飞机防滑刹车控制系统的结合系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防滑刹车系统是飞机重要的机载设备,对飞机的起飞、安全着陆起着重要的作用。本文分别采用了四种方法来对地面结合系数—滑移率的关系进行了分析研究。一、针对Pacejka模型讨论模型中参数B、C、D的取值范围,以及对Pacejka模型曲线形状的影响;二、用神经网络的BP算法解决地面结合系数—滑移率的非线性特性,通过对防滑惯性台测得的地面结合系数—滑移率的数据进行拟合,寻求最优的结合系数—滑移率的关系;三、采用模糊控制方法来处理结合系数与滑移率的非线性关系。进行在线识别,设计模糊控制器,确定模糊控制规则,从而寻求到最优的关系曲线;四、针对结合系数无法直接测量得到的问题,提出了一种利用最小二乘法对结合系数与滑移率关系式中的参数进行在线辨识的方法。
     最后在MATLAB/SIMULINK下进行系统仿真,并将仿真结果进行分析比较。仿真结果表明,采用智能方法的系统在刹停时间、刹停距离以及刹车效率方面均优于采用数值计算方法的系统。
In the modern aircraft, the anti-skid braking system is one of the main airborne devices and plays a very important role in safely takeoff and landing.The ground adhesion coefficient-slip relation is analysed and researched by four methods. Firstly,aiming at Pacejka model ,the range of the parameter B,C,D and effects on the Pacejka curves shapes is discussed . Secondly, non-linearity characteristic of ground adhesion coefficient-slip is resolved by the BP algdrithm of the neural network, the datum measured on the test-bed are drew up, and relation of coefficient-slip is sought finely.Thirdly,using fuzzy control to resolve the non-linearity characteristic of groud adhesion coefficient-slip.By identifying on line,designing a fuzzy controller and defining the rules of fuzzy control, the curve of the relationship of coefficient-slip is sought finely.Forthly,An on-line parameter identification method that is least-square is presented because the coefficient between tyre and runway hasn't been got.
    Finally,simulating the system in the MATLAB/SEMULINK,then analyzing and comparing the results of simulating.The results indicate that the system which adopts the method of artificial intelligence and abilities is more excellent than the system that adopts the method of mathematic calculating.
引文
[1] Jeong-Woo Jeon, Ki-Chang Lee, Don-Ha Hwang, Yong-Joo Kim. Development of a Dynamic simulator for Braking Performance Test of Aircraft with Anti-skid Brake System 2002 IEEE
    [2] Jeong-Woo Jeon, Gui-Aee Woo, Ki-Chang Lee, Don-Ha Hwang, Yong-Joo Kim. Real-Time Test of Aircraft Brake-By-Wire System with HILS-Dynamometer System.2004 IEEE.
    [3] Chih-Min Lin and Chun-Fei Hsu. Self-Learning Fuzzy Sliding-moding Control for Antilock Braking Systems. IEEE Transactions on Control Systems Technology, Vol 11,No2,MARCH 2003
    [4] Douglas D. Moseley, Thomas J. Carter. Performance testing on an electrically actuated aircraft braking system. SAE 881399
    [5] Michael A. Dornheim. Electric brakes tested on F-16. Aviation Week & Space Technology, January 10 1999, p51
    [6] French M, Rogers E. Nonlinear iterative learning by an adaptive Lyapunov technique [J]. Int. J Control.2000,73(10):840~850
    [7] Sanghyun Kim. Adaptations of constraint programming to aircraft scheduling problem. The Doctor Faculty of Washington University. 2001.8
    [8] R. Somakumar, J. Chandrasekhar. Intelligent anti-skid brake controller using a neural network. Control Engineer Practice. 1999,(7):611-621
    [9] Michael A. Dornheim. Electric Brakes Tested on F-16. AVIATION WEEK &SPACE TECHNOLOGY. January 18 1999, p5
    [10] Chien C, Liu J. A P-type iterative learning controller for robust output tracking of nonlinear time-varying systems. Int. J. Control. 1996, 64(2):319~334
    [11] Bondi P, Casalino G, Gambardella L. On the iterative learning control theory for robotic manipulators. IEEE Journal of Robotics and Automation. 1998, 4(1): 14~22
    [12] Burckhardt M. Fahrwerktechnik: Radschlupf-Regek system [M]. Wrzburg: Vogelverlag. 1993
    [13] French M, Rogers E. Nonlinear iterative learning by an adaptive Lyapunov technique [A]. Proc of the 37th Conf on Decision and Control[C]. Florida. 1998:175~180
    [14] Park K. -H, Bien Z, Hwang D -H. A study on the robustness of a PID type iterative learning controller against initial state error. International Journal of System Science. 1999,30(1):49~59.
