车辆液力自举式防滑系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的快速发展、轿车家庭化的快速普及,汽车安全已经成为当今汽车领域重要的研究课题。在众多控制汽车安全的技术中,车辆的防滑控制技术一直是人们的研究重点和难点。车辆行驶速度的不断提高及路况条件的日益苛刻对车辆的防滑能力提出了更高的要求。目前,以控制车辆失稳、增大车辆牵引力为目标的控制方法有很多,效果也很明显,但仍存在一定问题亟待解决。为此,本文围绕车辆的防滑控制问题,对车辆限滑差速系统的原理、实现方式及限滑性能进行了深入的研究和探讨。
     对目前存在的各种限滑差速器产品或限滑差速器方案进行分析,针对它们存在的问题,提出并设计了一种新型的液力自举式限滑差速器。与其它主动控制式限滑差速器相比,它的创新之处在于将一个完整的液压系统集成于差速器总成内部,且不需要额外安装传感器测量车辆在行驶过程中的相关参数的变化,如驱动轮转速等,没有微处理器单元,不需电路支持,可靠性更高。通过该差速器内空间凸轮机构的作用,它可以根据差速器两半轴间的转速差自动调整液压系统的工作状态,从而调节差速器的锁紧程度。该空间凸轮机构是由半轴齿轮和安装在半轴齿轮与差速器壳体之间的从动件组成的,是液压系统的关键元件。
     通过分析凸轮廓线的传统设计方法反转法,发现它并不适合求解工作廓面为复杂空间曲面的空间凸轮的工作廓面方程。因此,本文提出根据从动件数学模型及其运动规律,利用空间曲面包络原理及微分几何理论计算空间凸轮工作廓面的方法,并推导出空间凸轮机构在接触点处的诱导法曲率及压力角的计算公式。通过设计实例证明,该方法虽然不如反转法计算速度快、直观、便于理解,但可以精确求出空间凸轮机构在每一时刻的接触点的位置,以及在该位置上的压力角和诱导法曲率值,为优化凸轮机构提供条件。本文推导出了液压系统压力与泄漏缝隙大小之间的关系式,通过分析系统压力与差速器输入转速、液压系统泄漏缝隙之间的关系,得出液压系统的压力与缝隙的大小呈现出立方关系;可以通过调整泄漏缝隙的大小来改变液压系统的工作压力,从而达到调节差速器的限滑能力的目的。
     以北方汽车车辆研究所提供的某型车辆数据为基础,编写了限滑差速器工况仿真软件。该软件已经通过北方汽车车辆研究所验收,目前正应用于差速器摩擦片摩滑工况研究。在建立发动机数学模型时,发现常用于拟合发动机外特性曲线的多项式拟合方法存在缺陷,在原始实验数据点处存在误差,拟合精度不高。针对此问题,本文提出利用三次非均匀B样条拟合发动机外特性曲线的方法。该方法可以消除在实验数据点处的误差,拟合精度高,适于描述发动机数学模型。为了能精确反应路况条件对限滑差速器工况的影响,本文对现有汽车试验场的路线情况进行分析后,提出了一种路线自定义语言,它可以准确描述各种路线,再配以路面附着系数和路面不平度等信息就可以精确描述路面、路线模型,为限滑差速器工况仿真分析提供条件。
     最后,利用自行设计和搭建的液力自举式限滑差速器内嵌液压系统压力测试平台测试单柱塞式液压泵的工作压力随差速器输入转速的变化关系。通过交流电机带动差速器一侧半轴,模拟差速器的转速差,利用压力计测量系统内部作用腔中的压力变化,分析压力随输入转速差变化的情况。结果表明:当输入转速差达到一定值时,液压系统可以在作用腔中建立起压力环境;且系统压力随输入转速的增大而增大,但存在极大值。实验结果和分析结论再次验证了本文提出的供轮式车辆使用的新型液力自举式限滑差速器系统的正确性和可行性。
With the rapid development of the auto industry and the widespread popularity of the family car, vehicle safety has become an important research subject in auto industry field. Anti-slip control of the cars is always the emphasis and difficulty on the vehicle safety control. There is a higher requirement of anti-slip ability due to the faster and faster driving speed and more and more dreadful driving conditions. Current control methods mainly aim at controling vehicle stability and increasing the traction of the vehicle. Although these control methods have a significant effect, there are still some problems that must be solved urgently. The anti-slip control principle, realizing way and limited slip performance of the limited slip system were studied in this paper.
