基于限滑差速系统的大型轮式装载机行驶驱动性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮式装载机作为一种土方机械,它的工作环境复杂多变,工作场地条件恶劣。装载机经常会遇到两侧轮胎路面附着条件不同的情况,路面附着条件的差异会产生不同程度的轮胎滑动。过度的轮胎滑动会造成装载机通过性、驱动性和燃油经济性变差,工作效率降低。同时,轮胎的滑动也是导致轮胎磨损,影响轮胎使用寿命的重要因素之一。
     现代装载机多采用在驱动桥装配限滑差速器来解决以上问题。较常见的是在前驱动桥装配摩擦片式限滑差速器,部分装载机在前、后驱动桥都有装配。在驱动桥上装配摩擦片式限滑差速器在不同程度上改善了由轮胎过度滑动带来的诸多问题。因此,本文主要内容是通过研究摩擦片式限滑差速器的工作原理和特性,分析不同驱动桥配置对装载机驱动性、燃油经济性、工作效率和轮胎滑转率等方面的影响。
     虽然摩擦片式限滑差速器在轮式装载机上的应用在一定程度上改善了装载机的实用性,但仍存在一定的局限性。比如在转向过程中,摩擦片式限滑差速器不能解锁,影响了装载机的转向能力,降低传动系统的效率,增加轮胎磨损。另外,其锁紧系数不能调节,影响到其对不同工况的适应性和传动系统的效率。所以,本文的另一部分内容是在前面研究的基础上探讨电控限滑差速器在轮式装载机上的应用性。本文主要做了以下的工作:
     1.通过对摩擦片式限滑差速器的结构特性和工作原理的分析,推导了摩擦片式限滑差速器的数学模型。在此基础上,从动力学及运动学角度入手,推导了主动式限滑差速器的数学模型,在MATLAB/SIMULINK环境中建立了二者的仿真模型;
     2.基于80型轮式装载机建立了铰接式车辆8自由度车辆动力学数学模型、动力传动系统数学模型,并在MATLAB/SIMULINK环境下建立了车辆动力学、动力传动系统和轮胎力学的仿真模型;
     3.分别设计了装载机直线行驶和转向行驶过程中主动式限滑差速器的控制策略。根据实际情况,设定了四种驱动桥配置(配置1:前、后桥装配主动式限滑差速器;配置2:前、后桥装配摩擦片式限滑差速器;配置3:前、后桥装配开式差速器;配置4:前桥装配摩擦片式限滑差速器,后桥装配开式差速器)。在几个典型工况和不同路面条件下,对以上四种驱动桥配置对装载机各项性能的影响进行对比分析。
     得到的主要结论有:
     1.直线行驶时,在极端路面条件下,配置1和配置2装载机能保证装载机的通过性,在行驶速度和牵引效率方面前者优于后者;在一般路面条件下,配置1、配置2和配置4装载机都能保证车辆较好的驱动性能。由于锁紧系数不能调节,摩擦片式限滑差速器相比于主动式限滑差速器在差速器传动效率方面略显不足,影响了传动系统效率;
     2.转向行驶时,配置1装载机转弯半径最小,有利于工作效率的提高,配置2和配置4装载机转弯半径较大。相对于配置2和配置4,配置1装载机能降低轮胎的磨损,提高装载机转向轻便性;
     3.在V型作业循环工况下,相对于配置3,配置1、配置2和配置4装载机完成一次作业循环的时间分别降低了6.2%、3.4%和2.7%;完成一次作业循环所消耗的燃油量分别降低了7.5%、4.7%和3.5%;铲入深度分别提高了13.9%、7.8%和3.5%。配置1和配置2装载机都能降低轮胎滑转量,相比之下前者能更大程度降低轮胎磨损。
As a type of earth moving machinery, Wheel loaders are mainly operated on roughterrain with complex work environment. They are often encountered on the terrain withdifferent adhesion conditions between tires. The differences of the road-tire adhesioncoefficients will produce different levels of tire sliding. Excessive sliding of the tires canlower the drive performance, transmission efficiency, passing ability and fuel economy. Inaddition, the slip rate of the tires is one of main factors affecting the critical wear life ofwheel loader tires.
     At present, limited-slip differential is usually assembled in drive axle of modernwheel loaders to solve the above problems, most in front drive axle, others in both frontand rear drive axles. The series of problems caused by excessive tire sliding can beimproved at some level by the application of drive axle with limited-slip differential.Therefore, the main purpose of this paper is analyzing the impact on drive performance,transmission efficiency, passing ability and fuel economy of loaders produced by the aboveimprovements, based on the study of the working principle and characteristics oflimited-slip differential.
