SMA绞线—叠层橡胶复合支座及其隔震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在结构隔震中,应用最为广泛的隔震元件是普通叠层橡胶支座和铅芯橡胶支座.由于普通叠层橡胶支座的水平刚度低,过大的水平剪切变形易导致支座失稳;而铅芯橡胶支座发生过大的水平剪切变形后无法恢复原状,降低了支座的自恢复能力.利用形状记忆合金(SMA)超弹性特性,在普通叠层橡胶支座四周安装SMA绞线,作为支座恢复力的补充,既提高了支座的水平侧移刚度,又可使支座发生过大的水平剪切变形后恢复到原位并保持支座的稳定。
     本文研制了一种SMA绞线˙叠层橡胶复合支座,并系统地研究了该支座的隔震性能以及对结构的隔震效果,为工程应用提供了科学依据,因而具有重要的理论意义和工程价值.主要研究工作和创新成果包括以下三个方面:
     (1)SMA绞线˙叠层橡胶复合支座的研制.通过SMA丝和SMA绞线的力学性能试验,验证了SMA绞线具有更好的超弹性性能.针对普通叠层橡胶支座水平侧向刚度和恢复能力低的问题,利用SMA材料的超弹性性能,将SMA绞线对角安装在普通叠层橡胶支座的四周,设计开发出一种新型SMA绞线˙叠层橡胶复合支座。
     (2)SMA绞线˙叠层橡胶复合支座隔震性能的振动台试验.通过在地震模拟振动台上的对比试验,分析了隔震层的位移幅值对SMA绞线˙叠层橡胶复合支座隔震性能的基本参数如等效水平刚度、最大恢复力和等效阻尼比等的影响及其规律,验证了SMA绞线˙叠层橡胶复合支座具有良好的隔震性能。
     (3)基于SMA绞线˙叠层橡胶复合支座的结构隔震研究.通过对未安装隔震支座、安装普通叠层橡胶复支座以及安装SMA绞线˙叠层橡胶复合支座的三种情况下四层框架结构地震响应的数值模拟和对比分析,进一步验证了本文所研制的SMA绞线˙叠层橡胶复合支座具有优越的隔震性能。
In seismic isolation of structures, ordinary laminated rubber bearing and lead rubber bearing are widely used as isolation components. Due to low lateral stiffness of the ordinary laminated rubber bearing, excessive lateral shear deformation may cause the bearing unstable. The lead rubber bearing can not restore to its original phase after excessive lateral shear deformation, which may reduce the self-restoring capacity of the bearing.
     By employing super-elasticity property of shape memory strands is installed all-around the ordinary laminated rubber bearing as a supplement of restoring capacity of the bearing. This not only increases the lateral stiffness of the bearing, but also makes the bearing restore to its original phase after excessive lateral shear deformation and keep the bearing stable.
     In this dissertation, a SMA-laminated rubber compound bearing is developed and the seismic isolation behavior of the developed bearing is systematically investigated. This provides a scientific reference for engineering application and has important theoretical significance and engineering value. The main research work and creative achievements are included three aspects as following:
     (1) Development on SMA strands-laminated rubber compound bearing. Through test on mechanical behavior of SMA wire and SMA strand, the SMA strand is proved to have better super-elasticity property. Against the problem of low lateral stiffness and restoring capacity of the original laminated rubber bearing and employing the super-elasticity property of SMA material, the SMA strands are installed all-around the ordinary laminated rubber bearing, and a novel SMA strands-laminated rubber compound bearing is designed and developed.
     (2) Shaking table test on seismic isolation behavior of the SMA strands-laminated rubber compound bearing. Through comparison test on earthquake simulation shaking table, the influence of displacement amplitude on fundamental parameters, including equivalent lateral stiffness, maximum restoring force and equivalent damping ratio and so on, of seismic isolation behavior of the SMA strands-laminated rubber compound bearing in investigated. This verifies that the SMA strands-laminated rubber compound bearing has good seismic isolation behavior.