     According to the problems existed in limited slip differential (LSD) mechanism used widely in wheeled vehicle currently, a novel hydraulic bootstrapped limited slip differential was proposed. Compared with the other initiative anti-slip differential, one of its obvious characteristic is that a complete hydraulic system is integrated within the differential case. It does not need the sensors to measure the variation of the car driving parameters during the working period and has higher reliability for that there is no circuit within it. By the space cam mechanism, this new LSD can adjust the output pressure automatically to regulate the lock degree of the differential according to the speed difference between the two half axles.The cam mechanism, which is composed of half axle gear and the follower located between the differential case and the half axle gear, is the key part of the differential.
     A new method was introduced because that the traditional reversal method was not suitable to calculate the work profile surface of the space cam mechanism. Based on the conjugated surface meshing theory and the differential geometry theory, the formulas of the induced normal on contact points, the pressure angle and the working profile surface of the new LSD cam mechanism were deduced clearly. The designing example showed that the value of the pressure angle and the induced normal curvature on every contact point could be got directly by the new method although it was not understandable as reversal method. The conclusion that there was cubic relationship between the hydraulic pressure and the size of the clearance was obtained from those functions. The differential anti-slip ability could be adjusted by changing the size of the clearance.
     The differential simulated software was developed on the basis of the experiment data provided by North Vehicle Research Institute. The software had been used in the friction disk working condition research after it was checked and accepted by North Vehicle Research Institute. Polynomial fitting is the traditional method to describe the mathematic model of the engine, but the low precision is the great problem and even there are fitting errors on the experiment data points. A new method was developed to establish the engine mathematic model because of the flaws of the traditional way by the Polynomial fitting instead of cubic B-spline algorithm. This method has higher precision and no fitting error on the experiment data points. In order to reflect the influence of the differential working condition affected by road exactly, a custom program language was defined to describe the routine and the road surface condition mathematic model. The Road model could be got exactly by adding friction ratio and surface roughness of the road for analyzing the differential working condition.
     Finally, the experiment of testing the relationship between the pressure of hydraulic system output and the rotational speed difference of the differential was implemented on the experimental platform made by myself. A half axle was motored by an AC asynchronous motor with the belt, and the pressure of the acting room was measured by a hydraulic pressure meter. The results showed that the pressure environment in the acting room could be established if the rotational speed difference between the two axles exceeded some limit. The system output pressure became higher as the speed difference got bigger, but there was a maximum. The experiment results and the conclusions indicated that the novel hydraulic bootstrapped limited slip differential was correct and practicable.
引文
[1]工刚,远德玉.中国能否克降美国的汽车文化[J].东北大学学报(社会科学版).2002.4(4).241.243
    [2]张宝成.汽车驱动防滑控制与动力学控制的理论研究[D].上海.同济大学.2003.1-6
    [3]李静.4x4越野汽车牵引力控制策略与控制算法研究[D].吉林.吉林人学.2000.1-4
    [4]岳惊涛.越野汽车驱动防滑控制逻辑与算法研究[D].天津.天津大学.2005.1-3
    [5]邱绪云.汽车底盘集成控制系统设计与开发[D].上海.同济大学.2006.1.8
    [6]Hossein Mirzaeinejad, Mehdi Mirzaei. A novel method for non-linear control of wheel slip in anti-lock braking systems[J]. Control Engineering Practice.2010.18(8).918-926
    [7]Franz X. Stelzeneder, H. Aitzetmuller. ADM-A New Drivetrain Management[C]. Proceedings of the FISITA World Automotive Congress. Seoul, Korea.2000.