     The previously mentioned problems have been improved by the application oflimited-slip differential to a great extent, but limitations still exist. For example, in thesteering process, the limited-slip differential can not be unlocked which will affect theloader's steering ability, reduce the transmission efficiency and decrease tire wear. Inaddition, the locking coefficient can not be adjusted, which will also affect its adaptabilityto different working conditions and transmission efficiency. So, another part of the purposeof this article is to explore utility of the electronically controlled differential on wheelloaders in the basis of previous studies. In this paper, the following work is completed:
     1. The derivation of the limited-slip differential mathematical model and establishmentof the simulation model is completed by the study of Structural characteristics and workingprinciples. mathematical model and simulation model of active differential are alsoobtained at dynamics and kinematics point of view.
     2. Mathematical model of8-DOF vehicle dynamics, powertrain system and tire dynamics are deduced based on80type wheel loader. And the simulation model is built inMATLAB/SIMULINK environment.
     3. The control strategy of active differential is designed separately based on thedriving and steering process. According to the actual situation, four types of driveaxles(type1:with active differentials in both front and rear drive axles; type2:withlimited-slip differentials in both front and rear drive axles; type3:with open differentials inboth front and rear drive axles; type4:with limited-slip differential in front drive axle, withopen differential in rear drive axle;) configuration are designed. in several typical workingconditions, the impact of the four types of drive axle on loaders has been analyzed.
     The main conclusions are:
     1. In extreme road conditions, loader with type1and type2drive axles can ensure itspassing ability, in consideration of adaptability to the extreme road conditions, former issuperior to the latter, mainly in the vehicle speed and traction efficiency. Under normalroad conditions, loader with type1, type2and type3drive axles can guarantee the driveperformance. The locking coefficient of limited-slip differential is un-adjustable, whichaffects its adaptability to different working conditions and transmission efficiency.
     2. In steering process, loader with type1axle can turning with a smaller radius, whichis beneficial to working efficiency. By contrast with type2and type3, loader with type1axle can enhance the tire wear, and improve the steering portability.
     3. In V type operation cycle condition, by contrast with type3, loader with type1,type2and type3reduce the time6.2%,3.4%and2.7%, respectively. And the fuelconsumption is reduced by7.5%,4.7%and3.5%, respectively. Depth of Shoveling isincreased by13.9%,7.8%and3.5%, respectively. Loader with both type1and type2driveaxles could lower the amount of sliding, the former is advantageous in reducing the tireattrition.
引文
[1] Tatsuro Muro. Estimation of Wear Life of Wheel loader Tyre[J]. Journal of Terramechanicss,1992,Vol.29(1):137-147.
    [2]陈家瑞.汽车构造.人民交通出版社[M].2000,第三版:133-141.
    [3]毛啸滇.防滑差速器应用研究[D].合肥工业大学,2006.
    [4]王建华,王云成,付铁军,张宝生.装用机械摩擦片式限滑差速器后轮驱动车辆的动力性[J].吉林大学学报(工学版),2006, Vol.36(2):161-165.
    [5]谢文云.电控限滑差速器限滑转矩与整车性能匹配的仿真研究[D].吉林大学,2007.
    [6] Edoardo Sabbioni, Leonidas Kakslis and Federrico Cheli. On the Impact of the MaximumAvailable Tire-Road Friction Coefficient Awareness in a Brake-Based Torque Vectoring System[J].SAE INTERNATIONAL,2010-01-0116.
    [7] Indrasen Karogal and Beshah Ayalew. Independent Torque Distribution Strategies for VehicleStability Control[J]. SAE INTERNATIONAL,2009-01-0456.
    [8]陶礼.轮式工程机械防滑差速系统设计[D].西安科技大学,2009.
    [9]王建华,王云成,付铁军,张宝生.转矩式限滑差速器结构性能分析及其评价[J].汽车技术,2005(9):16-20.
    [10]贾爱芹.轮式工程机械粘性限滑差速系统的研究[D].西安科技大学,2008.
    [11] Federico Cheli, M. Pedrinelli, F. Resta and A. Zorzutti. Development of a Control Strategy for aSemi-Active Differential for a High Performance Vehicle[C]. SAE TECHNICAL PAPER SERIES,2007-01-0927.
    [12] Ioannis Nerantzis, Emmanouil Athanasopoulos and Athanassios Mihailidis. Handling Performanceof a Vehicle Equipped with an Actively Controlled Differential[C]. SAE INTERNATIONAL,2011-01-1557.
