考虑驾驶员避撞行为特性的汽车前方防碰撞系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资料显示,有70%~90%的交通事故是由于驾驶员操作失误所致。而汽车前方防碰撞系统属于一种先进汽车安全驾驶辅助技术,通过使用雷达等前方监视技术的系统传感器,在作出碰撞可能性很高的判断时,会给驾驶员发出警报,催促驾驶员的制动操作,甚至当作出无法避免撞击的判断时,即使没有驾驶员的制动操作,也会主动采取制动,降低车辆撞击时的速度。因此,该系统能有效减少驾驶员误操作,实现避免或削弱车辆追尾碰撞危险,对提高交通安全具有重要意义。基于其对提高汽车主动安全性方面的显著作用,因此前方防碰撞系统应对措施决策、相关控制算法开发以及具备对驾驶员个体差异的自适应性等方面已成为现阶段国内外汽车工程领域研究的热点。
     本文基于当前国际上对汽车前方防碰撞系统的研究现状,并结合所涉及的相关理论和技术热点问题,系统地实施了从车辆虚拟跟随防碰撞中驾驶员制动时刻特性分析及制动时刻特性建模、系统功能定义、预警和自动制动功能策略及自动制动控制量决策算法开发与仿真验证,乃至实车试验系统软硬件、高压油供给单元及其控制器电路研制、性能演示样车试制、场地试验验证等一系列汽车前方防碰撞系统研发工作。其研究目标为基于驾驶员在车辆虚拟跟随防碰撞中操控行为特性分析及建模结果,设计汽车前方防碰撞系统的两级预警/自动制动功能策略,利用提出的驾驶员制动时刻个体差异动态特性及时自适应方法和基于灰靶分析法的最优制动减速度决策,开发出具备及时自适应驾驶员个体差异的防追尾预警和仿驾驶员避撞行为的自动制动功能系统原理样机,使该系统能够在一定程度上满足驾驶员个性化或特殊需求,降低虚警率、误警率,促进汽车前方防碰撞系统发展与完善,从而提高行车安全及通行效率。
     论文首先利用汽车驾驶模拟器进行了接近静止前车、接近低速前车和跟随减速前车3种高危追尾工况下嵌入真实驾驶员的防碰撞试验,分析驾驶员按照不同防碰撞要求采取相应制动操作的作用时刻信息与人的因素(年龄、性别)和环境因素(本车和前车运动状态信息)在内的多个研究参数的关联性,提出基于驾驶员采取最大制动减速度时刻的车辆安全行驶状态判断指标,并分别建立该指标下的驾驶员采取习惯制动减速度和强制动减速度制动时刻的BP神经网络模型,通过对比验证说明所建模型具有较高预测精度,表明其可用于理解驾驶员防追尾碰撞行为特征,为其认知和追尾危险判断行为的不确定性和非线性特征难以描述问题提供了一个新的解答方案,也为阐明驾驶员在跟随防追尾碰撞中安全判断机理、高效前方防碰撞系统开发提供理论依据。
     其次,为使建立的驾驶员习惯制动时刻神经网络模型能够及时自适应实际驾驶中不同驾驶员、其不同阶段的制动行为特征,提出基于误差反传算法的模型参数调整方法;且为保证模型能达到满意的调整效果,采用驾驶员习惯制动时刻正误分析法将经分析后能正确描述驾驶员制动时刻行为特征的数据构成训练样本集,应用于模型参数调整过程,并利用驾驶员在干燥和冰雪切换连续路面上虚拟跟随行驶数据验证上述方法的有效性,结果表明模型经参数调整后预测准确性显著提高。故基于此模型制定的初级预警功能策略能够有效降低由于动态环境因素和驾驶员自身的瞬时因素对系统预警性能的影响,且提高了模型预测的动态适应性。
     再次,针对在防碰撞过程中系统提供的自动制动功能与驾驶员采取的紧急转向防碰撞行为之间可能存在的相互干涉问题,利用对驾驶员转向防碰撞行为特性分析结果,建立了依据最小舒适安全转向防碰撞距离的系统自动制动功能执行策略;而对于系统自动制动功能工作中制动控制量如何确定问题,以驾驶员在实际交通情况下判断、决策的思维模式作为防碰撞制动减速度最优决策算法制定依据,提出了基于灰靶分析法的最优制动减速度决策算法;并利用驾驶员采取的实际制动数据,采用粒子群优化对算法中最优目标权重进行离线辨识,通过对比验证表明决策算法得到的最优制动减速度与驾驶员采取的实际减速度较接近;根据最优制动减速度算法的决策结果,再结合基于PID控制理论设计的控制器和建立的车辆逆向制动系统模型,可得到期望制动压力,从而为前方防碰撞系统执行有效的自动制动提供保障。
     然后,以常规车辆结构为基础,对高压油供给单元及其控制器、前方目标雷达信息处理、预警功能的预警方式选取等方面进行设计开发,搭建实车试验平台,并保证平台具有良好的可靠性,以用于汽车前方防碰撞系统的相关算法验证及性能测试。
     最后,基于以上研究成果,通过仿真及实车试验对汽车前方防碰撞系统总体功能及各项关键技术的研究结果进行验证。结果表明,提出的系统两级预警和自动制动功能策略以及自动制动控制量决策能有效实现对车辆的合理防碰撞报警和防碰撞自动制动,系统体现出良好的驾驶辅助性能,且能够体现驾驶员紧急防碰撞行为特征。
Traffic safety has always been the most serious problem in current society, statisticsshow that70%to90%of accidents are caused by pilot operational errors. Forward collisionavoidance system is an advanced vehicle safety driving assistance technology, which canprovide warning to the driver when making a high likelihood of collision judge, and promotethe driver’s braking operation, even if the driver does not brake, it will still provideautomatic braking to reduce the speed of the vehicle during the impact. Therefore, the risk ofrear-end collision can be effectively avoided, and traffic safety will be improved. Due to itssignificant role in improving automotive active safety, research and development ondecision-making and control algorithm of the system with good adaptability to the drivershave become hot issues in automotive engineering field.