     (3) Study on seismic isolation behavior of structure based on SMA strands-laminated rubber compound bearing. Through numerical simulation and comparison analysis for seismic responses of a four-story frame structure in the three cases of without any seismic isolation bearing, with original laminated rubber bearings or with SMA strands-laminated rubber compound bearings, the developed SMA strands-laminated rubber compound bearing is further proved to have superior seismic isolation behavior.
引文
[1]高小旺,龚思礼,苏经宇等,建筑抗震设计规范理解与应用,北京:中国建筑工业出版社,2002. 334~335.
    [2]周福霖,工程结构减震控制,北京:地震出版社,1997.38~115.
    [3]周锡元,韩 淼,马东辉等, 叠层钢板橡胶垫的稳定性分析与强度验算, 砌体结构隔震减震方法及工程应用研究论文报告选编,中国减震科学研究院工程抗震所,1996.24~35.
    [4]庄鹏,薛素铎等, 新型 SMA-橡胶支座的研制及在网壳结构中的隔震分析, 北京工业大学学报,2004,30(2):176~179.
    [5]叠层橡胶支座隔震技术规程,中国工程建设标准化协会,2001.36~38.
    [6]高小旺,龚思礼,苏经宇等,建筑抗震设计规范理解与应用,北京:中国建筑工业出版社,2002(4):335~336.
    [7]Japan Society of Seismic Isolation. A Standard for Lead Rubber Bea-rings (Draft),1996,83~97.
    [8]高小旺,龚思礼,苏经宇等编,建筑抗震设计规范理解与应用,北京:中国建筑工业出版社,2002(4):336~338.
    [9]欧进萍,结构振动控制-主动、半主动和智能控制,北京:科学出版社,2003(11):395~416.
    [10]周庆文,周福霖, 叠层橡胶垫隔震性能及设计,工业建筑,2000(8):23~25.
    [11]刘季,周云, 耗能减震新技术研究, 全国第三届结构减震控制学术研讨会,广州,1995.8,231~235.
    [12]吴仕元等, 汕头金凤坛隔震楼工程技术分析,全国第三届结构减震控制学术研讨会,广州,1995.8,256~261.
    [13]洗巧玲,周福霖,王伟, 橡胶垫隔震框架结构试验研究,世界地震工程,1996(2):23~28.
    [14]刘文光,李峥嵘,周福霖等, 低硬度橡胶隔震支座基本力学性能及恢复力特性,地震工程与工程振动,2002(3):138~144.
    [15]魏陆顺,刘文光,周福霖,林佳,庄学真,隔震橡胶支座试验技术探讨,广州大学学报,2003(6):560~568.
    [16]Zhou F.L. "Seismic Isolation of Civil Building in P.R. China".Progress in Structural Engineering and Materials.2002, 3(3):132-137.
    [17]张敏政,孟庆利,裴 强,叠层橡胶隔震支座的动态稳定性和力学特性研究,地震工程与工程振动,2002,22(5):85~91.
    [18]李黎,熊世树,叠层橡胶隔震支座动力特性试验研究,华中理工大学学报,1998,26(2):74~76.
    [19]扬巧荣,庄学真,刘文光等,夹层橡胶隔震支座全刚性性能回转刚性及高压缩应力性能试验研究,地震工程与工程震动,2000(4):118~125.
    [20]华培忠,韩新民,李佩林等, 橡胶隔震支座力学性能试验研,地震研究,2000(1):90~94.
    [21]张耀庭,刘再华,小型叠层橡胶支座水平刚度的实验研究,世界地震工程,1999(2):56~60.
    [22]施卫星,李正升, 一种叠层橡胶支座动态性能试验研究,同济大学学报,1999(4):417~421.
    [23]张荫,姚谦峰,自阻尼叠层橡胶隔震支座力学性能试验研究及刚度分析,工业建筑,2003(9):44~47.
    [24]张荫,姚谦峰,自阻尼叠层橡胶隔震支座阻尼特性及恢复力模型,西安建筑科技大学学报,2003(2):120~126.
    [25]刁传苏,橡胶支座力学性能指标自动测试系统的研究,工程建设与档案,2002(2):142~144.