    [13]何波.轮式装载机驱动桥限滑差速器工作性能分析[D].吉林大学,2009.
    [14] Marco Pedrinelli and Federico Cheli. On the Powertrain Dynamics Influence on VehiclePerformance: the Differentials[J]. SAE INTERNATIONAL,2006-01-0821.
    [15]王立华,李润方,林腾蛟等.新型高摩擦式防滑差速器的运动几何分析[J].机械研究与应用.2005.8, Vol.18(4):25-27.
    [16]吴跃成,季小伟,谢佩,傅丽贤.基于主动限滑差速器的ZL50装载机四轮驱动仿真分析[J].中国机械工程,2011.11, Vol.22(21):2638-2641.
    [17] John Park, Jeff Dutkiewicz and Ken Cooper. Simulation and Control of Dana’sActive Limited-SlipDifferential e-Diff[C]. SAE TECHNICAL PAPER SERIES,2005-01-0409.
    [18] Jae Lew, Damrongrit Piyabongkarn and John Grogg. Minimizing Dynamic Rollover Propensitywith Electronic Limited Slip Differentials[C]. SAE INTERNATIONAL,2006-01-1279.
    [19] Riccardo Marino and Stefano Scalzi. Integrated Control of Active Steering and ElectronicDifferentials in Four Wheel Drive[C]. SAE International,2009,01-0446.
    [20] Damrongrit Piyabongkarn, John Grogg, Qinghui Yuan and Jae Lew. Dynamic Modeling ofTorque-Biasing Devices for Vehicle Yaw Control[C]. SAE International,2006-01-1963.
    [21] Damrongrit Piyabongkarn, Jae Lew. Stability-Enhanced Traction and Yaw Control using ElectronicLimited Slip Differentia[C]. SAE International,2006-01-1016.
    [22] Craig S. Ross, Clinton E. Carey,Todd Schanz and Edmund. F. Gaffney III. Development of anElectronically-Controlled Limited-Slip Differential (eLSD)for FWD Applications[C]. SAEInternational,2007-01-0925.
    [23] Federico Cheli and M. Pedrinelli,Vehicle Dynamics Control System Actuating an ActiveDifferential[C]. SAE TECHNICAL PAPER SERIES,2007-01-0928.
    [24]王建华,王云成,付铁军,张宝生.主动控制式限滑差速器结构分析及其性能评价[J].汽车技术,2008(7):35-43.
    [25] Huchtkoetter. H, Gassmann. T. Vehicle Dynamics and Torque Management Devices[C]. SAE Paper,2004.
    [26]王晓峰.80型轮式装载机动力传动系统性能仿真分析[D].吉林大学,2009.
    [27]庄严.伊顿限滑差速器首入中国装载机市场[J].专用汽车与配件,2010.12:46-47.
    [28]王雪莲.80型轮式装载机动力系统工作特性研究[D].吉林大学,2011.
    [29]郭彦颖. CVT车辆中发动机建模与整车动力性仿真分析[D].吉林大学,2005.
    [30]80型轮式装载机技术资料.吉林长春.
    [31]王国彪.发动机与液力变矩器共同工作特点的优化算法[J].工程机械,1998(3):29-31.
    [32]王爱红,张洪等.轮式工程车辆动力传动系动态仿真系统研发[J].机械管理开发,2004.6(3):10-14.
    [33] Matthew Fox, John Grogg. Development of Front-Wheel-Drive Elsd for Efficient Performance andSafety [J]. SAE International,2012-01-0305.
    [34]刘悦,刘爽,鲁统利.液力变矩器动态特性分析[J].吉林工学院学报,2002,Vol.23(1):56-58
    [35]陈东升,项昌乐,刘辉.液力变矩器的动态特性和动力学模型研究[J].中国机械工程,2002,13(11):913-916.
    [36]冯能莲,郑慕侨,马彪.液力机械传动车辆起步加速动态性能仿真[J].农业机械学报,2002.1,Vol.33(1):32-35.
    [37]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术,1996(7):1-7.
    [38]王和毅,谷正气.汽车轮胎模型研究现状及其发展分析[J].橡胶工业,2005, Vol.52:59-62.
    [39] Adam Rehnberg. Vehicle Dynamic Analysis of Wheel Loaders with Suspended Axles[D]. KTH,2008.
    [40] Nasser Lashgarian Azad. Dynamic Modelling and Stability Controller Development for ArticulatedSteer Vehicles [D]. University of Waterloo,2006.
