了提出的算法在两种情况下所获最优解的平均误差精度和标准差均好于其它三种算法。
     2、提出了一种混沌全局搜索和局部搜索相结合的PSO算法用于解决整数规划问题(属于约束的单目标离散函数优化问题)和混合整数规划问题(属于约束的同时包含离散变量和连续变量的单目标函数优化问题),其中混沌全局搜索算法用于增强PSO算法的全局搜索能力,混沌局部搜索算法用于增强PSO算法的局部搜索能力,这种混沌局部搜索算法与其它学者提出混沌局部搜索算法最本质的区别在于:前者能同时执行多维和单维的混沌局部搜索,后者只能执行多维的混沌局部搜索。14个整数和混合整数问题求解结果表明:提出的算法对整数规划问题能获得100%的成功率,而对混合整数规划问题不能获得100%的成功率。
     3、考虑到提出的混沌全局搜索和局部搜索相结合的PSO算法解决混合整数规划问题时不能获得100%的成功率,提出一种融合差分进化、混沌局部搜索和PSO的混合算法用于解决一类混合整数规划问题,即可靠性冗余分配问题,其中引入差分进化算法以间接增强PSO算法的全局搜索能力,混沌局部搜索算法也是采用多维和单维结合的形式。实验比较了新算法与其它6种改进的元启发式算法对4个典型系统的可靠性冗余分配问题的求解情况,结果表明了新算法比其它6种算法中最好的算法能获得更好的或同样的系统可靠性。此外,针对已有的算法性能评价指标MPI的不足,提出了一个新的性能指标SR, SR对新算法与其它6种算法的评价结果表明了新算法是所有算法中最好的一种算法。
     4、提出了一种基于混沌局部搜索的多目标PSO算法用于解决无约束的多目标连续函数优化问题,其中采用个体档案文件和全局档案文件分别保存个体非支配解和全局非支配解,且当个体或全局档案文件超过最大容量时为使非支配解均匀分布在解空间,采用基于相邻个体间距离之和最小删除法处理多余的非支配解。同时,为找到更多或更为接近的Pareto最优解,每代采用混沌局部搜索算法对所有粒子产生的支配解(相对于全局档案文件中非支配解)和全局档案文件中的所有非支配解进行搜索。实验对提出的算法与其它2种多目标PSO算法在解决9个基本的多目标函数优化问题时进行了比较,结果表明:在最终代距和间距性能指标的评价下,提出的算法在每个问题上都好于其它两种算法。
The researches on improved types of particle swarm optimization (PSO) to solve all kinds of optimization problems in real life have become hot topics. Chaos PSO is an important one of all improved types of PSO. In this paper, the definition of chaos PSO is given, and the chaos PSO algorithms are classified, and the characteristics of chaos PSO algorithms are analyzed. In all of chaos PSO algorithms, PSO with chaotic local search is the most effective method. Nowadays, although many chaotic local search algorithms are proposed, these proposed algorithms have the same characteristic, namely, each dimension of the specified solution vector is changed during one search. However, this way can't perform refine search when the dimensions of the specified solution vector are many, a single dimensional chaotic local search is proposed to solve this problem. Based on the single dimensional chaotic local search, PSO and some other strategies, the following four algorithms are proposed to solve different types of optimization problems.
     1) A kind of chaos PSO with single dimensional chaotic local search and diversity maintenance strategy is proposed to solve single objective continuous function optimization problems without constraints, where single dimensional chaotic local search is employed to increase the local search ability of PSO, and chaotic sequences are used to substitute some parameters of PSO to improve the global search ability of PSO. In addition, the diversity maintenance strategy is introduced into the proposed algorithm to prevent from premature convergence. Ten dimensions and thirty dimensions of eight benchmark functions are solved by the proposed algorithm and the other three chaos PSO algorithms in50times, respectively. The simulation results show that for each function, the average error accuracy and standard deviation of the optimal solutions obtained by proposed algorithm in both cases are better than by the other three algorithms.
     2) A new algorithm which hybrids PSO with chaotic global and local searches is proposed to solve integer programming problems (which belong to single objective function optimization problems with constraints, where all the decision variables are discrete) and mixed integer programming problems (which belong to single objective function optimization problems with constraints, where some decision variables are discrete, and others are continuous). In the new algorithm, the chaotic global search is applied to increase the global search ability of PSO, and the chaotic local search is used to improve the local search ability of PSO. The most important difference between the chaotic local search in the proposed algorithm and other chaotic local search algorithms is that the former can simultaneously perform multi-dimensional and single dimensional chaotic local search, but the latter can only perform multi-dimensional chaotic local search. The simulation results indicate that among fourteen problems, the proposed algorithm can obtain100%success in solving integer problems, but can't obtain100%success in solving mixed integer problems.
     3) Because the proposed algorithm, PSO combined with chaotic global and local searches, can't obtain100%success in solving mixed integer problems, a novel algorithm is proposed to solve a class of mixed integer programming problems, namely, reliability-redundancy allocation problem. The novel algorithm is a combination of differential evolution, chaotic local search and PSO, where differential evolution is used to indirectly increase global search ability of PSO, and the chaotic local search is a combination of a multi-dimensional one and a single dimensional one. The experiments compared the novel algorithm with the other six improved meta-heuristic algorithms in solving four typical system reliability-redundancy allocation problems, and the results show that the novel algorithm can obtain the best system reliabilities or the same system reliabilities as the best one of six algorithms. In addition, considering the deficiency of the performance evaluation index MPI, a new performance evaluation index SR is proposed. The new algorithm and the other six algorithms are evaluated by SR, and the results show that the new algorithm is the best one of all compared algorithms.
