飞机防滑刹车控制器测试系统的研究和设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机防滑刹车系统是飞机重要的机载设备,为了保证飞机的安全起飞及着陆,设计高效、可靠的数字防滑刹车控制器势在必行;为了提高飞机防滑刹车控制器工作状态检测的快速性和自动化程度,提高飞机防滑刹车系统的维护性和故障检测能力以及刹车系统的安全性和可靠性,防滑刹车控制器测试系统的设计是很有必要的。
     论文首先介绍了防滑刹车系统的发展进程,分析了其工作原理,并研究了防滑刹车控制器的组成、控制方法及其设计方案;在此基础之上,结合现在流行的虚拟测试技术,重点阐述了飞机防滑刹车控制器测试系统的设计思想和总体策略,分硬件和软件两部分详细的阐述了防滑刹车控制器测试系统的实现过程。
     论文设计了基于80C196KB单片机的飞机刹车控制器测试系统的信息采集与处理机,实现模拟刹车功能,进行数据采集,实现测试和检测结果在上位机的虚拟显示。论文详细分析了控制器测试系统各部分电路的原理和功能。防滑刹车控制器测试系统软件采用模块化设计,提高了程序的可读性、易测试性和移植性。
     通过测试,飞机防滑刹车控制器测试系统达到了设计指标,可以满足飞机刹车系统控制器检测要求。在很大程度上提高了飞机防滑刹车系统控制器检测的自动化程度,提高了系统的测试效率和测试的一致性。
As the main airborne device,aircraft anti-skid braking system plays a very important role in aircraft braking system. To guarantee the aircraft security,it is imperative to design highly effective and reliable digital anti-skid braking controUer.To test anti-skid braking controller work status,to enhance braking system reliability,then it appears especially important to design anti-skid braking controller test system.Firstly the paper narrates development and work principle of anti-skid braking system.Anti-skid braking controller's composition、 control method and design proposal is studied;Finally the realization process of anti-skid braking controller test system is elaborated in detail by two parts of hardware and software.Combining the popular virtual test technology,the paper elaborates with emphasis digital anti-skid braking controller test system design thought and the overall strategy,designs aircraft anti-skid braking controller test system information gathering and processor based on microprocessor 80C196KB, realizes test and examination result virtual demonstration on the PC.The paper elaborates with emphasis principle and function of controller test system circuit.By using the modularization, the software improves the readability, testability and portability.Througn test, the test system can achieve the design targe, may satisfy the airplane braking system controller examination request,enhance the automaticity in the very great degree of the aircraft anti-skid braking controller,enhances the system test efficiency and the test uniformity.
引文
[1] 孙涵芳.Intel16位单片机.北京航空航天大学出版社.1999
    [2] 程军.Intel 80C196单片机应用实践与C语言开发.北京航空航天大学出版社.2001
