轮式工程机械自动防滑差速系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮式工程机械工作环境比较恶劣,它不像履带式工程机械那样本身具有较强的防滑能力。因此,防滑差速系统的防滑能力对轮式工程机械来说是非常重要的。传统的轮式工程机械在差速方面,差速器的自锁系数变化范围小,防滑功能有限,易造成车辆的打滑而影响车辆的操纵稳定性、通过性,降低工作效率;在驱动过程中不能主动地适应外界条件的变化,难以实现自动控制。在工程机械朝着自动化方向发展的趋势下,显得越来越不合理。
     针对传统工程机械差速系统存在防滑功能不强的缺陷,本文提出以STC系列单片机为控制芯片,以最佳滑移率S为控制目标,采用PID模糊逻辑为控制算法,对自动防滑差速系统进行研究设计。
     论文根据防滑差速系统的工作原理,应用单个车轮运动的力学模型,指出粘着与滑移率的关系,并且分析了运动情况。其次以单片机为控制核心,设计防滑系统各部分的功能电路。分析比较防滑系统的控制策略,最终选择模糊PID算法进行控制。为了对所需的数据进行监控,本文基于Labwindows/CVI开发了控制界面,实现了用串口通信进行数据显示。
     经过多次实验证明,防滑差速系统的硬件电路设计合理可行,能够准确测量所需数据,从而计算、判断,然后及时控制输出。这将为防滑差速系统真正用于工程车辆提供实验依据。
The working condition of wheeled construction machinery is quite bad. It does not like that of track construction machinery that had a high anti-skip capability. Therefore, the anti-skip ability of the differential system to wheeled construction machinery is very important. The varying range of self-locking coefficient of traditional wheeled construction machinery differential is small. Its anti-skip function is limited. This could be easy to cause the vehicle to slip and affect its handling stability, passing property and could lower working efficiency. Besides that, in the processing of driving, it can not initiatively adapt the change of working conditions and it is difficult to realize automatic control. Under the tendency of developing in the direction of automation, traditional wheeled construction machinery differential has become increasingly unreasonable.
     Aimed at these flaw of weak anti-slide function in traditional wheeled construction machinery, this paper takes STC Single-Chip as the control chip, adopts the best slip rate as the control objective, adopts PI fuzzy control logic as the control algorithm to investigate the characteristic of automatic limited slip differential system.
     At first, the contactable condition between wheel and rail in the antiskid process was researched in this paper. According to the basic theory of antiskid system, applying a single wheel model, the thesis analyzed the motional condition. Secondly, taking Single-chip Computer as the heart of control, all function circuits of antiskid system was designed. Analyzing and comparing the control strategy of antiskid system, advantages and disadvantages of common control parameters.The antiskid controlling software based on the control method of fuzzy PID was compiled. To monitor the data we need, the control interface based on Labwindows/CVI was designed and series communication was realized in the function .
     By many times of test, it proved that the design of the antiskid system is circuit was reasonable. The system could measure the accurately data we need and control the output timely according to calculation and judgment. It would provide experimental evidence to apply the antiskid system in the wheeled construction machinery really.
引文
[1] 张金兴.对工程机械发展的思考.工程机械,2001(12):26-28
    [2] 边仁国.我国工程机械传动装置的现状和发展趋势.工程机械.2000(4) , 29-30
    [3] 鲁植雄.汽车ABS、ASR和ESP维修图解.北京:电子工业出版社,2006,52-60
    [4] L.E.Berskiold.“Volvo’s New System to Avoid Skidding”,ISATA,8-10
    [5] E.Gohringm.“Electronic Traction Control System ASR and its Integeration in the Anti-lock Braking Systems ABS to From a Safety System ‘ABS/ASR’ for Commercil Vehicles”.SAE Paper 88,11-37
    [6] H.J.Sch and J.Paul.“ASR Acceleration Skid Control – A Further Contribution Towards Increasing The Active Safety of Daimler-Benz Vehicles”.SAE Paper 88,50-52
    [7] Keiji Isoda,etal. “驱动力制御技术动向”.自动车技术,Vol.45,No.1,2001,70~74
