双通道飞机刹车系统控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机防滑刹车系统是飞机上相对独立的子系统,在飞机的起飞、着陆及滑行过程中起着重要作用,控制律的设计是刹车系统中最为关键的技术。
     针对目前刹车系统建模与控制方法都基于单通道模式所存在的不足,本文通过对飞机机体及轮胎等模型的双通道建模,给出了双通道刹车系统控制律的设计方法。采用模糊控制和BP神经网络的思想来设计控制律,并以双通道平衡调节方法来协调左右主轮的防滑控制。
     该模糊控制方法以基准速度与机轮速度之差及其变化率为输入变量,防滑控制电流为输出变量,借助专家的实践经验总结出控制规则,设计出了基于该输入输出变量和控制规则的二维模糊控制器。同时针对飞机滑跑过程中存在低速段深度打滑现象,采用BP神经网络改善了飞机刹车过程中的低速性能。BP神经网络选取速度差和防滑电流作为网络训练的输入-输出数据对,以平均误差和最大误差作为评价标准,经过离线训练得到理想网络结构并将其应用于刹车系统。
     在Matlab6.5/simulink平台下,对建立的双通道刹车系统模型及改进后的控制方法进行了全系统的数字仿真。仿真结果表明:基于双通道模式所建立的数学模型基本能反映飞机真实刹车过程;所设计的控制律能使飞机左右主轮速度基本保持一致,防止了飞机左右主轮载荷不平衡情况下的侧滑,避免了飞机滑跑过程中易出现的低速打滑现象,改善了刹车系统性能。
Aircraft anti-skid braking system is a relatively separate subsystem in aircraft, which plays a very important role in taking off, landing and skidding, and the design of control law is regarded as the most important technique in the whole system.For the shortage that system model and control are both based on single channel, the bilateral wheels models are separately established and the double channels system control law is put forward in this paper. The fuzzy control and BP neural network are used to design control law in this paper, and bilateral wheels is coordinated to control by balance algorithm of double channels.The difference between the reference velocity and wheel velocity and its differential are used as input variables. Anti-skidding current is used as output variable. And control rules are summarized according to the experience of professionals. The 2-dimention fuzzy controller is designed consequently. For the shortage that airplane is easy to skid at low speed, BP neural network is used to improve system performance. The difference between the reference velocity and wheel velocity and anti-skidding current are used as input-output datum in BP neural network, and the most great error and average error are applied to evaluate controller. The perfect controller used in system is given by training.The double channels model and improved control used in the system are simulated in the Matlab6.5/simulink. The result shows: The model based on double channels accords with the fact. The control law ensures that airplane bilateral wheels velocity is consistent, prevents sideslip and severe slip, improves system performance.
引文
[1] 杨新文,吴瑞祥等.飞机刹车系统的数字仿真.系统仿真学报,1997.12
    [2] 陆小洁,林辉等.飞机防滑刹车系统的回顾与展望.航空科学技术,2003.2
    [3] 张瑜,田小雄.飞机防滑控制系统的数字仿真研究.西北工业大学学报,1994.1
    [4] 张谦.起落架与防滑刹车系统的相互作用研究.航空精密制造技术,2003.4
    [5] 李锋,刘刚,张瑜.飞机防滑刹车系统结构谐振一体化设计的仿真研究.西北工业大学学报,1999.8
    [6] 王纪森,何长安.飞机轮胎与跑道间结合系数模型的研究.西北工业大学学报,2000.11
    [7] 黄伟明,吴瑞祥,张燮年.神经网络及模糊控制在飞机防滑刹车系统中的应用.航空学报,2001.7
    [8] 赵海鹰,王占林,裘丽华.飞机防滑刹车系统鲁棒控制器的设计与研究.北京航空航天大学学报,2000.4
    [9] 王纪森,何长安.防滑刹车控制系统分析.西北工业大学学报,2000.8
    [10] 刘革辉,单杰峰,郑楚光.Matlab软件中的Fuzzy Logic工具箱在模糊控制系统仿真中的应用.计算机仿真,2000.9