     4) A multi-objective PSO algorithm based on chaotic local search is proposed to solve the multi-objective continuous function optimization problems without constraints, where individual archive and global archive save individual non-dominated solutions and global non-dominated solutions, respectively. In order to make non-dominated solutions uniformly distribute in the solutions space, when the individual or global archive exceeds the maximum capacity, excessive non-dominated solutions will be deleted by the smallest value of the sum of the adjacent individuals distances. Also, in order to find more or closer to the Pareto optimal solutions, dominated solutions (with respect to non-dominated solutions in global archive) generated by all particles and all non-dominated solutions in global archive are performed by chaotic local search in each generation. The proposed algorithm was compared with the other two multi-objective PSO algorithms in solving nine basic multi-objective function optimization problems, and the results indicate that for each problem, the proposed algorithm is better than the other two algorithms using two performance evaluation indexes (final generational distance and spacing).
引文
[1]Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of the IEEE International Conference on Neural Networks. Perth:IEEE Press,1995:1942-1948.
    [2]Panigrahi B K, Pandi V R, Das S. Adaptive particle swarm optimization approach for static and dynamic economic load dispatch[J]. Energy Conversion and Management, 2008,49(6):1407-1415.
    [3]徐刚,杨玉群,黄先玖.一种非线性权重的自适应粒子群优化算法[J].计算机工程与应用,2010,46(35):49-51.
    [4]Sabat S L, Coelho L S, Abraham A. MESFET DC model parameter extraction using Quantum Particle Swarm Optimization[J]. Microelectronics Reliability,2009,49(6): 660-666.
    [5]Naka S, Genji T, Yura T, et al. A hybrid particle swarm optimization for distribution state estimation[J]. IEEE Transactions on Power Systems,2003,18(1):60-68.
    [6]高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15.
    [7]Meng Hongji, Zheng Peng, Wu Rongyang, et al. A hybrid particle swarm algorithm with embedded chaotic search[C]. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. Singapore:IEEE Press,2004:367-371.
    [8]Jiang Chuanwen, Bompard E. A self-adaptive chaotic particle swarm algorithm for short term hydroelectric system scheduling in deregulated environment[J]. Energy Conversion and Management,2005, (46):2689-2696.
    [9]Jiang Chuanwen, Bompard E. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization[J], Mathematics and Computers in Simulation,2005,68(1):57-65.
    [10]Coelho L S, Mariani V C. A novel chaotic particle swarm optimization approach using Henon map and implicit filtering local search for economic load dispatch[J]. Chaos, Solitons Fractals,2009,39(2):510-518.
    [11]Coelho L S, Herrera B M. Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear yo-yo motion system, IEEE Transactions on Industrial Electronics,2007,54(6):3234-3245.
    [12]Wang Shuzhou, Meng Bo. Chaotic particle swarm optimization algorithm for support vector machine [C]. Proceedings of the IEEE International Conference on Bio-Inspired Computing:Theories and Applications. Changsha:IEEE Press,2010: 1654-1657.
    [13]Cheng Minyuan, Huang Kuoyu, Chen Hungming. Dynamic guiding particle swarm optimization with embedded chaotic search for solving multidimensional problems [J]. Optimization Letters,2012,6(4):719-729.
    [14]Xiang Tao, Liao Xiaofeng, Wong Kwok-wo. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map[J]. Applied Mathematics and Computation,2007,190(2):1637-1645.
    [15]刘长平,叶春明.基于逻辑自映射的变尺度混沌粒子群优化算法[J].计算机应用研究,2011,28(8):2825-2827.
    [16]蒙文川,邱家驹.电力系统经济负荷分配的混沌粒子群优化算法[J].电力系统及其自动化学报,2007,19(2):114-119.
    [17]赵志刚,常成.自适应混沌粒子群优化算法[J].计算机工程,2011,37(15):128-130.
    [18]刘玲,钟伟民,钱锋.改进的混沌粒子群优化算法[J].华东理工大学学报:自然科学版,2010,36(2):267-272.
    [19]Chuang L Y, Tsai S W, Yang Chenghong. Chaotic catfish particle swarm optimization for solving global numerical optimization problems [J]. Applied Mathematics and Computation,2011,217(16):6900-6916.
    [20]Gandomi A H, Yun Gunjin, Yang Xinshe, et al. Chaos-enhanced accelerated particle swarm optimization[J]. Communications in Nonlinear Science and Numerical Simulation,2003,18(2):327-340.
    [21]裴胜玉,周永权.一种基于混沌变异的多目标粒子群优化算法[J].山东大学学报:理学版,2010,45(7):18-23.
    [22]Ren Bingqun, Zhong Weizhou. Multi-objective optimization using chaos based PSO[J]. Information Technology Journal,2011,10(10):1908-1916.
    [23]蔡延光,魏明.一种新型自适应混沌粒子群算法在联盟运输调度问题中的研究[J].系统工程,2008,26(8):32-36.
    [24]李娅,李丹,王东,等.改进的混沌粒子群算法求解车辆路径问题[J].计算机应用研究,2011,28(11):4107-4110.
    [25]王铁君,邬月春.基于混沌粒子群算法的物流配送路径优化[J].计算机工程与应用,2011,47(29):218-221.
    [26]高伟,王建忠,杨耿杰.电力系统经济负荷分配的改进混沌粒子群算法[J].闽江学院学报,2010,31(2):52-56.
    [27]Coelho L S, Lee C S. Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches [J]. Electrical Power and Energy Systems,2008,30(5):297-307.
    [28]Wang Ying, Zhou Jianzhong, Lu Youlin, et al. Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects[J]. Expert Systems with Applications,2011,38(11):14231-14237.
    [29]Wang Ying, Zhou Jianzhong, Qin Hui, et al. Improved chaotic particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects[J]. Energy Conversion and Management 2010,51(12):2893-2900.
    [30]Cai Jiejin, Ma Xiaoqian, Li Qiong, et al. A multi-objective chaotic particle swarm optimization for environmental/economic dispatch[J]. Energy Conversion and Management,2009,50(5):1318-1325.
    [31]Cai Jiejin, Ma Xiaoqian, Li Lixiang. Chaotic particle swarm optimization for economic dispatch considering the generator constraints[J]. Energy Conversion and Management,2007,48(2):645-653.