    [8] 边明远.“汽车 ASR 研究技术的进展”.北京汽车,2002.No.4,34~38
    [9] 杨礼.“牵引力控制系统装置的对比试验”.汽车之友,2005(1) ,27-30
    [10] Edmuna Donges.“Supporting Drivers by Chassis Control System”.Smart Vehicles,2000,112-129
    [11] 陈罡.智能防滑系统研究:[学位论文].上海:同济大学,2005
    [12] 司利增.驱动防滑转控制途径及原则分析.西安公路交通大学学报,2000(1),89-92
    [13] Song. Throttle Actuator Control System for Vehicle Traction Control. Mechatronics, 1999,9(5):477-495
    [14] 司利增.汽车防滑控制系统--ABS与ASR.北京:人民交通出版社,1996,89-96
    [15] 程军,袁金光,王西山.汽车防滑控制的研究.汽车工程,1997-19(2):96-102
    [16] 李伟.基于模糊逻辑和神经网络的汽车防抱控制方法的仿真研究.[硕士学位论文]合肥:合肥工业大学,2001
    [17] 赵良红.汽车底盘电控技术.北京:机械工业出版社,2005,54-67
    [18] 刘红波 李新城 朱伟兴,“87C196KC 单片机处理 ABS 轮速的计算方法研究”,机械与电子,2003(4),56~58
    [19] 刘训忠 王一玲 夏群生,“汽车制动防抱死系统(ABS)轮速算法研究”,汽车电器,2000 年第 1 期,44~46
    [20] 郑玮峰.汽车防抱制动逻辑门限控制算法研究:[学位论文]. 北京:国防科技大学,2003
    [21] 项承寨,夏群生等.ABS控制量的研究.汽车技术.2001(1),34-38
    [22] Daniel McKay,“Delphi Electronic Throttle Control System for Model Year 2000;DriverFeatures,System Security,and OEM Benefits.ETC for the Mass Market”,SAE paper No.2000-01-0556
    [23] Mark Costin,“An Architecture for Electronic Throttle Control System”,SAE paper No.2003-01-0098
    [24] 王晓明,电动机的单片机控制,北京航空航天大学出版社,2002
    [25] Takehiko Kowatari,“A Compact Electronic-Throttle-Control Actuator with a Throttle-Position Sensor Integrated Plastic Cover”,SAE paper No.2002-01-0861
    [26] 王晓明,电动机的单片机控制,北京航空航天大学出版社,2002
    [27] 张毅刚等.虚拟仪器软件开发环境Lab Windows/CVI6.0编程指南.北京:机械工业出版社,2002
    [28] 宋宇峰等.Lab Windows/CVI逐步深入与开发实例.北京:机械工业出版社,2003.4
    [29] 张凤均等.Lab Windows/CVI开发入门和进阶.北京:北京航空航天大学出版社,2002,145-149
    [30] 司利增.汽车防滑控制系统—ABS与ASR.人民交通出版社,2004,78-81
    [31] 张成宝等.汽车驱动防滑的控制方法研究.汽车工程,2000.5,34-38
    [32] 刘少军.现代控制方法及计算机辅助设计.中南大学出版社.2003,76-79
    [33] 赵向东.汽车牵引力系统控制算法的研究及仿真分析:[学位论文]. 吉林:吉林大学,2004
    [34] 李士勇.模糊控制和智能控制理论与应用.哈尔滨工业大学出版社,2000
    [35] 袁著社.现代控制理论在工程中的应用.北京:科学出版社,2000
    [36] 韩峻峰,李玉惠等.模糊控制技术重庆大学出版社.2003
    [37] 陈家瑞.汽车构造,第五版.北京:人民交通出版社,2005
    [38] 杨文龙.单片机原理及应用.西安:西安电子科技大学出版社,2003
    [39] 王绍銧,夏群生,李建秋等.汽车电子学.北京:清华大学出版社,2005
    [40] 周云山,钟勇.汽车电子控制技术.北京:机械工业出版社,2004
    [41] 边明远 陈思忠,“汽车驱动防滑控制系统的研究”,武汉汽车工业大学学报,2000 年第 22 卷第 6 期,32-36
    [42] H.J.Kraft and H.Leffler ,“The Integated Brake and Stability Control System of the New BMW 850i”,SAE Paper 90,02-09
    [43] Daniel McKay,“Delphi Electronic Throttle Control System for Model Year 2000;Driver Features,System Security,and OEM Benefits.ETC for the Mass Market”,SAE paper No.2000-01-0556
    [44] Mark Costin,“An Architecture for Electronic Throttle Control System”,SAE paper No.2003-01-0098
    [45] Kiyotaka Ise and K.Fujita and Y. Inoue and S. Masutomi,“The‘Lexus’Traction Control(TRAC) System”,SAE paper No.900212
    [46] Takehiko Kowatari,“Optimization of an Electronic-Throttle-Control Actuatorfor Gasoline-Direct-Injection Engines”,SAE paper No.1999-01-0542
    [47] Takehiko Kowatari,“A Compact Electronic-Throttle-Control Actuator with a Throttle-Position Sensor Integrated Plastic Cover”,SAE paper No.2002-01-0861
    [48] 刘金琨,先进 PID 控制及其 MATLAB 仿真,电子工业出版社,2003
    [49] 陈家瑞.汽车构造(第四版).北京:人民交通出版社,2000
    [50] 赵 健,四轮驱动汽车 TCS 制动压力调节装置及附着系数分离路面控制方法的研究:[学位论文] .吉林:吉林大学,2003 年 2 月
    [51] 〔德〕耶尔森·赖姆帕尔著,张洪欣、余卓平译.汽车底盘基础.北京:科学普及出版社,2000
    [52] 汪铸.几种越野汽车锁止式差速器性能比较.呼伦贝尔学院学报,2002(5), 60~63
    [53] 史建鹏,徐满年.日本越野车的特点及核心技术.汽车科技,2005(1),12~14
    [54] 李 静,4×4越野汽车牵引力控制策略与控制算法研究:[学位论文] .吉林:吉林大学,2003年10月
    [55] 毛啸滇,钱立军.国内外防滑差速器的应用分析.客车技术,2005(4),35~37
    [56] 齐志鹏,汽车传感器和执行器的原理和检修,人民邮电出版社,2002年11月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700