    [26]王东平,张燕,屈成军,叠层橡胶隔震支座的研制,特种橡胶制品,2000(3):25~28.
    [27]潘开名,刘斌,刘之洋等,叠层橡胶支座隔震结构地基-构动力相互作用分析,东北大学学报,2002(1):71~74.
    [28]张志强,陈守明,韩绪年等,叠层隔震橡胶支座的研制,橡胶工业,1998(9):545~549.
    [29]王亚勇,王 理,不同阻尼比长周期抗震设计反应谱,工程抗震,1990(3):21~26.
    [30]谢宁,国内叠层橡胶基础隔震的研究和应用,云南工业大学学报,1996(4):4~7.
    [31]朱宏平,唐家祥,叠层橡胶隔震支座的振动传递特性,工程力学,1995,12(4):109~114.
    [32]张燕,叠层隔震橡胶支座性能的影响因素,橡胶工业,2000(47):348~352.
    [33]赵斌,梅占馨,叠层橡胶支座的水平极限承载特性,世界地震工程1998(4):81~85.
    [34]刘文光,周福霖,庄学真等,铅芯夹层橡胶隔震垫基本力学性能研究,地震工程与工程振动,1999(l):93~99.
    [35]王建强,王利娟,铅芯叠层橡胶支座恢复力模型研究,世界地震工程2005(2):151~156.
    [36]李宏男,李忠献,祁 皑等,结构振动与控制,北京:中国建筑工业出版社,2005.380~391.
    [37]李杰,李国强,地震工程学导论,北京:地震出版社,1992.96~154.
    [38]唐家祥,刘再华,建筑结构基础隔震,武汉:华中理工大学出版社,1993.47~89.
    [39]舟久保,熙康,形状记忆合金,北京:机械工业出版社,1987.143~162.
    [40] Brinson L C, Lammering R. Finite element analysis of the behabvior of shape memory alloys and their applications. Int.J.Solids Struct.1993,30(23): 3261~3280.
    [41]杨杰,吴月华,形状记忆合金及其工程应用,合肥:中国科学技术大学出版社,1993.1~3.
    [42]王社良,形状记忆合金在结构控制中的应用,西安:陕西科学技术出版社,2000.17~24.
    [43]杜善义,冷劲松,王殿富,智能材料系统和结构,北京:科学出版社,2001.1~11.
    [44]徐祖耀,形状记忆材料,上海:上海交通大学出版社,2000.1~15.
    [45]T Takagi, A concept of Intelligent Materials, U.S.-Japan Workshop on Smart/Intelligent Materials Systems, Technomic Publishing Company Inc,1990:3~10.
    [46]CA Rogers, The Intelligent Material System Concept, U.S.-Japan Workshop on Smart/Intelligent Materials Systems, Technomic Publishing Company Inc, 1990:330~331.
    [47]Smith C A, Anderson E H, Passive damping by smart materials analysis and practical limitation,In:Proc of Smart Structure and mateials,1995,2(445):136~138.
    [48]Yukio.Adachi and Shigeki.unjoh. Experimental study on seismic response control of bridge by damper using shape memory alloys. In: Proceedings of the 2nd World Conference on Srructral Control.Kyoto, Japan:1998.
    [49]Yukio Adachi, Shigeki Unjoh. Development of shape memory alloy damper for intelligent bridge systems.In: Proceedings of the 2st International Workshop on Structural Control. Hong Kong, 1996:40~50.
    [50]F.Folk. Model free energy, mechanics and thermodynamics of shape memory alloys. Acta Metallurgical, 1980, 28:1773~1780.
    [51]Graesser, Cozzarelli. Shape-Memory Alloys as New Materials For a seismic Isolation. J. of Engineering Mechanics.1991,11~43.
    [52]Higasino .M, Aizawa .S, Clark .P .W, et al. Experimental and analytical studies of structural control system using shape memory alloy. In: Proceedings of the 2st International Workshop on Structural Control. Hong Kong, 1996:40~50.
    [53]Lin P H, Tobushi H, Tanaka K, et al. Pseudoelastic Behaviour of TiNi shape memory alloy subjected to strain variations, [J], J Intell Mater Syst Struct, 1994(5):694~701.