    [32]Zhang Tao, Cai Jinding. A new chaotic PSO with dynamic inertia weight for economic dispatch problem[C]. Proceedings of the IEEE International Conference on Sustainable Power Generation and Supply. Nanjing:IEEE Press,2009:1-6.
    [33]Coelho L S, Mariani V C. Economic dispatch optimization using hybrid chaotic particle swarm optimizer[J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Montreal:IEEE Press,2007:1963-1968.
    [34]钱伟懿,宁必锋.基于混沌的聚类粒子群优化算法[J].计算机工程与设计,2011,32(2):685-688.
    [35]Toreini E, Mehrnejad M. A novel method in fuzzy data clustering based on chaotic PSO[C]. Proceedings of the IEEE International Conference on Internet Technology and Secured Transactions. Abu Dhabi:IEEE Press,2010:335-340.
    [36]童亚拉.结合链接结构聚类的混沌粒子群网页分类规则抽取[J].华中师范大学学报:自然科学版,2008,42(4):535-538.
    [37]刘淳安,何俊红.基于自适应混沌变异的k-均值聚类粒子群算法[J].科学技术与工程,2009,9(5):1150-1154.
    [38]沈明明,毛力.融合K-调和均值的混沌粒子群聚类算法[J].计算机工程与应用,2011,47(27):144-146.
    [39]Zhang Jie, Wang Yuping, Feng Junhong. A novel hybrid clustering algorithms with chaotic particle swarm optimization[J]. Journal of Computational Information Systems,2012,8(21):8827-8834.
    [40]Chuang L Y, Hsiao C J, Yang Chenghong. Chaotic particle swarm optimization for data clustering[J]. Expert Systems with Applications,2011,38(12):14555-14563.
    [41]蒋艳会,李峰.基于混沌粒子群算法的多阈值图像分割[J].计算机工程与应用,2010,46(10):175-183.
    [42]吴一全,纪守新.基于混沌粒子群优化的图像Contourlet阈值去噪[J].光子学报,2010,39(9):1645-1651.
    [43]Vahdati G, Yaghoobi M. Fractal image compression based on spatial correlation and chaotic particle swarm optimization[C]. Proceedings of the IEEE International Conference on Hybrid Intelligent Systems. Shenyang:IEEE Press,2010:131-134.
    [44]Chandramouli K, Izquierdo E. Image classification using chaotic particle swarm optimization[C]. Proceedings of the IEEE International Conference on Image Processing. Atlanta:IEEE Press,2006:3001-3004.
    [45]杨延西,刘丁,辛菁.基于混沌粒子群优化的图像相关匹配算法研究[J].电子与信息学报,2008,30(3):529-532.
    [46]吴超,吴一全.基于混沌粒子群优化投影寻踪的高光谱图像目标检测[J].光学学报,2011,31(12):1-7.
    [47]仝瑞阳,刘刚森.基于混沌粒子群优化算法的CNN图像边缘提取方法[J].河南大学学报:自然科学版,2012,42(3):209-314.
    [48]Leng Keping, Ren Ping, Gao Liqun. A novel approach to integrated preventive maintenance planning and production scheduling for a single machine using the chaotic particle swarm optimization algorithm[C]. Proceedings of the Sixth World Congress on Intelligent Control and Automation. Dalian:IEEE Press,2006: 7816-7820.
    [49]高立群,任苹,李楠.基于混沌粒子群算法的高速旅客列车优化调度[J].东北大学学报:自然科学版,2007,28(2):176-179.
    [50]纪昌明,吴月秋,张验科.混沌粒子群优化算法在水库防洪优化调度中的应用[J].华北电力大学学报,2008,35(6):103-107.
    [51]李鹏,车阿大.自动化生产单元调度的混沌粒子群算法[J].工业工程,2009,12(6):90-95.
    [52]He Yaoyao, Zhou Jianzhong, Xiang Xiuqiao, et al. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling[J]. Chaos, Solitons and Fractals,2009,42(5):3169-3176.
    [53]Tao Qian, Chang Huiyou, Yi Yang. A rotary chaotic PSO algorithm for trustworthy scheduling of a grid workflow[J]. Computers & Operations Research,2011,38(5): 824-836.
    [54]石欣.基于混沌粒子群算法的同步发电机最优调速控制系统[D].天津:天津大学,2007.
    [55]王亚涛.混沌粒子群优化算法在热工控制过程中的应用[D].保定:华北电力大学,2009.
    [56]盛煜翔.基于混沌粒子群算法的闪蒸过程优化研究[D].杭州:浙江工业大学,2009.
    [57]简华阳.基于自适应混沌粒子群算法的电力系统稳定器参数优化[D].重庆:重庆大学,2011.
    [58]Zhao Qiang, Yan Shaoze. Collision-free path planning for mobile robots using chaotic particle swarm optimization[C]. Proceedings of the first International Conference on Natural Computation. Changsha:Springer Press,2005:632-635.
    [59]Coelho L S, Coelho A A R. Model-free adaptive control optimization using a chaotic particle swarm approach[J]. Chaos, Solitons and Fractals,2009,41(4):2001-2009.
    [60]Tang Xianlun, Zhuang Ling, Cai Jun. Multi-fault classification based on support vector machine trained by chaos particle swarm optimization[J]. Knowledge-Based Systems,2010,23(5):486-490.
    [61]Wu Qi. A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization[J]. Expert Systems with Applications,2010, 37(3):2388-2394.
    [62]杨琳.基于自适应混沌粒子群算法的多目标无功优化研究[D].吉林:东北电力大学,2011.
    [63]Zhang Hao, Shen Jihong, Zhang Tienan, et al. An improved chaotic particle swarm optimization and its application in investment[C]. Proceedings of International Symposium on Computational Intelligence and Design. Wuhan:IEEE Press,2008: 124-128.