    [11] 闻新,周露等编著.模糊逻辑工具箱的分析与应用.科学出版社,2002
    [12] 王纪森.非线性控制理论在防滑刹车系统中的应用研究.西北工业大学博士论文,2001
    [13] 许希儒.飞机电子防滑刹车系统模拟仿真.航空学报,1993.4
    [14] 赵海鹰,王占林,裘丽华.飞机防滑控制系统的分布式实时仿真.北京航空航天大学学报,2000.4
    [15] 陈娟,宋国彪,王占林.飞机防滑刹车系统自适应控制器的设计与实现.机床与液压,2002.6
    [16] 袁东.飞机起落架仿真数学模型建立方法.飞行力学,2002.12
    [17] 吴瑞祥,黄伟明等.飞机刹车模糊神经网络DSP嵌入式控制系统.自动化 与仪器仪表,2001.12
    [18] 李晖晖,刘航,谢利理.飞机全电刹车系统研究.飞机设计,2003.3
    [19] 邹美英飞机防滑刹车系统新型控制律设计与仿真研究,2005.3
    [20] 郑振华 主起落架特性非对称下的刹车仿真与控制研究,2005.3
    [21] 刘海涛 基于神经网络的空调系统仿真研究,沈阳建筑工程学院硕士论文,2004.2
    [22] 刘范东 前向神经网络在飞行器纵向控制系统中的应用研究,西北工业大学硕士论文,2004.3
    [23] 王秀霞,丁学工.液压伺服控制技术在飞机机轮刹车系统中的应用.液压气动与密封,2001.6
    [24] 李晖晖,谢利理,刘航,林晖.飞机全电刹车系统建模与仿真研究.系统仿真学报,2003.10
    [25] 张瑜,王纪森.飞机数字式电子防滑系统采用新控制律的仿真研究.航空学报,1995.1
    [26] 章卫国,杨向忠.模糊控制理论与应用.西北工业大学出版社
    [27] 张谦.飞机电传数字防滑刹车系统控制律仿真研究.西北工业大学硕士论文,1999
    [28] 科柯宁.智维列夫.航空机轮与刹车系统设计.北京:国防工业出版社,1980
    [29] 冯冬青,谢宋和.模糊智能控制.化学工业出版社,1998
    [30] 张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998
    [31] 张陵,诸德培,张瑜.机轮制动力矩的变结构控制.航空学报,1996.9
    [32] 王占林,陈斌,裘丽华.飞机液压系统的主要发展趋势.液压气动与密封,2000.2
    [33] 杨尊社.航空机轮、刹车系统研究新进展.航空精密制造技术,2002.12
    [34] 袁东.飞机起落架数学模型建立与仿真研究.西北工业大学学报,1999
    [35] 范洪涛,史忠科.用多重模糊控制结构实现飞机着陆控制.西北工业大学学报,1998.8
    [36] 晋萍,聂宏.起落架着陆动态仿真分析模型及参数优化设计.南京航空航天大学学报,2003.10
    [37] 张曾铝,张江监.起落架滑行载荷识别.航空学报,1994.1
    [38] 钱存济,黄洪生,赵朝兰.航空机轮滚压力分析与计算,1994.2
    [39] 李洪果,王锴等.飞机全电刹车系统研究.北京航空航天大学学报,2004.4
    [40] 胡国亮,陈久康.用MATLAB进行模糊控制器的设计与仿真.基础自动化,2000.1
    [41] 李士勇.模糊控制、神经控制和智能控制理论.哈尔滨工业大学出版社,1996
    [42] 王翠华,戴玉龙.变频中央空调房间温度的智能控制.山东理工大学学报(自然科学版),2004.1
    [43] 孙海阳,李文英,魏晋宏.基于神经网络PID的智能温度控制器的设计.机械工程与自动化,2005,4
    [44] 何继爱,达正花.BP神经网络PID控制器仿真实现.甘肃联合大学学报,2005,4
    [45] 论着陆过程中麦道飞机的方向控制.波音公司长滩分部
    [46] 方振平.飞机飞行动力学.北京:北京航空航天大学出版社,2005,6:p27—29
    [47] 钟长生.民用飞机机体结构与安全.成都:西南交通大学出版社,2004,5:p65—66
    [48] 冯冬青,谢宋和等.模糊智能控制.北京:化学工业工业出版社,2000,3:p35—37
    [48] 刘晓明,苏彬,孙宏.飞机性能与计划.成都:西南交通大学出版社,2003,7
    [49] 黄太平.飞机性能工程.科学出版社.2005,8
    [50] 方振平.飞机飞行动力学.北京:北京航空航天大学出版社.2005,6
    [51] 周大森,董蔚.国防工业出版社.2000,10
    [52] Babuska R. Fuzzy Toolbox for Matlab. In proceedings IMACS conferenceMIMS—2'93, Brussels, Belgium, 1995
    [53] Tseng H C, Chi C W. Aircraft Antilock Brake System with Neural Networks and Fuzzy Logic. Journal of Guidance, Control, and Fuzzy Logic. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1113-1118
    [54] Lee, C. C. Fuzzy Logic in Control Systems: Fuzzy Logic Controller Parts1,2. IEEE Transactions Systems, Man, Cybernetics, Vol. 20, March/April 1990, pp. 177-200
    [55] Lennon, william K, Passino, Kevin M. Intelligent Control for Brake Systems. IEEE Transactions on Control Systems Technology. 1999, 7(2). 188-202
    [56] Kevin M.Passino. Fuzzy Learning Control for Antiskid Braking Systems. IEEE Transactions on Control Systems Technology. Vol 1.No2.JUNE 1993.