    [54]Graesser E J, Cozzarelli F A, A proposed three-dimension constitutive model for shape memory alloys. J. Intell. Mater. Syst.and Struct., 1994(5):73~83.
    [55]Tanaka K. A thermomechanical sketch of shape memory effect: one-dimension tensile behavior. Res. Mech, 1986,18(2):251~263.
    [56]Patoor E.et al. Thermomechanical constitutive equations for shape memory alloys. J. Phys. Ⅳ, 1 colloque, 1991, C.4.
    [57]Sun Q P, Hwang H C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloy. J. Mech. Phys. Solids, 1993,41(1):1~17.
    [58]Falk F. One-dimensional model of shape memory alloys. Arch. Mechanics, 1983,35(1):63~84.
    [59]Falk F. Pseudoelastic stress-strain curves of polycrystalline shape memory alloys calculated from single crystal data. Int. J. Eng. Sci., 1989,27(1):277~284.
    [60]Maugin S. Cadet S. Existence of solitary waves in martenstitic alloys. Int. J. Eng. Sci., 1991,29(2):243~258.
    [61]Abeyartane R, Knowles J K. Kinetic relations and the propagation of phase boundaries in solids. Arch Rational Mech., 1991,114(1):119~154.
    [62]Chein H W. Stress-induced phase transformations in solids and the associated double-well potentials. Int. J. Solids Struct, 1995,32(3/4):525~542.
    [63]李惠,毛晨曦,形状记忆合金 SMA 被动耗能减震体系的设计及参数分析,地震工程与工程振动,2002(4):54~58.
    [64]毛晨曦,李惠,欧进萍,形状记忆合金被动阻尼器及结构地震反应控制试验研究和分析,建筑结构学报,2005(3):38~43.
    [65]李惠,毛晨曦. 新型 SMA 耗能器及结构地震反应控制试验研究.地震工程与工程振动.2003,23(1):133~139.
    [66] 倪立峰,李爱群,左晓宝等,形状记忆合金拉压型超弹性阻尼器的试验研究,地震工程与工程振动,2003(5):205~211.
    [67]肖尔田,韩玉林,李爱群等, 基于形状记忆合金超弹性阻尼器的结构振动控制和地震时程分析,东南大学学报,2003(5):605~609.
    [68]倪立峰,李爱群,左晓宝等,工程结构的 SMA 超弹性减振技术及其应用研究,工业建筑,2003(6):1~6.
    [69]左晓宝,李爱群,倪立峰等,设置超弹性 SMA 阻尼器的框架结构地震反应分析,工业建筑,2004(10):13~17.
    [70]左晓宝,李爱群,倪立峰等,一种超弹性 SMA 复合阻尼器的设计与试验,东南大学学报,2004(4):459~464.
    [71]倪立峰,李秋胜,李爱群等,新型形状记忆合金阻尼器的试验研究地震工程与工程振动,2002(3):145~149.
    [72]韩玉林,李爱群等,基于形状记忆合金的结构振动控制研究与展望,东南大学学报,2000(30):146~153.
    [73]左晓宝,李爱群,倪立峰等,形状记忆合金在结构振动控制中的研究与应用,噪声与振动控制,2003(2):10~14.
    [74]左晓宝,李爱群,倪立峰等,超弹性形状记忆合金力学性能的试验研究,土木工程学报,2004(12):10~12.
    [75]彭刚,李黎,唐家祥, SMA 阻尼器的阻尼特性分析及器件设计方法,固体力学学报,2003(1):109~114.
    [76]姜袁,赵家成,彭 刚,SMA 阻尼器力学特性的初步试验研究,三峡大学学报,2003(4):305~309.
    [77]姜袁,彭刚,SMA 阻尼器在土木结构被动控制中的运用,应用力学学报,2004(4):88~93.
    [78]彭刚,李黎,唐家祥,建筑结构的 SMA 被动振动控制方法,力学季刊,2003(2):250~257.
    [79]彭刚,姜 袁,利用 SMA 开发耗能阻尼器的实验研究, 工程力学,2004(2): 183~187.