    [64]Yuan Zhenglei, Yang Liliang, WuYaohua, et al. Chaotic particle swarm optimization algorithm for traveling salesman problem[C]. Proceedings of the IEEE International Conference on Automation and Logistics. Jinan:IEEE Press,2008:1121-1124.
    [65]Zhao Zhongkai, Gao Hongyuan, Liu Yanqiong. Chaotic particle swarm optimization for FIR filter design[C]. Proceedings of International Conference on Electrical and Control Engineering. Yichang:IEEE Press,2011:2058-2061.
    [66]Sheng Siqing, Cao Yun, Yao Yu. Distribution network reconfiguration based on particle swarm optimization and chaos searching[C]. Proceedings of Conference on Power and Energy Engineering. Wuhan:IEEE Press,2009:1-4.
    [67]Lu Mingshou, Shin Dongil, Kang H I. Modelling of biochemical systems using the particle swarm optimization and chaotic theory [C]. Proceedings of IEEE International Conference on Intelligent Computing and Intelligent Systems. Shanghai: IEEE Press,2009:420-424.
    [68]Meng Xiangyin, Hu Yulong, Hou Yuanhang, et al. The analysis of chaotic particle swarm optimization and the application in preliminary design of ship[C]. Proceedings of the IEEE International Conference on Mechatronics and Automation. Xian:IEEE Press,2010:179-184.
    [69]王毅,赵建军,冯巍巍,等.基于自适应混沌粒子群优化的防空目标分配[J].计算机工程,2012,38(20):144-137.
    [70]FengYixiong, Zheng Bing, Li Zhongkai. Exploratory study of sorting particle swarm optimizer for multiobjective design optimization[J]. Mathematical and Computer Modelling,2010,52(11-12):1966-1975.
    [71]Xu Gang. An adaptive parameter tuning of particle swarm optimization algorithm[J]. Applied Mathematics and Computation,2013,219(9):4560-4569.
    [72]方伟,孙俊,须文波.一种多样性控制的粒子群优化算法[J].控制与决策,2008,23(8):863-868.
    [73]邹毅,朱晓萍,王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,19(11):18-22.
    [74]Liu Bo, Wang Ling, Jin Yihui, et al. Improved particle swarm optimization combined with chaos[J]. Chaos, Solitons Fractals,2005,25(5):1261-1271.
    [75]Yoshida T, Mori H, Shigematsu H. Analytic study of chaos of the Tent map:band structures, power spectra, and critical behaviors [J]. Journal of Statistical Physics, 1983,31(2):279-308.
    [76]程志刚,张立庆,李小林.基于Tent映射的混沌混合粒子群优化算法[J].系统工程与电子技术,2007,29(1):103-106.
    [77]Azamimi A, Uwate Y, Nishio Y. An analysis of chaotic noise injected to backpropagation algorithm in feedforward neural network[C]. Proceedings of International Workshop on Vision, Communications and Circuits. Xi'an:IEEE Press, 2008:70-73.
    [78]Hong Weichiang. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model [J]. Energy Conversion and Management, 2009,50(1):105-117.
    [79]Wang Jianzhou, Zhu Suling, Zhao Weigang, et al. Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm[J]. Expert Systems with Applications,2011,38(7):8151-8158.
    [80]Niknam T, Meymand H Z, Mojarrad H D. An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants[J]. Energy,2011,36(1):119-132.
    [81]Li Yanling, Shen Yi. Fuzzy c-means cluster segmentation algorithm based on hybridized particle swarm optimization[C]. Proceedings of International Conference on Bio-Inspired Computing:Theories and Applications (BIC-TA). Changsha:IEEE Press,2010:811-815.
    [82]Li Yanling, Li Gang. Mean shift segmentation method based on hybridized particle swarm optimization[C]. Proceedings of 7th International Symposium on Neural Networks. Shanghai:Springer Press,2010:200-207.
    [83]Alatas B, Akin E, Ozer A B. Chaos embedded particle swarm optimization algorithms [J]. Chaos, Solitons and Fractals,2009,40(4):1715-1734.
    [84]Riget J, Vesterstr(?)m J S. A diversity-guided particle swarm optimizer-the ARPSO[R]. Denmark:Department of Computer Science, University of Aarhus,2002.
    [85]Xiang Tao, Wong K, Liao Xiaofeng. A novel particle swarm optimizer with time-delay [J]. Applied Mathematics and Computation,2007,186(1):789-793.
    [86]Olorunda O, Engelbrecht A P. Measuring exploration/exploitation in particle swarms using swarm diversity [C]. Proceedings of IEEE Congress on Evolutionary Computation. Hongkong:IEEE Press,2008:1128-1134.
    [87]Mezura-Montes E, Velazquez-Reyes J, Coello, C A C. A comparative study of differential evolution variants for global optimization[C]. Proceedings of the 8th annual conference on Genetic evolutionary computation. Seattle:ACM Press,2006: 485-492.
    [88]吴亮红,王耀南,陈正龙.求解混合整数非线性规划问题的改进差分进化算法[J].小型微型计算机系统,2007,28(4):666-669.
    [89]Crema A. The multiparametric 0-1-integer linear programming problem:A unified approach[J]. European Journal of Operational Research,2002,139(3):511-520.
    [90]Alves M J, Climaco J. Using cutting planes in an interactive reference point approach for multiobjective integer linear programming problems[J]. European Journal of Operational Research,1999,117(3):565-577.
    [91]Emam O E. A fuzzy approach for bi-level integer non-linear programming problem[J]. Applied Mathematics and Computation,2006,172(1):62-71.
    [92]ElShafei M M K. Interactive stability of multiobjective integer nonlinear programming problems[J]. Applied Mathematics and Computation,2006,176(1): 230-236.
    [93]Acevedo J, Pistikopoulos E N. An algorithm for multiparametric mixed-integer linear programming problems[J]. Operations Research Letters,1999,24(3):139-148.
    [94]Wang Lizhi. Cutting plane algorithms for the inverse mixed integer linear programming problem[J]. Operations Research Letters,2009,37(2):114-116.