    [3] 范逸之,陈立元.Visum Basic与Rs-232串行通信控制(最新版)[M].中国青年出版社.2002
    [4] 蔡翠平,唐大仕.Visum Basic程序设计[M].北方交通大学出版社.2002
    [5] 杨莉著.Visual Basic程序设计教程[M].中国水利水电出版社.2002
    [6] 陶永华,尹怡欣,葛芦生.新型PID控制及其应用.机械工业出版社.1998
    [7] 张世箕等.自动测试系统.成都:电子科技大学出版社.1994
    [8] 黄惟一,胡生清.控制技术与系统.北京:机械工业出版社.2002
    [9] 孙传友等.测控系统原理与设计.北京:北京航空航天大学出版社.2002
    [10] [苏]智维列夫,科可宁著,邓启明,陈金祥等译校.航空机轮和刹车系统设计.北京:国防工业出版社.1980.7
    [11] 马忠梅,马岩等.单片机的C语言应用程序设计.北京航空航天大学出版社.1997
    [12] 张国雄,金篆芷.测控电路.北京:机械工业出版社.2001
    [13] 李广第,朱月秀,王秀山等.单片机基础[M].北京航空航天大学出版社.2001
    [14] 王幸之,王雷等.单片机应用系统抗干扰技术.北京航空航天大学出版社.2002
    [15] 王纪森.非线性控制理论在防滑刹车系统中的应用研究.西北工业大学博士论文.2001
    [16] 张谦.飞机电传刹车数字式防滑刹车系统的控制律的仿真研究.西北工业大学硕士论文.1999
    [17] 刘忠平.飞机数字式电子防滑刹车系统的研究.西北工业大学硕士论文.1999
    [18] 张瑜,王纪森.飞机数字式电子防滑系统采用新控制律的仿真研究[J].航空学报.1995,16(1):123~127
    [19] 柴春吉.浅谈测试系统的抗干扰技术.机电工程技术.2004,33(4):14~15
    [20] 于功敬,奚全生.虚拟测试系统的体系结构及其发展.电子产品世界.2004,(1):59~61
    [21] 赖根,肖明清,夏锐等.国外自动测试系统发展现状综述.探测与控制学报.2005,27(3):26~30
    [22] 赵海涛 罗飞路 孙瑜 赵冬明.利用80C196KB片上A/D转换实现的高精度数据采集系统.电子设计应用.2004,6(2):57~58,86
    [23] 林汉.LM331压频变换器的原理及应用.国外电子元器件1999.10,20~22
    [24] 李亮光.F/V转换集成电路LM331在测速系统中的应用.电子技术2000—2,57~58
    [25] 周绍磊,许爱强,朱平云.某型飞机机载设备ATE系统的设计.测控技术1999.1,22~24
    [26] 彭三林,岳开宪.航空机轮刹车系统的发展趋势.航空科学技术 1999
    [27] 李圣明,曹玉强,孙清.基于RS-485总线的分布式测控系统.仪器技术与传感器.2004,11.
    [28] 徐晖,关辉.单片机在油井计量站测控系统中的应用.电测与仪表.2000,37(5):46-48
    [29] 修智宏,杨美健.基于RS-485总线的计算机分布式测控系统.仪表技术与传感器.2001.10:16~18
    [30] 宣丽萍.虚拟仪器及其在控制器测试系统中的应用.煤矿机械.2005,2:109~110
    [31] 郑珊珊,黄元庆.测试系统的虚拟仪器设计。机电工程技术.2005,34(3):44~46
    [32] 高云凯.对某机电子防滑刹车系统的评估.飞机设计.1994,2:44~62
    [33] 王纪森,何长安.防滑刹车控制系统分析.西北工业大学学报 2000,18(3):470~473
    [34] 何恒,吴瑞祥.改进的BP神经网络在飞机防滑刹车系统的应用.北京航空航天大学学报2004,10(6):561~564
    [35] 赵海鹰,王占林,裘丽华.飞机防滑刹车系统鲁棒控制器的设计与研究.北京航空航天大学学报.2000.26(2),164~166
    [36] 李锋,刘刚,张瑜.飞机防滑刹车系统结构谐振一体化设计的仿真研究.西北工业大学学报.1999,17(3),404~408
    [37] 陆晓洁,谢利理,林辉.飞机防滑刹车系统的回顾与展望.航空科学技术.2003,2:29~32
    [38] 陈娟,宋国彪,王占林.飞机防滑刹车系统自适应控制器的设计与实现.机床与液压.2002,6:52~54
    [39] 邵勇,黄纯华,沙立民.PC机与80C196KB的串行通信.微计算机信息2001,12:26~28
    [40] 郑海英,杨汇军,王立红.测控系统数据传输的设计.自动化与仪表.2002,17(3):66~67
    [41] 杨宏丽,张健.单片机测控系统的硬件及软件抗干扰技术.电子工程.2004,4:45~49
    [42] 徐波,吴瑞祥等.飞机刹车模糊神经网络DSP嵌入式控制系统.电子技术应用.2000,5:27~30
    [43] 高蕾.飞机全电刹车系统的研究.西北工业大学硕士论文 2004
    [44] Horne W B, Joyner UT. Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance. SAE 970C, 1965.