    [80]彭刚,张金惠,赵家成,形状记忆合金耗能阻尼器的阻尼特性理论分析,三峡大学学报,2002(4):293~299.
    [81]彭刚,李黎,唐家祥,形状记忆合金耗能阻尼器设计的理论方法,工业建筑,2002(8):47~51.
    [82]彭刚,刘智敏,装备 SMA 耗能阻尼器的框架结构动力响应分析,武汉大学学报,2004(1):89~94.
    [83]薛素铎,董军辉,卞晓芳等,一种新型形状记忆合金阻尼器,建筑结构学报,2005(3):45~50.
    [84]卞晓芳,薛素铎,MA-MR 复合型阻尼器,世界地震工程, 2004(2):23~28.
    [85]薛素铎,卞晓芳,MA-MR 阻尼器在大跨度挑篷结构中的减振控制研究. 空间结构,2005(2):19~24.
    [86]Reginald DesRoches. Seismic Mitigation of Bridges Using Smart Restrainers. Part of the SPIE Conference on Smart Systems for Bridges, Structures, and Highways, Newport Beach, California. 1999.3.
    [87]Boyd J G, Lagoudas D C. Thermomechanical response of shape memory composites. J. Intell. Mater.syst. and Struct., 1994, 5(3):382~390.
    [88]Berveiller M. et al. Thermomechanical constitutive equations for shape memory alloys. J. Phys. Ⅳ,1 Colloque, 1991,C.4
    [89]Yang J N, Akbarpour A, Ghaemmmahami P. New control algorithms for for structural control. J. Eng. Mech., ASCE, 1987, 103(12):1369~1386.
    [90]崔迪,李宏男,宋钢兵,形状记忆合金在土木工程中的研究与应用进展,防灾减灾工程学报.2005,25(1):90~94.
    [91]李忠献,陈海泉,刘建涛,应用 SMA 复合橡胶支座的桥梁隔震,地震工程与工程振动,2002,22(2):143~148.
    [92]陈海泉,李忠献,李延涛,应用形状记忆合金的高层建筑结构智能隔震, 天津大学学报,2002(6):761~766.
    [93]陈海泉,刘建涛,李忠献,应用形状记忆合金的桥梁结构振动控制研究及发展,世界地震工程,2002(2):85~90.
    [94]丁阳,张向荣,李忠献,应用 SMA 复合橡胶支座的大跨度空间结构隔震研究,沈阳建筑大学学报,2005(5):438~443.
    [95]崔迪,李宏男,宋钢兵,形状记忆合金在土木工程中的研究与应用进展,防灾减灾工程学报.2005,25(1):86~89.
    [96]王社良,沈亚鹏,形状记忆合金的力学特性及其工程应用,工业建筑,1998(3):32~35.
    [97]王社良,苏三庆,形状记忆合金的超弹性恢复力模型及其结构抗震控,工业建筑.1999,29(3):49~52.
    [98]王社良,惠宽堂,朱军强等, SMA 阻尼隔震性能研究,防震减灾工程研究与进展,2005(11):251~254.
    [99]王社良,惠宽堂,朱军强等,设有形状记忆合金 RCD 阻尼器隔震结构的地震反应分析,防震减灾工程研究与进展,20051(1):236~239.
    [100]薛素铎,庄鹏,李彬双,SMA-橡胶支座的力学性能试验研究,世界地震工程,2005,21(4):10~15.
    [101]李彬双,形状记忆合金—橡胶支座在大跨空间结构振动控制中的应用:[硕士学位论文],北京;北京工业大学,2004.
    [102]王征,陶宝祺,智能材料结构的振动抑制, 振动、测试与诊断,1995,15 (1):47~250.
    [103]S.G.Shu,D.C.Lagoudas,D.Hughes,etal.Modeling of a Flexible Beamactuated by shape memory alloy wires.SmartMater.Struct,1997,(6):265~277.
    [104]D.C.Lagoudas, A.Bhattacharyya. Modeling of thin layer extensional thermoelect ric SMA actuators.In2 ternational Journal of Solids and St ructures ,1998,35(324) : 331~362.