    [95]Leyffer S. Deterministic Methods for Mixed Integer Nonlinear Programming. Dundee: University of Dundee,1993.
    [96]达林.切平面在混合整数非线性规划中的应用.北京:北京交通大学,2009.
    [97]Kelley J E. The cutting-plane method for solving convex programs[J]. Journal of the Society for Industrial and Applied Mathematics,1960,8(4):703-712.
    [98]Westerlund T, Pettersson F. An extended cutting plane method for solving convex MINLP problems[J]. Computers & Chemical Engineering,1995,19(s1):s131-sl36.
    [99]Still C, Westerlund T. Solving convex MINLP optimization problems using a sequential cutting plane algorithm [J]. Computational Optimization and Applications, 2006,34(1):63-83.
    [100]Zhu Yushan, Kuno T. A disjunctive cutting-plane-based branch-and-cut algorithm for 0-1 mixed-integer convex nonlinear programs[J]. Industrial & Engineering Chemistry Research,2006,45(1):187-196.
    [101]Land A H, Doig AG. An automatic method of solving discrete programming problems[J]. Econometrica:Journal of the Econometric Society,1960,28(3): 497-520.
    [102]D'Ambrosio C, Lodi A. Mixed integer nonlinear programming tools:a practical overview[J]. A Quarterly Journal of Operations Research,2011,9(4):329-349.
    [103]Juan M. Zamoraa, Ignacio E. Grossmanna, A comprehensive global optimization approach for the synthesis of heat exchanger networks with no stream splits [J]. Computers & Chemical Engineering,1997,21(s1):s65-s70.
    [104]Kihnc M, Linderoth J, Luedtke J, et al. Strong branching inequalities for convex mixed integer nonlinear programs[R]. Madison:Computer Sciences Department, University of Wisconsin-Madison,2011.
    [105]Bonami P, Lee J, Leyffer S, et al. More branch-and-bound experiments in convex nonlinear integer programming optimization [EB/OL]. Washington:Office of Science, U.S. Department of Energy,2011-10-5 [2013-1-11]. Online: http://www.optimization-online.org/DB_HTML/2011/09/3191.html.
    [106]Duran M A, Grossmann I E. An outer-approximation algorithm for a class of mixed-integer nonlinear programs[J]. Mathematical programming,1986,36(3): 307-339.
    [107]Varvarezos D K, Grossmann I E, Biegler L T. An outer-approximation method for multiperiod design optimization[J]. Industrial & Engineering Chemistry Research, 1992,31(6):1466-1477.
    [108]Zamora J M, Grossmann I E. A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits [J]. Computers & chemical engineering,1998,22(3):367-384.
    [109]Bonami P, Biegler LT, Conn A R, et al. An algorithmic framework for convex mixed integer nonlinear programs[J]. Discrete Optimization,2008,5(2):186-204.
    [110]Bonami P, Goncalves J P M. Primal heuristics for mixed integer nonlinear programs. [EB/OL]. New York:IBM T. J Wastson Research Center,2008-9-16 [2013-1-14]. http://domino.watson.ibm.com/library/cyberdig.nsf/papers/159B8EFB88B14DE485 2574CE00685B64
    [111]Bonami P, Goncalves J P M. Heuristics for convex mixed integer nonlinear programs[J]. Computational Optimization and Applications,2012,51(2):29-747.
    [112]Schilling Q Pantelides C C. Optimal periodic scheduling of multipurpose plants in the continuous time domain[J]. Computers & chemical engineering,1997,21: s1191-s1196.
    [113]Belotti P, J Lee, Liberti L, et al. Branching and bounds tightening techniques for non-convex MINLP [J]. Optimization Methods and Software,2009,24(4-5): 597-634.
    [114]Guillen-Gosalbez G, Grossmann I. A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model [J]. Computers & Chemical Engineering,2010,34(1): 42-58.
    [115]Goyal V, Ierapetritou M G. MINLP optimization using simplicial approximation method for classes of non-convex problems[M]//Floudas C A and Pardalos P M. Frontiers in Global Optimization. Netherlands:Kluwer Academic Publishers,2003: 165-195.
    [116]Tarhan B, Grossmann I E, Goel V. Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution[J]. Annals of Operations Research,2011,183(1):1-26.
    [117]Westerlund T, Skrifvars H, Harjunkoski I. An extended cutting plane method for a class of non-convex MINLP problems[J]. Computers & Chemical Engineering, 1998,22(3):357-365.
    [118]Ahadi-Oskui T, Vigerske S, Nowak I. Optimizing the design of complex energy conversion systems by Branch and Cut[J]. Computers & Chemical Engineering, 2010,34(8):1226-1236.
    [119]Saharidis G K D, Ierapetritou M G. Speed-up Benders decomposition using maximum density cut (MDC) generation[J]. Annals of Operations Research,2012, 200(1):1-23.
    [120]Zhou B, Jiang Quanyuan. Power and energy society general meeting security-constrained unit commitment with wind power generation by using interval linear programming[C]. Proceedings of IEEE Power and Energy Society General Meeting. San Diego:IEEE Press,2012:1-6.
    [121]Rebennack S, Kallrath J, Pardalos P M. Column enumeration based decomposition techniques for a class of non-convex MINLP problems[J]. Journal of Global Optimization,2009,43(2-3):277-297.
    [122]Zhu Y, Kuno T. Global optimization of nonconvex MINLP by a hybrid branch-and-bound and revised general benders decomposition approach[J]. Industrial & engineering chemistry research,2003,42(3):528-539.
    [123]D'Ambrosio C, Frangioni A, Liberti L, et al. Experiments with a feasibility pump approach for nonconvex MINLPs[M]//Festa P. Symposium on Experimental Algorithms,2010, Volume 6049 of Lecture Notes in Computer Science, Heidelberg: Springer,2010:350-360.