     According to the present development status of forward collision avoidance system inthe world and combined with the related theory and technical issues, a set of development offront anti-collision system have been studied in this paper, which include analysis andmodeling of drivers’ braking moment characteristics in virtual car following collisionavoidance scenes, definitions of system function, pre-crash warning and automatic brakingdecision-making and development and simulation verification of automatic braking controlalgorithm, development of control system hardware circuit/software, design of printed circuitboard, trail-manufacture of prototype and field test.
     Based on results of analysis and modeling of drivers braking moment characteristic, theultimate goal of this research is to design anti-collision warning and automatic brakingfunction strategy for forward collision avoidance system. This paper will establish the timelyadaptive method of individual dynamic characteristic difference, propose braking controlvariable decision algorithm based on gray target analysis, develop a prototype with thesystem of collision alarm and automatic braking function which is equipped with adaptivedriver’s individual difference and carry out the system in real car to verify. The system isable to meet the specific needs of the driver personalization, to reduce the false alarm rate, topromote the development and improvement of early warning systems and automatic brakingfunction, and further to improve the traffic safety and efficiency.
     Three kinds of accident conditions of embedded with real driver’s rear-end crash tests,including approaching the front stationary vehicle, the low-speed vehicle and following thefront slow down vehicle, were conducted by the using of car driving simulator. Corrrelationamong the driver action time information based on the different requirement of theanti-collision braking operation to take, human factors (age, sex) and envirmental factors(motion state information of leading and following vehicles) were studied. Vehicle safetydriving indicator at the time of maximum braking deceleration moment is proposed, BPneural network models were established according to the indicator at the normal and harddriver braking deceleration moment, which will further contribute to understand the behaviorof drivers anti-collision action characteristics, and provide a new feasible solution for theuncertainty and nonlinear characteristics of human cognition and dangerous judge behaviorof rear-end that are difficult to describe. But also it provided a theoretical basis for thesystem development.