    [8]李静,李幼德等.基于快速成型技术的牵引力控制系统[J].吉林大学学报(上学版).2004.34(2).202-204
    [9]王建华,王云成,付铁军,张宝生.装有机械摩擦片式限滑差速器后轮驱动车辆动力性研[J].吉林大学学报(工学版).2006.36(2).161-165
    [10]工志铁.车用限滑差速器转矩特性障分析及其对操纵稳定性影响[D].吉林.吉林大学.2004.2-9
    [11]张金兴.对工程机械发展的思考[J].工程机械.2001.32(2).26-28
    [12]范仲伟,李卓.制动介入式限防滑差速器控制策略研究[J].商品储运和养护.2008.30(2).112.113
    [13]William F. Muehl. Differential Gearing for Automobiles[P]. American.1090082. Mar.10,1914. 1-5
    [14]Lewis H Scurlock. Differential Mechanism[P]. Amerian.1711546. May 7,1929.1-7
    [15]王小椿,吴序堂,彭伟.高性能变传动比差速器的研究[J].西安交通大学学报.1990.24(2).2.8
    [16]冯桂军,邹慧君.变传动比的齿轮五杆机构的特性研究[J].机械设计与研究.2005.21(3).53.55
    [17]姜虹,一种新型的垫垒式限滑差速器[J].汽车上程.2007.29(5).441-444
    [18]姜虹,王小椿.三周节变传动比限滑差速器性能分析及试验研究[J].工程机械.2006.37(12).19-22
    [19]工小椿,刘冠礼,刘文山.变传动比限滑差速器总成[P].中国.01251315.6.2003.5.28.1-3
    [20]黄泽华,工小椿.具有自锁功能的变传动比限滑差速器[P].中国.200810104696.7. 2009.12.09.1-6
    [2l]贾巨民,高波,赵德龙.非圆锥齿轮线切割加工原理与方法[J].中国高校科技与产业化.2006.(S3).208-210
    [22]贾巨民,高波,赵德龙.基于保测地曲率映射的非圆锥齿轮传动设计分析方法[J].机械工程学报.2008.44(4).53-57
    [23]贾巨民,高波,乔永卫.越野汽车变传动比差速器研究[J].汽车工程.2003.25(5).499-500
    [24]贾巨民,高波.越野汽车分动器非圆行星差速器概念模型[J].中国机械工程.2008.19(24).3003-3005
    [25]贾巨民等.变速比非圆行星齿轮限滑差速器[P].中国.200910068986.5.2009.05.22.1-5
    [26]David W.L. Limited slip differential[P]. Amerian.4754661. Jul.2,1988.1-14
    [27]Raymond Drago,Glenn Mills. High Profile Conctact Ratio, Non-involute Gear Tooth Form and Methord[P]. American.4640149. Feb.3,1987.1-3
    [28]魏宸官,赵家象.液体粘性传动技术[M].第一版.国防工业出版社.1996.51-77
    [29]徐立辉.粘性联轴器工作特性的仿真分析[D].吉林.吉林大学.2008.6-20
    [30]工军,郭孔辉,王云成,林逸,工望予.粘性联轴器转矩特性研究[J].吉林工业大学自然科学学报.1999.29(2).8-13
    [3l]王军.四轮驱动汽车粘性联轴器转矩特性研究[D].吉林.吉林大学.1999.10-16
    [32]祁炳楠,张利鹏.粘性限滑差速器原理与应用研究[J].机械设计与制造.2010.(6).76-78
    [33]候运丰,刘雨.托森差速器的传动特性分析[J].机械设计.2008.25(3).33-35
    [34]刘哲义,曹泗秋.托森差速器结构特征与工作原理浅析.汽车研究与开发.1999.(6).14-16
    [35]姜虹,王小椿.具有非对称结构的限滑差速器[P].中国.200710064044.0.2007.02.15.1-3
    [36]张晋西,张甲瑞,郭学琴,周静.直齿差速器设计构想与运动仿真[J].现代机械.2009.(1).37.38
    [37]Lee,KuoMing. Limied Slip Differential[P]. Europ. EP2459452A2. Mar.03,2010.1-7
    [38]林国湘.一种新型差力差速器的研制[J].金属矿山.2005.(11).46-47
    [39]张社民,罗洪田.新型差速器机构的创新构思[J].农业机械学报.1994.25(3).12l-123
    [40]张社民,罗洪田.高性能差速器的理论研究[J].西安交通大学学报.1993.27(5).8l-86
    [41]张社民,罗洪田.一种新型防滑差速器的理论研究[J].机械设计专利.1994.(6).54-56
    [42]刷殿玺.无锁控滑差速器[P].中国.CNl400118A.2002.8.29.1.7
    [43]陈平生,李学胜等.可自动差扭的差速器[P].中国.CNl236067.1999.11.24.1-7
    [44]Cameron, T.M., Jao, T.C., Hewette, C., McComba, T., DeGonia, D. Effect of Limited Slip Clutch Friction on The Driveline Dynamics of A Rear Wheel Drive Vehicle Coasting in A Turn[J]. SAE International Journal of Fuels and Lubricants.2009. (1).873-882
    [45]Maki, R., Ganemi, B., Hoglund, E., Olsson, R. Wet Clutch Transmission Fluid for AWD Differentials:Influence of Lubricant Additives on Friction Characteristics[J]. Lubrication Science.2006. (2).87-99