    [124]Exler O, Lehmann T, Schittkowski K. A comparative study of SQP-type algorithms for nonlinear and nonconvex mixed-integer optimization[J]. Mathematical Programming Computation,2012,4(4):383-412.
    [125]Wu D, Ierapetritou M. Cyclic short-term scheduling of multiproduct batch plants using continuous-time representation [J]. Computers & chemical engineering,2004, 28(11):2271-2286.
    [126]Yan Liexiang, Shen Kun, Hu Shenghua. Solving mixed integer nonlinear programming problems with line-up competition algorithm[J]. Computers and Chemical Engineering,2004,28(12):2647-2657.
    [127]Banos R, Manzano-Agugliaro F, Montoya F G, et al. Optimization methods applied to renewable and sustainable energy:A review[J]. Renewable and Sustainable Energy Reviews,2011,15(4):1753-1766.
    [128]Yokota T, Gen M, Li Y X. Genetic algorithm for non-linear mixed integer programming problems and its applications[J]. Computers & industrial engineering, 1996,30(4):905-917.
    [129]Cheung B K S, Langevin A, Delmaire H. Coupling genetic algorithm with a grid search method to solve mixed integer nonlinear programming problems[J]. Computers & Mathematics with Applications,1997,34(12):13-23.
    [130]Maiti A K, Bhunia A K, Maiti M. An application of real-coded genetic algorithm (RCGA) for mixed integer non-linear programming in two-storage multi-item inventory model with discount policy[J]. Applied Mathematics and computation, 2006,183(2):903-915.
    [131]Danish M, Kumar S, Qamareen A, et al. Optimal solution of MINLP problems using modified genetic algorithm[J]. International Journal of Chemical Product and Process Modelling,2006,1(A4):1-43.
    [132]Gaing Z L. Constrained optimal power flow by mixed-integer particle swarm optimization[C]. Proceedings of IEEE Power Engineering Society General Meeting. San Francisco:IEEE Press,2005:243-250.
    [133]Luo Yiqing, Yuan Xigang, Liu Yongjian. An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints [J]. Computers & chemical engineering,2007,31(3):153-162.
    [134]Ruiz-Femenia R, Caballero J A. A particle swarm optimization for solving NLP/MINLP process synthesis problems [C].20th European Symposium on Computer Aided Process Engineering. Naples:Elsevier Press,2010:1877-1882.
    [135]Ferrari A, Gutierrez S, Biscaia E C. Development of an optimal operation strategy in a sequential batch reactor (SBR) through mixed-integer particle swarm dynamic optimization (PSO)[J]. Computers & Chemical Engineering,2010,34(12): 1994-1998.
    [136]Lin Y C, Hwang K S, Wang Fengsheng. Co-evolutionary hybrid differential evolution for mixed-integer optimization problems[J]. Engineering Optimization, 2001,33(6):663-682.
    [137]Huang H J, Wang Fengsheng. Fuzzy decision-making design of chemical plant using mixed-integer hybrid differential evolution[J]. Computers & chemical engineering,2002,26(12):1649-1660.
    [138]Su C T, Lee C S. Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution[J]. IEEE Transactions on Power Delivery,2003,18(3):1022-1027.
    [139]Lin Y C, Hwang K S, Wang F S. A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems [J]. Computers & Mathematics with Applications,2004,47(8-9):1295-1307.
    [140]Abbasy A, Hosseini S H. Ant colony optimization-based approach to optimal reactive power dispatch:A comparison of various ant systems[C]. Proceedings of IEEE Power Engineering Society Conference and Exposition. Johannesburg:IEEE Press,2007,1-8.
    [141]Schluter M, Egea J A, Banga J R. Extended ant colony optimization for non-convex mixed integer nonlinear programming[J]. Computers & operations research,2009, 3(7):2217-2229.
    [142]Cardoso M F, Salcedo R L, Azevedo S F, et al. A simulated annealing approach to the solution of MINLP problems [J]. Computers & Chemical Engineering,1997, 21(12):1349-1364.
    [143]Cardoso M F, Salcedo R L, Azevedo S F, et al. Optimization of reactive distillation processes with simulated annealing[J]. Chemical Engineering Science,2000,55(21): 5059-5078.
    [144]Mansouri S A. A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain[J]. Computers & Industrial Engineering,2006,50(1-2): 105-119.
    [145]An Weizhong, Yuan Xi-Gang. A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences [J]. Computers & Chemical Engineering,2009,33(1):199-212.
    [146]Lin B, Miller D C. Tabu search algorithm for chemical process optimization[J]. Computers & chemical engineering,2004,28(11):2287-2306.
    [147]Cavin L, Fischer U, Glover F, et al. Multi-objective process design in multi-purpose batch plants using a Tabu Search optimization algorithm[J]. Computers and Chemical Engineering,2004,28(4):459-478.
    [148]Exler O, Antelo L T, Egea J A. A tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design[J]. Computers and Chemical Engineering,2008,32(8):1877-1891.
    [149]Michalewicz, Z. A survey of constraint handling techniques in evolutionary computation methods[C]. Proceedings of the 4th Annual Conference on Evolutionary Programming. Cambridge:MIT Press,1995,135-155.
    [150]Kramer O. A review of constraint-handling techniques for evolution strategies[J]. Applied Computational Intelligence and Soft Computing,2010,2010:1-19.
    [151]Coello C A C. Constraint-handling techniques used with evolutionary algorithms[C]. Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference. New York:ACM Press,2009,3089-3110.
    [152]Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms a survey of the state of the art[J]. Computer methods in applied mechanics and Engineering,2002,191(11-12):1245-1287.
    [153]Coello C A C. Use of a self-adaptive penalty approach for engineering optimization problems[J]. Computers in Industry,2000,41(2):113-127.
    [154]Le Riche R G, Knopf-Lenoir C, Haftka R T. A segregated genetic algorithm for constrained structural optimization[C]. Proceedings of the Sixth International Conference on Genetic Algorithms. San Francisco:University of Pittsburgh,1995, 558-565.