     In order to make the pre-warning function adapt to the braking moment characteristicsof different drivers, different braking stages, the aim of this stddy is to improve theperformance of driver assistance systems. An approach of normal braking decelerationmoment of BP neural network model’s weight parameters timely adjustment was proposedbased on error back propagation algorithm. In order to ensure that the selected trainingsamples can correctly describe the driver braking moment characteristics, the driver normalbraking moment of identification analysis method was presented, so a number of processeddata was used to constitute the training sample set. Therefore, the developed warningstrategy has better robustness, and thus improves the prediction model’s dynamicadaptability.
     To solve the possible problem of mutual interference between the automatic brakingfunction and the driver to take emergency steering in the anti-collision process, automaticbraking control algorithm was developed by analyzing the characteristics of the driver’semergency steering behavior, which considered a minimum comfort safe distance. Optimalbraking control amount decision algorithm based on the gray theory is proposed to realizeautomatic braking function, which was referenced to the thinking mode of drivers’identification and decision. Then the optimal weights of algorithm were identified accordingto driver’s collision avoidance behavior characteristic by using particle swarm optimization,so reasonable premise for braking control decisions were provided. Based on the optimaldecision result and combined with the establishment of vehicle reverse braking systemmodel, the desired brake pressure was obtained to provide a guarantee for implementing effective anti-collision braking.
     Furthermore, to validate the effectiveness of main research achievements and systemfunctions, a real vehicle test platform for the system, based on the structure of a conventionalvehicle, was constructed. Several key technologies are developed to improve the flexibilityand reliability of the platform, which included electro-hydraulic braking actuators andcontrollers, radar information processing method, the way of warning selection and so on.
     Finally, based on these studies above, simulation and real vehicle tests were carried out.The experimental results show that two-stage warning and automatic braking function isreasonable, and the system has the ability to meet the driver braking behavior characteristics.
引文
[1]公安部.2011年全国道路交通事故统计分析[R].公安部通报,2011,1(1):1-59.
    [2] Bishop R. A survey of intelligent vehicle applications worldwide[C]//Proceedings ofthe IEEE Intelligent Vehicles Symposium, Dearborn.2000:25-30.
    [3]刘强,陆化普,张永波等.我国道路交通事故特征分析与对策研究[J].中国安全科学学报,2006,16(6):123-128.
    [4] Yi K, Woo M, Kim S H, et al. An experimental investigation of a CW/CA system forautomobile using hardware in the loop simulation[C]//Proceedings of the Americacontrol conference, San Diego, California.1999:724-728.
    [5]中华人民共和国道路交通事故统计年报(2009年度)[R].公安部交通管理局.无锡:公安部交通管理局科学研究所,2010.
    [6] Accident prevention and accident mitigation, mobileye, amstelveen, theNetherlands[R/OL].http://www.mobileye-vision.com/Publications/AWS.EffectivenessReport.pdf.
    [7] Kraiss K F. Benutzergerechte Automatisierung: Grundlagen undRealisierungskonzepte[J]. Automatisierungstechnik,1998,46(10):457-467.
    [8] Fort R. Proposed military characteristics for collision warning device[R]. ArmyAviation Board,1957.
    [9] Jenkins J L. An airborne collision-warning device[R]. Rand Corp Santa Monica Calif,1957.
    [10] Gibson J J, Crooks L E. A theoretical field-analysis of automobile-driving[J]. TheAmerican journal of psychology,1938,51(3):453-471.
    [11] Kawashima H. Integrated system of navigation and communication in Japan[J].CONTROL, COMPUTERS, COMMUNICATIONS IN,1990,31(2):257-264
    [12] Pollard J K. Evaluation of the vehicle radar safety systems’ rashid radar safety brakecollision warning system[R]. US Department of Transportation, National HighwayTraffic SafetyAdministration, Office of Crash Avoidance,1988.
    [13] Stein A C, Ziedman D, Parseghian Z. Field evaluation of a Nissan laser collisionavoidance system[R]. NHTSA Report, Washington, DC, January,1989, DOT HS808375.