    [41]孙逢春.轮胎侧偏动力学模型的非线性分析[J].汽车工程,1993,15(5):257-262
    [42]魏朗.用于车辆碰撞事故中的车辆动力学模拟的轮胎模型分析[J].西安公路交通大学学报,1999.4, Vol.19(2):73-76.
    [43]曾庆强.80型轮式装载机结构系统多体动力学分析[D].吉林大学,2010.
    [44]赵丁选,褚文农,张子达,刘宏伟.工程轮胎三维动态刚度与阻尼的测试[J].中国公路学报,1994, Vol.7(1):85-87.
    [45]刘刚,张子达,赵丁选.工程轮胎静力学特性试验研究与参数识别[J].工程机械,2004(7):22-29.
    [46]赵丁选,燕棠,陈之立,许纯新.铰接式装载机重心位置的确定方法[J].工程机械,1990(9):12-16.
    [47]秦四成,阚君武.轮式装载机转向行驶轮荷分析[J].建筑机械与施工机械化,1997.4:24-25.
    [48]张洪欣.汽车系统动力学[M].同济大学出版社,1996:33-41
    [49]余志生.汽车理论[M].机械工业出版社,1990:144-159.
    [50]秦四成,黄海东,成凯.铰接式装载机转向过程运动分析[J].建筑机械,1995(8):26-28.
    [51]张扬,刘昕辉.铰接车体转向横摆稳定性[J].吉林大学学报,2012.3, Vol.42(2):266-271.
    [52]崔胜民.铰接转向工程机械动态数学模型的建立[J].工程机械,1991.5:11-14
    [53]米克奇.汽车动力学B[M].人民交通出版社,1979.9:6-25.
    [54]张国良,曾静等.模糊控制及其MATLAB应用[M].西安交通大学出版社,2002:70-73.
    [55]刘金锟.先进PID控制及其MATLAB仿真[M].电子工业出版社,2002:3-49.
    [56]丁华.后轮驱动汽车驱动防滑控制系统建模与控制研究[D].重庆大学,2009.
    [57]曾庆强,秦四成,赵腾云,王雪莲.装载机铲斗铲掘过程受力分析[J].工程机械,2011, Vol42(1):18-21.
    [58] E. Villani. Simulation and Control of Active Differential for Improving Vehicle Handling andLateral Performance[C]. SAE TECHNICAL PAPER SERIES,2007-24-0140.
    [59] Geng Cong, Hori Yoichi. Design of Body Slip Angle Observer Based on Nonlinear Tire Model forElectric Vehicle Stabilization Control with In-Wheel Motors[J]. IEEE Japan2007(1):39-44.
    [60]徐挺.铰接式工程机械不稳定转向过程运动学及动力学[J].工程机械,1979.2:1-9.
    [61] Leonidas Kakalis, Andrea Zorzutti and Federico Cheli. Brake Based Torque Vectoring for SportVehicle Performance Improvement[C]. SAE International,2008-01-0596.
    [62] N. L. Azad, A. Khajepour and J. McPhee. An Active Control Device Based on Differential Brakingfor Articulated Steer Vehicles[C]. SAE International,2006-01-3568.
    [63] N. L. Azad, J. McPhee and A. Khajepour. Tire Forces and Moments and On-road Lateral Stabilityof Articulated Steer Vehicles[C]. SAE International,2005-01-3597.
    [64]季小伟.使用主动限滑差速器的轮式装载机驱动性能仿真[D].浙江理工大学,2012.
    [65]谢佩.基于模糊控制的轮式装载机电液限滑差速器性能仿真分析[D].浙江理工大学,2010.
    [66]王建华,王云成,付铁军,张宝生.转矩式限滑差速器对后轮驱动汽车操纵稳定性影响的研究[J].汽车工程,2006, Vol.28(5):461-464.
    [67]郑洪兴.轮式工程机械自动防滑差速系统研究[D].中南林学院,2003.
    [68]南基信,秦四成,成凯,黄海东.双桥驱动铰接转向运盐车的静态转向力矩[J].中国机械工程,1996, Vol.7(3):79-81.
    [69]张扬.非机构地形下铰接式车体行的运动定性研究[D].吉林大学,2011.
    [70]张禹.轮式工程机械自动防滑差速系统轮速检测与控制[D].西安科技大学,2009.
    [71] Johan Markdahl, Gianantonio Bortolin, Ulf Andersson. Traction Control for Articulated Off-roadVehicles[C]. Reglerm te2010, Lund.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700