    [105]J.J.Mayes ,D.C. Lagoudas ,B.K. Henderson. An ex2 periment investigation of shape memory alloy springsfor passive vibration isolation. AmericanInstitute of Aeronautics and Ast ronautics Paper 2001. 45~69.
    [106]杨杰,吴月华,形状记忆合金及其工程应用,合肥:中国科学技术大学出版社,1993.3~9.
    [107] Greninger A B, Mooradian V G. Trans. AIME, 1938(128):337~343.
    [108]Tanaka K, Sato Y. Phenomenological description of the mechanical behavior of shape memory alloys.Trans. of SME, 1992,53(491):1368~1373.
    [109]Liang C, Rogers C A. One-dimension thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. And Struct., 1990,1(1):207~234.
    [110]Liang C, Rogers C A. A multi-dimensional thermomechanical constitutive relations for shape memory alloys. J. Eng. Math., 1992,26(3):429~443.
    [111] Boyd J G, Lagoudas D C. Thermomechanical response of shape memory composites. J. Intell. Mater.syst. and Struct., 1994, 5(3):382~390.
    [112]SUN Q P, Hwang H C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloy. J of Mech.Phys.Solids, 1993,41(1):1~17.
    [113] Falk F. Model free energy, Mechanics and thermodynamics of shape memory alloy. Acta. Metallurgical, 1980,30(2):115~118.
    [114] Falk F. One-dimensional model of shape memory alloys. Arch. Mechanics, 1983 35(1):63~84.
    [115] Falk F. Pseudoelastic stress-strain curves of polycrystalline shape memory alloys calculated from single crystal data. Int. J. Eng. Sci., 1989,27(1):277~284.
    [116] Maugin S. Cadet S. Existence of solitary waves in martenstitic alloys. Int. J. Eng. Sci., 1991,29(2):243~258.
    [117]Brinson L C, One-dimensional constitutive behavior of shape memory alloy:thermomechanical derivation with non-constant material functions and redefined maretnsite internal variable. J. Intell. Mater. Syst. And Struct., 1993,4(2):229~242.
    [118]Brinsion L C, Lammering R. Finite element analysis of behavior of shape memory alloys and their applications. Int. J. Solids Struct,1993,30(23):3261~3280.
    [119]陈海泉,应用形状记忆合金的大跨桥梁结构振动控制理论研究与振动台试验,[博士学位论文],天津;天津大学,2003.
    [120]黄克智,孙庆平,严文裔,热弹性马氏体相变塑性—细观力学本构模型、实验和数值模拟,机械强度,1999,17(3):48~60.
    [121]赵歆冬,王社良,惠宽堂等,设有形状记忆合金自复位阻尼器隔震结构的地震反应分析,西安建筑科技大学学报,2004(4):387~381..
    [122]秦惠增,任勇生,SMA 超弹性特性的分段线性化及其结构稳态响应研究,太原理工大学学报,2000(5):481~485.
    [123]李贵生,任勇生,土木工程结构抗震的 SMA 被动阻尼设计方法及其应用,太原理工大学学报,2001(2):112~115.
    [124]张纪刚,吴斌,欧进萍,锥形形状记忆合金阻尼器性能分析与试验研究,地震工程与工程振动,2004(6):126~131.
    [125]Lin B C and Tadjbakhsh I G. Performance of Earthquake Isolation Systems, J. of EM, ASCE, 15(3), 1987.
    [126]Greninger A B, Mooradian V G. Trans. AIME, 1938(128):337~343.
    [127]Graesser E J, Cozaarelli F A. Shape memory alloys as a new material for aseismic isolation. J. Eng. Mech., ASCE,1991,117(11):2590~2608.
    [128]H. Max Irvine, Cable structure, Eng:The MIT Press, 1981:87~127.
    [129]王社良,马怀忠,沈亚鹏,形状记忆合金在结构抗震控制中的应用,西安建筑科技大学学报,1998,30(2):115~118.
    [130]李桂青,邹祖军, 结构振动控制评述,地震工程与工程振动,1996, 16(3):72~78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700