    [14] Leasure W A. The importance of crash problem analysis in defining NHTSA's IVHSprogram[C]//Proceedings of the IVHS America1992Annual Meeting, Newport Beach,California,1992:727-732.
    [15] Knipling R R, Hendricks D L, Koziol J S, et al. A front-end analysis of rear-endcrashes[C]//Proceedings of the IVHS America1992Annual Meeting, Newport Beach,California,1992:733-745.
    [16] Knipling R R, Mironer M, Hendricks D L, et al. Assessment of IVHS countermeasuresfor collision avoidance: rear-end crashes[R]. NHTSA Report, Washington, DC, May,1993, DOT HS807995.
    [17] Burgett A L, Carter A, Miller R J, et al. A collision warning algorithm for rear-endcollisions[J]. National Highway Traffic SafetyAdministration,1998:566-587.
    [18] Kiefer R, LeBlanc D, Palmer M, et al. Development and validation of functionaldefinitions and evaluation procedures for collision warning/avoidance systems[R].NHTSATechnical Report,1999, DOT HS808964.
    [19] Brunson S J, Kyle E M, Phamdo N C, et al. Alert algorithm development program:NHTSA rear-end collision alert algorithm[R]. NHTSA Technical Report,2002, DOTHS809526.
    [20] Zhang Y, Antonsson E K, Grote K. A new threat assessment measure for collisionavoidance systems[C]//Intelligent Transportation Systems Conference, CaliforniaInstitute of Technology,2006:968-975.
    [21] Knipling R R. IVHS technologies applied to collision avoidance: Perspectives on sixtarget crash types and countermeasures[C]//Proceedings of the1993Annual Meetingof IVHS, America,1993:249-259.
    [22] Doi A, Butsuen T, Niibe T, et al. Development of a rear-end collision avoidance systemwith automatic brake control[J]. JSAE Review,1994,15(4):335-340.
    [23] Fujita Y, Akuzawa K, Sato M. Radar brake system[J]. JSAE Review,1995,16(2):219-219.
    [24] Ararat O, Kural E, Guvenc B A. Development of a collision warning system foradaptive cruise control vehicles using a comparison analysis of recentalgorithms[C]//Intelligent Vehicles Symposium,2006:194-199.
    [25] Hayward J C. Near-miss determination through use of a scale of danger[J]. HighwayResearch Record,1972,38(4):24-34.
    [26] Gibson J J. The ecological approach to visual perception[M]. Rout ledge,1986.
    [27] Lee D N. A theory of visual control of braking based on information abouttime-to-collision[J]. Perception,1976,5(4):437-459.
    [28] Minderhoud M M, Bovy P H L. Extended time-to-collision measures for road trafficsafety assessment[J]. Accident Analysis and Prevention,2001,33(1):89-97.
    [29] Lee K, Peng H. Evaluation of automotive forward collision warning and collisionavoidance algorithms[J]. Vehicle System Dynamics,2005,43(10):735-751.
    [30] Hirst S, Graham R. The format and presentation of collision warnings[J]. Ergonomicsand safety of intelligent driver interfaces,1997:203-219.
    [31] Miller R, Huang Q. An adaptive peer-to-peer collision warning system[C]//IEEE55thVehicular Technology Conference. VTC Spring,2002,1:317-321.
    [32] Kodaka K, Otabe M, Urai Y, et al. Rear-end collision velocity reduction system[J].SAE transactions,2003,112(6):502-510.
    [33] Coelingh E, Eidehall A, Bengtsson M. Collision warning with full auto brake andpedestrian detection-a practical example of automatic emergency braking[C]//201013th International IEEE Conference on Intelligent Transportation Systems.2010:155-160.
    [34] Van W W. The human element in car following models[J]. Transportation research partF: traffic psychology and behaviour,1999,2(4):207-211.
    [35]小林洋介,山村吉典,濑户陽治等.渋滞時運転ァシストシステムの制御方法の検討[C]//自動車技術会学术演讲会前刷集, No.114-00:1-4.
    [36] Ayres T J, Li L, Schleuning D, et al. Preferred time-headway of highwaydrivers[C]//Intelligent Transportation Systems. Oakland,2001:826-829.