    [57] R.Somakumar, J.Chandrasekhar. Intelligent anti-skid brake controller using a neural network.. Control Engineer Practice,1999. 7(5): 611-621
    [58] Chih-Keng Chen, Yu-Chi Wang. Fuzzy Control for the Anti-lock Brake System.IEEE, 1996
    [59] Georg F. Mauer. A Fuzzy Logic Controller for an ABS Braking System. IEEE Tansactions on Fuzzy System. Vol 3, No4, NOVEMBER 1995
    [60] Chih-Min Lin and Chun-Fei Hsu. Self-Learning Fuzzy Sliding-moding Control for Antilock Braking Systems. IEEE Transactions on Control Systems Technology, Vol 11, No2, MARCH 2003
    [61] Holt Daniel J. Aircraft Braking Systems. Aerospace Engineering, Voll 3 No6 JUNE 1993
    [62] Tarter, James F. Electric Braking System Modeling and Simulation, SAE Technical Paper Series 1991 p1-18
    [63] Bingham C M, Schofield N, Mellor P H. Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems. IEEE Transactions on vehicular Technology, v52, n5, September 2003
    [64] Yonggon Lee, Zak, S H. Designing a genetic neural fuzzy antilock brake system control Evolutionary Computation. IEEE Transactions Vo16, Issue2, APRIL 2002
    [65] Liu Chunsheng. Application of Double Models Fuzzyo-PI Control in the Braking System of a Mine Winder. Proceedings of the 3rd World Congress on Intelligent Control and Automation June28—July2, 2000, Hefei, P R China
    [66] Madau, D P;Yuan,F;Davis,L I, Jr;Feldkamp,L A. Fuzzy logic anti-lock brake system for a limited range coefficient of friction surface. Fuzzy Systems, 1993, Second IEEE International Conference on, 28 March-1 April 1993 p883-888 Vol 2
    [67] Narendra K S, Mukhopadhyay S. Intelligent Control Using Neural Networks. IEEE Control System Magazine, 1992, 12(2): 11-18.
    [68] Larkin L I. A fuzzy logic controller for aircraft flight control. Proceedings of the 23rd Conf on Decision & Control. Las Vogas, NV, 1984,894-897
    [69] R. Somakumar, J.Chandrasekhar. Intelligent anti-skid brake controller using a neural network. Control Engineer Practice, 1999. 7(5): 611~621
    [70] Kumar Chellapilla, David B. Fogel. Evolving Neural Networks to Play Checkers Without Relying on Expert Knowledge. IEEE Transaction on Neutral Networks, VOL. 10, NO. 6, NOVEMBER 1999
    [71] Yasuaki Kuroe, oKei Miura, Takehiro Mori. Synthesis Method of Neural scillators byNetwork Learning.
    [72] Jbzsef J. Birb, Zalin Heszberger. Synthesis Method of Neural Oscillators by Network Learning
    [73] Jeremy Worley, Ramiro Jordkn. A Scalable Khoros Neural NetworkToolbox

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700