    [46]Maki, R., Ganemi, B., Olsson, R. Wet Clutch Transmission Fluid for AWD Differential-Base Fluid Influence on Friction Characteristics[J]. Lubrication Science.2005. (1).47-56
    [47]Tatsuhiro Tomari, Yutaka Tashiro, Aklhiro Iwazaki. Limited Slip Differential[P]. American. Eeb.22,2005.1-12
    [48]Edward J. Goscenski, David A. Jason. Modulating Limited Slip Differential[P]. American. US005092825A. Mar.3,1992.1-7
    [49]Ralph B. Clark. Limited Slip Differential with Clutch Control Means[P]. American.4041804. Aug.16,1977.1-5
    [50]Gotz von Hiddessen, Dieter Wachtel. Limited Slip Differential with Locking Clutch Operated by An External Actuator of the Axial Position-cylinder Type[P]. American.4583424. Apr.22,1986.1-7
    [51]Robert K. Nelson. Limited Slip Differential Device. American[P].3448635. Jun.10,1969.1-4
    [52]Joseph A. Dick. Lock Up Limited Slip Differential[P]. American.5217416. Jun.8,1993.1-6
    [53]岳惊涛,王太勇,王伟,李静.虚拟环境下轻型越野汽车限滑差速器装置仿真[J].吉林大学学报(工学版).2005.35(1).12-17
    [54]王建华.摩擦片式限滑差速器开发及其性能的研究[D].吉林.吉林大学.2002.5-15
    [55]孙吉宝.车轮打滑的克星美国伊顿锁式差速器.汽车与配件.2005.(13).10
    [56]John Gray Prultt. Magnetic Testing Methord and Apparatus[P]. Amerian.2428471. Feb.8,1947.1-4
    [57]J. Rabinow. Magnetic Fluid Torque and Force Transmitting Device[P]. Amerian.2575360. Oct.31,1951.1-8
    [58]Chris. A Papadopoulos. Brakes and Clutches Using ER Fluids[J]. Mechatronics.1998. (7). 719-726
    [59]Usob Lee, Dohyun Kim, Nahmkeon Hur, Doyoung Jeon. Design Analysis and Experimental Evaluation of An MR Fluid Clutch[J]. Journal of Intelligent Material Systems and Structures. 1999. (9).701-707
    [60]W.H. Li,H. Du. Design and Experimental Evaluation of A Magnetorheological Brake[J]. Int. J. Adv. Manuf. Technol.2003.508-515
    [61]屈文涛,王辉.磁粉离合器在汽车差速器系统中的应用[J].机械设计与制造.2005.(12).52.54
    [62]William R. Kelley Jr. Limited slip differential[P]. American.7357748B2. April.15,2008.1-6
    [63]王建华.车辆电控限滑差速器结构及控制技术研究[D].吉林.吉林大学.2006
    [64]Martin Kaplan. Electronically Controlled Hydraulic Actuator for Limited Slip Differential Assembly[P]. American. US6733411B1.5-9
    [65]James L. Forrest. Electronically Controllable Limited Slip Differential[P]. American.5989147. Nov.23,1999.29-43
    [66]Aono Koichi. Limited Slip Differential[P]. Europ. EP0258997B1. Ded.27,1990.1-10
    [67]Earl James Irwin. Electronically Controlled Limited Slip Differential Assembly[P]. American. US6398686 B1. Jun.4,2002.1-9
    [68]Kiyotaka Ozaki, Shuuji Torii. Limited Slip Differential[P]. American.4679463. Jul.14,1987. 1-14
    [69]Robert B. Kennicutt. Limited Slip Differential With Clutch Control Means[P]. American. 3724289.1-6
    [70]王云成,王建华.电控限滑差速器对汽车动力性的影响[J].吉林大学学报(工学版).2008.38(1).18-22
    [71]郑建辉,李红等.摩擦片离合式限滑差速器[P].中国.200820068749.2009.07.29.1.8
    [72]孙桓,陈作模.机械原理[M].第六版.北京.高等教育出版社.2001.262.264
    [73]刘惟信.汽车设计[M].第一版.北京.清华大学出版社.2006.