    [37] Touran A, Brackstone M A, McDonald M. A collision model for safety evaluation ofautonomous intelligent cruise control[J]. Accident Analysis and Prevention,1999,31(5):567-578.
    [38] Lee K, Peng H. Data-based evaluation and design of automotive collisionwarning/collision avoidance algorithm[C]//Proc. of the7th International SymposiumonAdvanced Vehicle Control. Arnhem,2004.
    [39] Bella F, Russo R. A Collision Warning System for rear-end collision: a drivingsimulator study[J]. Procedia-Social and Behavioral Sciences,2011,20(3):676-686.
    [40] Bouslimi W, Kassaagi M, Lourdeaux D, et al. Augmented naive Bayesian network fordriver behavior modeling[C]//Intelligent Vehicles Symposium. Nevada: Las Vegas,2005:236-242.
    [41]王双超.前方防碰撞预警系统决策算法开发与实验验证[D].长春:吉林大学,2012.
    [42]侯德藻,刘刚,高峰等.新型汽车主动避撞安全距离模型[J].汽车工程,2005,27(2):186-199.
    [43]裴晓飞,刘昭度,马国成等.汽车主动避撞系统的安全距离模型和目标检测算法[J].汽车安全与节能学报,2012,3(1):26-33.
    [44] Broen N L, Chiang D P. Braking response times for100drivers in the avoidance of anunexpected obstacle as measured in a driving simulator[C]//Proceedings of the HumanFactors and Ergonomics Society Annual Meeting. SAGE Publications,1996,40(18):900-904.
    [45] Lerner N D. Brake perception-reaction times of older and youngerdrivers[C]//Proceedings of the human factors and ergonomics society annual meeting.SAGE Publications,1993,37(2):206-210.
    [46] Green M."How Long Does It Take to Stop?" Methodological Analysis of DriverPerception-Brake Times[J]. Transportation human factors,2000,2(3):195-216.
    [47] Summala H, Koivisto I. Unalerted drivers’ brake reaction times: Older driverscompensate their slower reactions by driving more slowly[J]. Driving behaviour in asocial context,1990:680-683.
    [48] Lings S. Assessing driving capability: A method for individual testing[J]. Appliedergonomics,1991,22(2):75-84.
    [49] Hankey J M. Unalerted emergency avoidance at an intersection and possibleimplications for ABS implementation[D]. Ames: University of Iowa,1996.
    [50] Summala H, Lamble D, Laakso M. Driving experience and perception of the lead car'sbraking when looking at in-car targets[J]. Accident Analysis and Prevention,1998,30(4):401-407.
    [51] Van W W, Brouwer W. Time headway in car following and operational performanceduring unexpected braking[J]. Perceptual and motor skills,1997,84(3):1247-1257.
    [52] Triggs T J. Driver brake reaction times: unobtrusive measurement on public roads[J].Public Health Review,1987,15(1):275–290.
    [53] Alm H, Nilsson L. Changes in driver behavior as a function of hands free mobilephones a simulator study[J]. Accident Analysis and Prevention,1994,26(4):441-451.
    [54] Chang M S, Messer C J, Santiago A J. Timing traffic signal change intervals based ondriver behavior[R]. Transportation Research Record,1985:20-30, DOT HS040068.
    [55] Schweitzer N, Apter Y, Ben-David G, et al. A field study on braking responses duringdriving. II. Minimum driver braking times[J]. Ergonomics,1995,38(9):1903-1910.
    [56] Lamble D, Kauranen T, Laakso M, et al. Cognitive load and detection thresholds in carfollowing situations: safety implications for using mobile (cellular) telephones whiledriving[J]. Accident Analysis and Prevention,1999,31(6):617-623.
    [57] Gazis D C, Herman R, Rothery R W. Nonlinear follow-the-leader models of trafficflow[J]. Operations Research,1961,9(4):545-567.
    [58] Andersen G J, Sauer C W. Optical information for car following: The driving by visualangle (DVA) model[J]. Human factors,2007,49(5):878-896.
