输油管道中微弱应力波信号检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长输管道是一种方便经济的运输方法,在工业中有着广泛的应用。但管道运营过程中的泄漏事故不仅造成国民经济的重大损失,也严重污染了环境。因此,研究管道泄漏检测,将带来明显的经济效益和社会效益。
     基于应力波检测的管道防盗实时监测报警系统由基站测试单元和主站监控中心两部分构成,基站负责信号采集,主站负责盗油报警定位。本文研究了基站测试部分的硬件设计、调试及功能扩展。首先对应力波检测的原理从物理角度进行了分析。然后从设计的角度,讨论了硬件系统的主要组成。功能扩展方面讨论了超声防盗报警电路以及基站故障的智能检测电路。
     此外,本文研究了应用小波分析中的非线性阈值法抑制背景噪声,提高信噪比,从而改善远距离信号检测效果,提高检测距离。应用此方法,对管道防盗检测系统的现场试验表明了系统对盗油破坏的检测距离可以达到1kM。
     最后,讨论了管道模型的建立,以分析应力波在管道中的传输特性。借助假设约束条件,考虑土壤的阻尼作用,建立了地下管道的简化数学模型。
Long pipeline transportation is a convenient and economical way for oil transportation, and is widely adopted by industries. But the leakage accidents of oils not only bring great economic losses but also seriously pollute our environment. Thus researches on pipelines leakage detection will result in remarkable economic and social benefit.
    The stealth monitoring system based on stress wave detection technique for oil pipeline on-line monitoring is composed of two parts: the detection net nodes for signal acquisition and the host station for oil stealing alarming and location. In this paper, the hardware design, debugging and expanded function of the nodes is investigated. The principle of stress wave detection is analyzed from physical aspect, and the hardware test system is discussed. For the expanded function part, the ultrasonic testing circuits for anti-stealing and the smart detection circuits for failure diagnosis are discussed.
    The nonlinear threshold de-noising method of wavelet analysis is adopted for background noise cancellation and SNR (Signal to Noise Ratio) increasing. Thus the signal detection performance at long distance can be improved and the detection distance can be extended. Field experiments employing the above methods indicate that the distance of stress wave detection is more than 1 kilometer.
    The modeling of the stress wave going through the pipelines is discussed finally. By considering some restriction conditions and the earth damping, a simplified mathematical model of underground pipelines is setup.
引文
1.张布悦,王桂增.输油管线泄漏检测和定位技术综述.上海海运学院学报.2001,22(3):13-16.
    2. De Read J R. Comparison between ultrasonic and magnetic flux pigs for pipeline inspection. Pipes & Pipeline International, 1987, 1: 7-15.
    3. C. N. Owston. The magnetic flux leakage technique of NDT. British Journal of NDT. 1974, Vol. 20: 162-168.
    4. G. Z. Wang, C.Z. Fang. State estimation and leak detection and location in pipeline.IECON' 91: 155-160.
    5. Siebert H. A simple method for detecting and locating small leaks in gas pipelines.Process Automation. 1981, 14 (2): 90-95.
    6.靳世久,唐秀家.原油管道泄漏检测与定位.仪器仪表学报.1997,18(4):343—348.
    7.江崇礼,孟庆操.管道泄漏的压力测量诊断方法实验研究.大连理工大学学报.1998,38(1):101—104.
    8.王福明,胡志新.相关分析在油气输送管道检漏中的应用.油气田地面工程.1998,17(5):13-20.
    9. Guizeng Wang, Dong Dong, Chongzhi Fang. Leak detection for transport pipelines based on autoregressive modeling. IEEE Transactions on Instrumentation and Measurement.1993, 42 (1): 68-71.
    10.王立宁,李健.热输原油管道瞬态压力波法泄漏点定位研究.石油学报.2000,21(4):93-96.
    11. Ye Hao, Wang Guizeng,Fang Chongzhi. Application of wavelet transform to leak detection and location in transport pipelines. Engineering Simulation. 1996, 13: 1025-1032.
    12.唐秀家,颜大椿.基于神经网络的管道泄漏检测方法及仪器.北京大学学报(自然科学版).1997,33(3):319-326.
    13. Antonio C. Caputo. An inverse approach for piping networks monitoring, journal of Loss Prevention in the Process Industries. 2002, 15: 497-505.
    14. W Rafai, R J Barnes. Underlying performance of real time software based pipeline leak detection systems. Pipes and Pipelines International, 1999, 6: 44-51.
    15.吴庆曾.声波检测的发射与接收.中国地质灾害与防治学报.1998,9增刊:349-369.
    16.杨桂通,张善元.弹性动力学.北京:中国铁道出版社,1988:1—3.
    17.王礼立.应力波基础.北京:国防工业出版社,1985:1—2.
    18.萨韦利耶夫(苏).普通物理学第二卷波与光学.北京:高等教育出版社,1982:1.
    19.阿肯巴赫(美).弹性固体中波的传播.上海:同济大学出版社,1992:164-168.
    
    
    20.袁振明,马羽宽,何泽云.声发射技术及其应用.北京:机械工业出版社,1985:17,35.
    21.冯英.传感器电路原理与制作.成都:成都科技大学出版社,1997:211—217.
    22.刘凤然.基于单片机的超声波测距系统.传感器世界.2001,5:29-32.
    23.彭玉华.小波变换与工程应用.北京:科学出版社,1999:13-16,38-46,51-54.
    24.杨福生.小波变换的工程分析与应用.北京:科学出版社,1999:1-4,42-45.
    25.文莉,小波变换在去噪及结构动态特性分析中的应用研究,合肥工业大学硕士学位论文,2002.
    26. Mallat S. Theory for multi-resolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence.1989, 11 (7): 674-691.
    27.文莉,刘正士.小波去噪的几种方法.合肥工业大学学报(自然科学版).2002,25(2):167-172.
    28. Mallat S, Hwang W L. Singularity detection and processing with wavelets. IEEE Transaction on Information Theory. 1992, 38 (2): 617-643.
    29.蔡正敏,吴浩江.小波变换在管道泄漏在线监测中去噪的应用.机械科学与技术.2001,20(2):253-256.
    30.高峰,曲建岭.不同小波基下滤波性能之比较.仪器仪表学报.2002,23(4):437-440.
    31.张义荣,鲜明.根据时频分辨特性的B样条双正交小波的选择.计算机学报.2002,25(4):430-437.
    32. David L. Donoho. De-noising by soft-threshold. IEEE Trans. IT, 1995, 41 (3): 613-627.
    33.戴逸松.微弱信号检测方法及仪器.北京:国防工业出版社,1994:1-14.
    34.谌安琦.科技工程中的数学模型.北京:中国铁道出版社,1988:8-14.
    35. Temple J. A. G. Modeling the propagation and scattering of elastic waves in inhomogeneous and anisotropic media. J. Phys. 1988, 21: 859-873.
    36.金山,管道检测的实验与分析方法研究,北京工业大学硕士学位论文,2002.
    37.何香玲,何忠旭.用频谱分析法评估工程桩基质量.水利电利机械,1999,6:39-42.
    38.吴家龙.弹性力学.上海:同济大学出版社,1993.
    39.黄强兵,地下管道抗震研究,长安大学硕士学位论文,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700