    [45] Batterson SA. A Study of the Dynamics of Airplane Braking Systems as Affected by Tire Elasticity and Brake Response. NASA TND-3081. 1965.
    [46] Young D W. Aircraft Landing Gears-The Past, Present and Future. Paper SAE 864752 presented at a Joint Meeting of the Institute of Mechanical Engineers and the Royal Aeronautical Society held in Bristol on 17 April 1985.
    [47] Meredith D B, Hainline BC. Optimization of Commercial Transport Airplane Stopping Systems. SAE 710872, 1972.
    [48] Hirzel E A. Real-Time Microprocessor Technology Applie to Automatic Braking Systems. Paper SAE 801164 presented at Aerospace Congress & Exposition Los Angeles Convention Center, Oct, 1980.
    [49] Devlieg G H. 757/767 Brake and Antiskid System. ICAS-84-5.3.1, 1984.
    [50] Hirzel E A. Antiskid and Modem Aircrate. SAE 720868, 1972.
    [51] Warrendale. Evolution in braking. Automotive Engineering. 1992.
    [52] Muller, Steffen. Slip-based tire-road friction estimation during braking. American Society of Mechanical Engineers. 2002
    [53] H. Chris Tseng, Charlie W. Chi. Aircraft Antilock Brake System with Neural Networks and Fuzzy Logic. Journal of Guidance, Control, and Synamics 1995.
    [54] Yanner J A, Ulrich P C, Emerging Technologies in Aircraft Landing Gear. Warrendale: Society of Automotive Engineers, Tnc., 1997
    [55] Yadav D, Singh CVK. Landing Response of Aircraft with Optimal Antiskid Braking. Journal of Sound and Vibration(1995) 181(3) 401—416
    [56] Jeffery R. Layne. Fuzzy Learning Control for Antiskid Braking Systems. IEEE Transactions on Control Systems Technology. Vol. 1, NO. 2 June 1993.
    [57] Longye D M, Hirzel E A. Advanced Braking Controls for Business Aircraft. SAE 790599, 1979
    [58] Alsobrook C B. Wear of F-16 Main wheel Tires During Constant Slip Ratio Braking. SAE 951392 1995
    [59] Agrawal S K. Braking Performance of Aircraft Tires. Prog. Aerospace Sci, Vol 23 1986
    [60] Padvon J, Padvon P, Hazempour A. Aircraft Braking Induced Tire Wear. SAE 922038, 1992
    [61] Tarter J F. Eletric Brake System Modeling and Simulation. SAE 911200, 1991
    [62] Stubbs S M etc. Behavior of Aircraft Antiskid Braking System on Dry and Wet Runway Surface. NASA Technical Paper 1051 1979, 20-21, 13-14
    [63] Tracy J, William V. Wet Runway Aircraft Control Project: F-4 Rain Tire Project. AD A004768, 1974
    [64] Brake Control Evolution. Hydro-Aire break control system. 2002
    [65] Nowack M L. A Look at Digital Nose Wheel Steering. AD A233944, 1990
    [66] Wattling A G. The Dynamic Response of An Aircraft Wheel to Variation in Runway Friction. Aeronautical Journal, May 1988: 169-178
    [67] Beck A etal. Antiskid Brake Control for Aircraft. United States Patend 4327948, 1982
    [68] Wu zhiqiao, Mizumoto M. PID Type Fuzzy Controller and Parameters Adaptive Method. Fuzzy Sets and Systems, 1996, 2(3): p105~112
    [69] Holt D J. Aircraft Braking Systems. Aerospace Engineering, June 1993
    [70] Smith K L, Dyer CL, Warren S M. Integrated Braking and Ground Directional Control for Tactical Aircraft. SAE 851941, 1985.
    [71] Tarter J F. Eletric Brake System Modeling and Simulation. SAE 911200, 1991.
    [72] DeVlieg G H. Brake and Antiskid System. ICAS-84-5.3.1, 1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700