    [59] Wada T, Tsuru N, Isaji K, et al. Characterization of expert drivers' last-second brakingand its application to a collision avoidance system[J]. Intelligent TransportationSystems,2010,11(2):413-422.
    [60] Benekohal R F, Treiterer J. CARSIM: Car-following model for simulation of traffic innormal and stop-and-go conditions[J]. Transportation research record,1988,1194(1):99-111.
    [61] Aycin M F, Benekohal R F. Linear acceleration car-following model development andvalidation[J]. Transportation Research Record: Journal of the Transportation ResearchBoard,1998,1644(1):10-19.
    [62] Kikuchi C, Chakroborty P. Car following model based on a fuzzy inference system[J].Transportation Research Record,1992,1365(1):82-91.
    [63] Boer E R, Hoedemaeker M. Modeling driver behavior with different degrees ofautomation: A hierarchical decision framework of interacting mental models[C]//InProceedings of the XVIIth European Annual Conference on Human Decision makingand Manual Control. France: Valenciennes,1998.
    [64] Ohno H. Analysis and modeling of human driving behaviors using adaptive cruisecontrol[J]. Applied Soft Computing,2001,1(3):237-243.
    [65] Yoshida H, Kamada T, Nagai M. Advanced driver assist system based on drivingcharacteristics analysis for active interface vehicle[C]//12th World Congress onIntelligent Transport Systems. San Francisco,2005.
    [66] Zheng P, McDonald M. Manual vs. adaptive cruise control–Can driver’s expectation bematched?[J]. Transportation Research Part C: Emerging Technologies,2005,13(5):421-431.
    [67]张磊.基于驾驶员特性自学习方法的车辆纵向驾驶辅助系统[D].北京:清华大学,2009.
    [68]贾洪飞,隽志才,王晓原.基于神经网络的车辆跟驰模型的建立[J].公路交通科技,2001,18(4):92-94.
    [69]徐学明,荣建,王丽.混合神经网络跟驰模型的建立[J].公路交通科技,2007,24(3):130-132.
    [70]李德慧,刘小明,荣建等.基于模糊神经网络的车辆跟驰建模与仿真研究[J].北京工业大学学报,2007,33(4):398-401.
    [71] Hirose T, Oguchi Y, Sawada T. Framework of tailor made driving support systems andneural network driver model[J]. IATSS research,2004,28(1):108-114.
    [72] James D J G, Boehringer F, Burnham K J, et al. Adaptive driver model using a neuralnetwork[J]. Artificial Life and Robotics,2004,7(4):170-176.
    [73] Kehtarnavaz N, Groswold N, Miller K, et al. A transportable neural-network approachto autonomous vehicle following[J]. IEEE Transactions on Vehicular Technology,1998,47(2):694-702.
    [74] Mar J, Lin F J, Lin H T, et al. The car following collision prevention controller basedon the fuzzy basis function network[J]. Fuzzy sets and systems,2003,139(1):167-183.
    [75] Huang S, Ren W. Use of neural fuzzy networks with mixed genetic/gradient algorithmin automated vehicle control[J]. IEEE Transactions on Industrial Electronics,1999,46(6):1090-1102.
    [76] Ma X L. A neural-fuzzy framework for modeling car-following behavior[C]//IEEEInternational Conference on Systems, Man and Cybernetics, Taipei:2006,2:1178-1183.
    [77]赵佳.基于驾驶模拟实验的雾天对驾驶行为影响的研究[D].北京:北京交通大学,2012.
    [78]尤洋.汽车自适应巡航系统自调整因子模糊控制器的优化设计[D].长春:吉林大学,2012.
    [79] Kiefer R J, Salinger J, Ference J J. Status of NHTSA's read-end crash preventionresearch program[J].2005.
    [80] Moon S, Yi K. Human driving data-based design of a vehicle adaptive cruise controlalgorithm[J]. Vehicle System Dynamics,2008,46(8):661-690.
    [81]范金城,梅长林.数据分析[M].北京:科学出版社,2002:94.