    [74]刘惟信.圆锥齿轮与双曲面齿轮传动.第一版.北京.人民交通出版社.1980.31.77
    [75]刘惟信.圆锥齿轮与双曲面齿轮传动(汽车设计丛书).第一版.北京.人民交通出版社.1980
    [76]陆敏恂,李万莉.流体力学与液压传动[M].第一版.上海.同济大学出版社.2006.40-42
    [77]Schlichting Hermann. Boundary-Layer Theory[M]. Edition 6. McGraw-Hill.1968.77
    [78]盛敬超.液压流体力学[M].第一版.北京.机械工业出版社.1982.202.223
    [79]朱惠莲.发动机特性曲线的数学拟合方法[J].农机化研究.2006.(10).218-22l
    [80]赵亚男,赵福堂,刘碧荣.汽车发动机特性仿真研究[J].北京交通大学学报(自然科学版).2008.32(1).97-100
    [81]江发潮,陈全世,曹正清.发动机特性数值仿真方法的研究[J].发用发动机.2004.(4).32.34
    [82]南京汽车研究所,郑州机械研究所.GB/T 7031-2005.机械振动、道路路面谱测量数据报告[S].北京.中国标准出版社.2006.12-13
    [83]杨瑞峰.高速公路路面功率谱调查测量的研究[D].吉林.吉林大学.2004.1-30
    [84]王新明,王秉纲.高速公路路面功率谱[J].交通运输工程学报.2003.3(2).53-56
    [85]杨益明,刘奕贯.路面不平度数学模型的研究进展[J].上海汽车.2010.(3).23.26
    [86]薛贯海,马吉胜,崔清斌.由路面谱重构路面不平度的AR模型法[J].军械工程学院学报.2005.17(2).20-22
    [87]唐光武,贺学锋,颜永福.路面不平度的数学模型及计算机模拟研究[J].中国公路学报.2000.13(1).114-117
    [88]李晓雷,韩宝坤用小波变换分析路面不平度及振动响应[J].北京理工大学学报.2003.23(6).717-719
    [89]喻凡,林逸.汽车系统动力学[M].第一版.北京.机械工业出版社.2005.146.151
    [90]潘双夏,陈助碧,冯培恩M-File S-函数在时域路面不平度建模中的应用[J].中国工程机械学报.2006.4(4).379-384
    [91]边明远.汽车防滑控制系统(ABS/ASR)道路识别技术及车身速度算法研究[D].北京.北京理工大学.2003
    [92]Brener B, Eichhorn U. Measurement of Tyre-Road Ahead of the Car and Inside the Tyre[C]. Proceedings of the International Symposium on Advanced Vehicle Control. Japan.1992. Japan. Society of Automotive Engineers of Japan.1992.347-353
    [93]Wang J, Agrawal P, Alexander L. An Experimental Study with A ltemate Measurement Systems for Estimation of Tire-road Friction Coefficient[C]. Proceedings of American Control. Denver.2003. USA. American Automatic Control Council.2003.4957-4962.
    [94]Eichhorn U, Roth J. Prediction and Monitoring of Tyre-Road Friction[C]. FISITA 1992 Total Vehicle Dynamics proceedings of the 24th Congress. London.1992. England. International Federation of Societies of Automobile Engineering.1992.
    [95]E Bakker, H Pacejka, L Lidner. A New Tire Model with and Application in Vehicle Dynamics Studies[J]. Society of Automotive Engineers.1989.101-113
    [96]刘国福,张圮,工跃科,郑伟峰.一种基于模型的最佳滑移率计算方法[J1.公路交通科技.2004.21(7).111-114
    [97]葛安林.车辆自动变速器理论与设计[M].第一版.北京.机械工业出版社.1993.
    [98]葛安林.AMT换挡品质研究[J].汽车技术.2003.(2).43.45
    [99]闫勋成.城市公交车AMT综合控制技术研究[D].吉林.吉林大学汽车工程学院.2004.55-64
    [100]张自义.工程车辆三参数模糊自动换挡规律研究[D].吉林.吉林大学汽车工程学院.2007.55-64.34-46
    [101]王文成.神经网络及其在汽车上工程中的应用[M].第一版.北京.北京理工大学出版社.1998
    [102]Oliver Nelles. A learning driving strategy for automated transmission. Intelligent Vehicle Initiative Traffic[C]. Detroit, MI,USA.2003.2003.01.053
    [10]周学建,主木,文春,志立.车辆自动变速器换挡规律的研究现状与展望[J].农业机械学报.2003.34(3).32-35
    [104]雷晓冬.电控机械自动变速器系统换挡规控制策略研究[D].重庆.重庆大学机械工程学院.2005.22-46
    [105]何忠波,白鸿柏,孔庆春.基于驾驶员意图的AMT车辆控制研究[J].军械工程学院学报.2005.17(3).24-28
    [106]朱振宇.城市公交车电控机械自动变速器换挡机构设计与换挡规律研究[D].湖北.武汉科技大学.2008.28.29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700