    [155]Davis L. Handbook of genetic algorithms[M]. New York:Van Nostrand Reinhold, 1991.
    [156]Bean J C. Genetics and random keys for sequencing and optimization[R]. Dearborn: Department of Industrial and Operations Engineering, University of Michigan, 1992.
    [157]Michalewicz Z. Genetic algorithms+ data structures= evolution programs[M]. Berlin:Springer,1992.
    [158]Kowalczyk R. Constraint consistent genetic algorithms[C]. Proceedings of the IEEE Conference on Evolutionary Computation. Indianapolis:IEEE Press,1997, 343-348.
    [159]Paredis J. Co-evolutionary constraint satisfaction[C]. Proceedings of the 3rd Conference on Parallel Problem Solving from Nature. New York:Springer,1994, 46-55.
    [160]Coelho L S. Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach[J]. Chaos, Solitons & Fractals,2009,39(4): 1504-1514.
    [161]Deep K, Singh K P, Kansal M L, et al. A real coded genetic algorithm for solving integer and mixed integer optimization problems[J]. Applied Mathematics and Computation,2009,212(2):505-518.
    [162]Mohan C, Nguyen H T. A controlled random search technique incorporating the simulated annealing concept for solving integer and mixed integer global optimization problems[J]. Computational Optimization and Applications,1999, 14(1):103-132.
    [163]Costa L, Oliveira P. Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems [J]. Computers and Chemical Engineering, 2001,25(2-3):257-266.
    [164]Conley W G. Computer Optimization Techniques[M]. New York:Petrocelli Books. Inc.,1984.
    [165]Lu Youlin, Zhou Jianzhong, Qin Hui, et al. Chaotic differential evolution methods for dynamic economic dispatch with valve-point effects [J]. Engineering Applications of Artificial Intelligence,2011,24(2):378-387.
    [166]Li Chaoshun, Zhou Jianzhong, Kou Pangao, et al. A novel chaotic particle swarm optimization based fuzzy clustering algorithm[J]. Neurocomputing,2012,83: 98-109.
    [167]Yue Tan, Guanzheng Tan, Quanyuan Tan, Bing Yang, Yong Ye. Hybrid genetic algorithm with chaotic local search for mixed integer programming problems [J]. Journal of Computational Information Systems,2012,8(24):10223-10230.
    [168]Yue Tan, Guan-zheng Tan, Bing Yang. Hybrid differential evolution with chaotic local search for integer and mixed integer programming problems [J]. ICIC Express Letters,2012,6(11):2745-2750.
    [169]Misra K B, Ljubojevic M D. Optimal reliability design of a system:a new look[J]. IEEE Transaction on Reliability,1973,22(5):255-258.
    [170]Hsieh Y C, Chen T C, Bricker D L. Genetic algorithms for reliability design problemsfJ]. Microelectronics Reliability,1998,38(10):1599-1605.
    [171]Tavakkoli-Moghaddam R, Safari J, Sassani F. Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm[J]. Reliability Engineering and System Safety,2008,93(4):550-556.
    [172]Gupta R K, Bhunia A K, Roy D. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components [J]. Journal of Computational and Applied Mathematics, 2009,232(2):275-284.
    [173]Yun Y S, Moon C. Adaptive genetic algorithm with local search for solving reliability optimization design problems[J]. Industrial Engineering,2008,'5: 1172-1179.
    [174]Mukuda M, Tsujimura Y, Gen M. Hybrid genetic algorithm for multiobjective system reliability optimization problem[C]. Proceedings of the 3rd International Conference on Information and management Sciences. Dunhuang:UTLAB press, 2004,177-181.
    [175]Huang Hongzhong, Qu Jian, Zuo M J. A new method of system reliability multi-objective optimization using genetic algorithms[C]. Proceedings of Reliability and Maintainability. Newport Beach, CA:IEEE press,2006,278-283.
    [176]Coelho L S. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications [J]. Reliability Engineering & System Safety,2009,94(4):830-837.
    [177]Zou Dexuan, Wu lianhua, Gao Liqun, X Wang, et al. A modified particle swarm optimization algorithm for reliability problems[C]. Proceedings of Fifth International Conference on Bio-Inspired Computing:Theories and Applications (BIC-TA). Changsha:IEEE press,2010,1098-1105.
    [178]Wu Peifeng, Gao Liqun, Zou Dexuan, et al. An improved particle swarm optimization algorithm for reliability problems[J]. ISA transactions,2011,50(1): 71-81.
    [179]Khalili-Damghani K, Abtahi A R, Tavana M. A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems[J]. Reliability Engineering and System Safety,2013,111:58-75.
    [180]Garg H, Sharma S P. Multi-objective reliability-redundancy allocation problem using particle swarm optimization[J]. Computers & Industrial Engineering,2013, 64(1):247-255.
    [181]Coelho L S. Reliability-redundancy optimization by means of a chaotic differential evolution approach[J]. Chaos, Solitons and Fractals,2009,41(2):594-602.
    [182]Wang Ling, Li Lingpo. A coevolutionary differential evolution with harmony search for reliability-redundancy optimization[J]. Expert Systems with Applications,2012, 39(5):5271-5278.
    [183]吴沛锋,高立群,邹德旋.修正的差分进化算法在系统可靠性中的应用[J].仪器仪表学报,2011,32(5):1158-1164.
    [184]Liu C M, WuJ L. A mixed-integer hybrid differential evolution method for multi-objective reliability problems[J]. International Journal of Operations Research, 2012,9(1):44-52.
    [185]Nahas N, Nourelfath M. Ant system for reliability optimization of a series system with multiple-choice and budget constraints [J]. Reliability Engineering and System Safety,2005,87(1):1-12.
    [186]Ahmadizar F, Soltanpanah H. Reliability optimization of a series system with multiple-choice and budget constraints using an efficient ant colony approach[J]. Expert Systems with Applications,2011,38(4):3640-3646.