    [82]候媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007:17.
    [83]王惠琳.模拟退火遗传算法优化的BP网络在翘曲量预测中的应用[D].杭州:浙江大学,2011.
    [84]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,1999.
    [85] Ripley B D. Pattern recognition and neural networks[M]. Cambridge university press,2007.
    [86] Nakama T. Theoretical analysis of batch and on-line training for gradient descentlearning in neural networks[J]. Neurocomputing,2009,73(1):151-159.
    [87] Wu W, Wang J, Cheng M S, et al. Convergence analysis of online gradient method forBP neural networks[J], Neural Networks,2011,24(1):91-98.
    [88] Gadkar K G, Mehra S, Gomes J. On-line adaptation of neural networks for bioprocesscontrol [J]. Computers and Chemical Engineering,2005,29(5):1047-1057.
    [89]崔伟楠.基于灰靶加权理论的沥青路面预防性养护措施决策研究[D].天津:河北工业大学,2010.
    [90]高振海.驾驶员最优预瞄加速度模型的研究[D].长春:吉林大学,2000.
    [91] Harvey A C. Forecasting, structural time series models and the Kalman filter[M].Cambridge university press,1990.
    [92] Gao Z H, Wu T. Soft sensor of vehicle state based on UKF and vehicle dynamics[C]//2011International Conference on Electronic and Mechanical Engineering andInformation Technology,2011,4:2143-2147.
    [93] Liu S F, Lin Y. Grey information: Theory and Practical aplications[M]. London:Springer.2006:89-92.
    [94]郭孔辉,马凤军,孔繁森.人-车-路闭环系统驾驶员模型参数辨识[J].汽车工程,2002,1(24):20-24.
    [95] Kennedy J, Eberhart R. Particle Swarm Optimization[C]//IEEE InternationalConference on Neural Networks. Perth,1995:1942-1948.
    [96] Reynolds C W. Flocks, herds and schools: A distributed behavioral model[C]//ACMSIGGRAPH Computer Graphics.1987,21(4):25-34.
    [97]汪定伟,王俊伟.智能优化方法[M].北京:高等教育出版社,2007.
    [98] Wu T, Gao Z H, You Y. The study on the membership function shape of fuzzycontroller optimization[C]//the2nd International Conference on Electronic andMechanical Engineering and Information Technology,2012:1633-1636.
    [99]高振海,吴涛,尤洋.基于粒子群算法的汽车自适应巡航控制器设计[J].农业机械学报,2013,44(12):11-16.
    [100]陈达兴.自适应巡航控制系统中前方有效目标识别算法研究[D].长春:吉林大学,2011.
    [101]德国BOSCH公司. BOSCH汽车电气与电子[M].北京:北京理工大学出版社,2008.
    [102]朱敏慧.新一代制动系统创新技术[J].汽车与配件,2002,47:30-31.
    [103]周玉存.汽车电子感应制动系统[J].汽车维修,2005,10:13-15.
    [104]张海波.电液制动系统(SBC)的研究与设计[D].济南:山东大学,2012.
    [105]曾非一.嵌入式软件开发技术研究—MPC860目标机底层软件的实现[D].西安:电子科技大学,2004.
    [106] Motorola. MC9S12DP256B Fact Sheet[M]. USA: Motorola Inc,2003:1-2.
    [107] Motorola. MC9S12DP256B Device User Guide V02[M]. USA: Motorola Inc,2003:20-21.
    [108] Yi K, Ryu N, Yoon H J, et al. Implementation and vehicle tests of a vehiclestop-and-go cruise control system[J]. Proceedings of the Institution of MechanicalEngineers, Part D: Journal ofAutomobile Engineering,2002,216(7):537-544.
    [109] Yi K, Kwon Y D. Vehicle-to-vehicle distance and speed control using anelectronic-vacuum booster[J]. JSAE review,2001,22(4):403-412.
    [110] Yi K, Hong J, Kwon Y D. Avehicle control algorithm for stop-and-go cruise control[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of AutomobileEngineering,2001,215(10):1099-1115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700