    [15] Heinzinek, G., Fenwick, D., Paden, B. and Miyazaki, F.. Stability of learning control with disturbances and uncertain initial condition. IEEE Trans. On Automat. Contr., 1992,37(1): 110-114
    [16] Ilker Tunay. Antiskid control for aircraft via extremum-seeking. Proceedings of the American Control Conference Arlington,2001, (9):25~27
    [17] Armann Norheim, Nirmal K. Sinha, Thomas J. Yager. Effects of the structure and propertise of ice and snow on the friction of aircraft tyres on movement area surfaces. Tribology International. 2001, 34:617~623
    [18] Arimoto S, Migazaki F. Stability and robustness of PID feedback control for robot manipulator of sensory capability. Robotics Research, The first Int. Symp
    [19] Yonggon Lee, Zak, S H. Designing a genetic neural fuzzy antilock brake system control Evolutionary Computation.IEEE Transactions Vol6, Issue 2,APRIL 2002
    [20] 李少远,席裕庚,陈增强等.智能控制的新进展(Ⅰ).控制与决策,2000,15(1):1~5
    [21] 黄伟明.神经网络—模糊控制飞机防滑刹车系统.北京航空航天大学硕士学位论文,2000
    [22] 徐冬苓.飞机刹车系统的建模与地面结合系数的研究.西北工业大学硕士论文,2005.3
    [23] 逯九利.飞机全电刹车系统控制律的研究.西北工业大学硕士论文,2005.3
    [24] 崔胜民.神经网络理论在轮胎力学建模中的应用.农业机械学报,1995.9
    [25] 王纪森.非线性控制理论在防滑刹车系统中的应用研究.西北工业大学博士论文,2001
    [26] 万晓莉,吴建乐.基于模糊关系的非线性系统辨识研究.北方工业大学学报,2003.15(3)
    [27] 飞思科技产品研发中心.神经网络理论与MATLAB7实现.北京:电子工业出版社,2005.12
    [28] 张燮年,黄伟明,王锴.飞机刹车模糊神经网络DSP嵌入式控制系统.自动化与仪表.2002.5
    [29] 张军英,许进.二进前向人工神经网络—理论与应用.西安电子科技大学.2001
    [30] 万晓莉,吴建乐.基于模糊关系的非线性系统辨识研究.北方工业大学学报,2003,15(3):54~58
    [31] 黄伟明.神经网络—模糊控制飞机防滑刹车系统.北京航空航天大学硕士学位论文,2000
    [32] 蒙祖强,蔡自兴.一种基于并行遗传算法的非线性系统辨识方法.控制与决策,2003,18(3):367~374
    [33] 张谦.飞机电传刹车数字防滑刹车系统的控制律仿真研究.西北工业大学硕士学位论文,1999
    [34] 王纪森.飞机轮胎与跑道间结合系数模型的研究.西北工业大学学报,2000.11
    [35] 贺朝国.汽车防抱制动系统(ABS)模糊控制系统的研究.西北工业大学硕士学位论文,2004.3
    [36] 徐南荣,宋文忠,夏安邦.系统辨识.南京:东南大学出版社,1991年3月
    [37] 庄继德.现代汽车轮胎技术.北京理工大学出版社.2001.3
    [38] 刘昭度.轮胎—路面纵向附着动力学数学模型.Journal of Beijing Institute of Technology 1995.5
    [39] 殷晨波,茅承钧.轮胎刚度和阻尼特性的研究.南京建筑工程学院学报 1994.2
    [40] 任雪梅,龚至豪.神经网络迭代学习控制快速算法的研究.北京理工大学学报,1997,17(3):350~354
    [41] 许美坤,唐新莲.汽车防抱制动系统中最佳滑移率的识别方法.湖北汽车,2001,(4):17~21
    [42] 刘国福,王跃科,郑伟峰等.防抱制动系统基于模型的最佳滑移率计算方法.汽车工程,2004,26(3):302~305
    [43] 任雪梅,高为炳.任意初始状态下的学习控制.自动化学报,1994,20(1):74~79
    [44] 蔡自兴.智能控制基础与应用.北京:国防工业出版社.1998年
    [45] 韦巍.智能控制技术的研究现状和展望.机电工程,2000,17(6):1~4
    [46] 白玫.智能控制理论综述.华北水利水电学院学报,2002,23(1):58~62
    [47] 李少远,席裕庚,陈增强等.智能控制的新进展(Ⅰ).控制与决策,2000,15(1):1~5
    [48] 李言俊,张科.系统辨识理论及应用.北京:国防工业出版社,2002年
    [49] 柯列宁.智维列夫.航空机轮与刹车系统设计.国防工业出版社.1980
    [50] 胡雄文,霍恒昌.汽车ABS模糊控制方法的研究与仿真.汽车科技2002.1.14~17
    [51] 王磊,王为民等.模糊控制理论及应用.国防工业出版社1997
    [52] [法]Mohand Mokhtari,Michel Marie著.MATLAB与SIMULINK工程应用.电子工业出版社,2002
    [53] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.清华大学出版社.2002
    [54] 魏巍.MATLAB控制工程工具箱技术手册.国防工业出版社.2004
    [55] 汤兵勇,路林吉,王文杰.模糊控制理论与应用技术.清华大学出版社.2002
    [56] 孟庆慈,何恒,吴瑞祥.基于模糊神经网络的飞机防滑刹车系统研究.控制工程,2005.9
    [57] 李争,赵涛,姜卫东,倪有源.并联式混合动力电动汽车模糊控制策略的仿真研究.公路交通科技.2005.2
    [58] 王和毅,谷正气.汽车轮胎模型研究现状及其发展分析.橡胶工业.2005年第52卷
    [59] 张葛祥,李娜.Matlab仿真技术与应用[M].清华大学出版社,2003
    [60] 杨新.飞机六自由度模型及仿真研究.系统仿真学报.2002.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700