    [187]Zhao J H, Liu Z, Dao M T. Reliability optimization using multiobjective ant colony system approaches [J]. Reliability Engineering and System Safety,2005,92(1): 109-120.
    [188]程世娟,卢伟,何平.蚁群算法在冗余系统可靠性最优分配上的应用[J].计算机工程与应用,2009,45(15):64-66.
    [189]Ravi V, Murty B S N, Reddy J. Nonequilibrium simulated-annealing algorithm applied to reliability optimization of complex systems[J]. IEEE Transactions on Reliability,1997,46(2):233-239.
    [190]Suman B. Simulated annealing-based multiobjective algorithms and their application for system reliability [J]. Engineering Optimization,2003,35(4): 391-416.
    [191]Hansen P, Lih K W. Heuristic reliability optimization by tabu search[J]. Annals of Operations Research,1996,63(2):321-336.
    [192]Storn R, Price K. Differential Evolution-A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization,1997,11(4): 341-359.
    [193]Xin Bin, Chen Jie, Zhang Juan, et al. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers:A review and taxonomy [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2012,42(5):744-767.
    [194]Zhang Wenjun, Xie Xiaofeng. DEPSO:hybrid particle swarm with differential evolution operator[C]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Washington:IEEE press,2003,3816-3821.
    [195]Hao Zhifeng, Guo Guanghan, Huang Han. A particle swarm optimization algorithm with differential evolution[C]. Proceedings of IEEE International Conference on Machine Learning and Cybernetics. Hong Kong:IEEE press,2007,1031-1035.
    [196]Liu Hui, Cai Zixing, Wang Yong. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization[J]. Applied Soft Computing,2010,10(2):629-640.
    [197]Epitropakis M G, Plagianakos V P, Vrahatis M N. Evolving cognitive and social experience in particle swarm optimization through differential evolution:A hybrid approach[J]. Information Sciences,2012,216:50-92.
    [198]Das S, Konar A, Chakraborty U K. Improving particle swarm optimization with differentially perturbed velocity [C]. Proceedings of IEEE Conference on Genetic and Evolutionary Computation. Washington:IEEE press,2005,177-184.
    [199]Xu Xing, Li Yuanxiang, Fang Shenlin, et al. A novel differential evolution scheme combined with particle swarm intelligence [C]. Proceedings of IEEE World Congress on Computational Intelligence. Hong Kong:IEEE press,2008, 1057-1062.
    [200]Kannan S, Slochanal S, SubbarajP, et al. Application of particle swarm optimization technique and its variants to generation expansion planning problem[J]. Electric Power Systems Research,2004,70(3):203-210.
    [201]Wickramasinghe W R M U K, Li X. Choosing leaders for multi-objective PSO algorithms using differential evolution[C]. Proceedings of the 7th International Conference on Simulated Evolution and Learning. Melbourne:Springer press,2008, 249-258.
    [202]Zhang Changsheng, Ning Jiaxu, Lu Shuai, et al. A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization[J]. Operations Research Letters,2009,37(2):117-122.
    [203]Chen T C. IAs based approach for reliability redundancy allocation problems[J]. Applied Mathematics and Computation,2006,182(2):1556-1567.
    [204]Coelho L S, Bernert D L A, Mariani V C. Reliability-redundancy optimization using a chaotic differential harmony search algorithm[M]//Panigrahi B K, Shi Y H, Lim M H. Handbook of Swarm Intelligence Adaptation. Berlin:Springer-verlag Berlin Heidelberg,2010:503-516.
    [205]Zou Dexuan, Gao Liqun, Wu Jianhua, et al. A novel global harmony search algorithm for reliability problems[J]. Computers & Industrial Engineering,2010, 58(2):307-316.
    [206]Reyes-Sierra M, Coello Coello C A. Multi-objective particle swarm optimizers:A survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research,2006,2(3):287-308.
    [207]Parsopoulos K E, Tasoulis DK, Vrahatis M N. Multiobjective optimization using parallel vector evaluated particle swarm optimization[C]. Proceedings of the IASTED International Conference on Artificial Intelligence and Applications. Innsbruck:ACTA Press,2004,823-828.
    [208]Coello Coello C A, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8(3):256-279.
    [209]Zhang Caiqing, Zhang Jingjing, Gu Xihua. The application of hybrid genetic particle swarm optimization algorithm in the distribution network reconfigurations multi-objective optimization[C]. Proceedings of the Third International Conference on Natural Computation. Haikou:IEEE press,2007,455-459.
    [210]Kaveh A, Laknejadi K. A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization[J]. Expert Systems with Applications,2011,38(12):15475-15488.
    [211]Reynolds R G. An introduction to cultural algorithms[C]. Proceedings of 3rd Annual Conference on Evolutionary Programming. Singapore:World Scientific press,1994, 131-139.
    [212]Reynolds R G, Peng Bin. Cultural algorithms:computational modeling of how cultures learn to solve problems:An engineering example[J]. Cybernetics and Systems:An International Journal,2005,36(8):753-771.
    [213]Daneshyari M, Yen G G. Cultural-based multiobjective particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2011,41(2):553-567.
    [214]Wei Jingxuan, Wang Yuping, Wang Hua. A hybrid particle swarm evolutionary algorithm for constrained multi-objective optimization[J]. Computing and Informatics,2010,29(5):701-718.
    [215]Zitzler E, Thiele L. Multiobjective evolutionary algorithm:A comparative case study and the strength pareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [216]Van Veldhuizen D A V, Lamont G B. On measuring multiobjective evolutionary algorithm performance [C]. Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla:IEEE press,2000,204-211.
    [217]Tan K C, Lee T H, Khor E F. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation,2001,5(6):565-588.
    [218]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [219]Deb K, Jain S. Running performance Metrics for evolutionary multi-objective optimization[R]. Kanpur:Kanpur Genetic Algorithmms Laboratory, Indian Institute of Tchnoloyg,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700