无铬锌铝涂料配方工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球环保意识的日益加强,具有污染性的的含铬达克罗涂料的发展空间越来越小,但由于达克罗工艺具有优异的防腐性能,因此本文就是在达克罗的基础上研究不含铬的锌铝涂料。
     本文首先介绍了该技术的起源、发展、研究现状、发展预测以及膜层的特点、应用;其次介绍了实验用的材料、设备及实验工艺流程,并对膜层性能介绍了相应的检测方法;再者介绍了涂液的主要组成、操作条件对涂层性能的影响;最后通过扫描电镜(SEM)、电子能谱(EDS)对膜层的结构、元素组成进行了分析,并对膜层的成膜机理、防腐机理作了初步的探讨。所得到的实验结果如下:
     1.通过对实验的主要原料锌粉、铝粉的形状、用量作的讨论,发现片状粉耐蚀性优于球状粉,确定采用片状金属粉,考虑到涂液的粘稠度,涂层的耐蚀性、附着力等性能,最终将锌粉的含量控制在200~320 g/L为佳。同时为了得到较好的涂层外观并增加其耐蚀性,将铝粉含量控制在40~200 g/L之间。
     2.考虑到金属粉的在涂液中的分散性及烘烤时溶剂的完全挥发程度,采用混合型溶剂,溶剂配比为:二甲苯:A%;正丁醇:B%;乙酸乙酯:C%。
     3.实验采用的粘结剂为环氧树脂与硅烷的结合,得到的涂层具有较好的附着力、耐蚀性,其用量定为环氧树脂:A g/L;硅烷:B g/L。
     4.实验通过对烘烤温度、时间及搅拌时间的讨论,即将烘烤和搅拌条件规定如下:预烘温度为120~150℃,时间25~30min,烧结固化温度为300±10℃,时间30min;搅拌时间:4~6h。
     5.实验得到的锌铝涂层为银白色,具有金属光泽,耐硝酸氨腐蚀实验平均达100分钟,耐盐雾试验达1000小时无锈,结合力好,完全无铬,符合环保要求。
     6.实验通过扫描电镜及能谱分析,对其表面形貌及成分作了分析,推断出膜层的成膜机理和防腐机理,防腐主要是以下几种方式:结构上的屏蔽效应;锌铝作为阳极被消耗,保护了铁基体;锌铝氧化物的钝化作用所组成。
With the whole environmental protection consciousness gradually enhancement, has pollutional chromium of dacroment coating the development space getting smaller. Because the dacroment handicraft has the outstanding corrosion resistance, therefore the main body of the article is studying the zinc aluminium coating of not containing chromium on dacroment' s basis.
     This article first introduced this technical origin, the development, the research present situation, the development forecast as well as the film characteristic, the application. Second introduced the experimental material, the equipment and the experiment technical process, and introduced the corresponding examination method to the film performance. Third introduced the compositions of coating solution and the operating condition to the coating performance influence. Finally, the structure of the coat and the element composition have been analyzed, meanwhile the mechanism of coating formation and corrosion resistance have been discussed preliminary by using SEM, EDS. The results as follows:
     1.By discussion that raw material zinc powder, aluminum powder' s form and amount, the corrosion resistance of coat prepared with flake powder was better than that prepared with grainy powder which was found. So the flake powder was used. The stickiness of coating solution, the corrosion resistance and adhesion of coat were considered, the zinc powdercontents is controlled ultimately in 200 - 320g/L. At the same time, for getting fairly good coating outward appearance and increasing the corrosion resistance,aluminum powder contents is controlled between 40-200g/L.
     2. Considered the metal powder' s dispersivity in coating solution and the solvent complete volatility degree when roasting,used the mixed solvent. The solvent proportion is:Dimethylbenzene:A%; Normal butyl alcohol:B%; Ethyl acetate:C%.
     3. The cementing agent of the experiment is epoxy resin and the silicon hydride union, the coating which has good adhesion and corrosion resistance. Its amount of used as follows: Epoxy resin:Ag/L;Silicon hydride:Bg/L.
     4. The experiment through to the temperature, the time of baking and the time of agitating discussion, the condition of baking and agitating as follows: The preliminary baking temperature: 120-150℃,Time:25-30min;The sintered solidification temperature:300±10℃,Time:30min;Stirring time:4-6h.
     5. The zinc aluminium coating is silver-white color, has the metallic luster. The experiment time of corrosion resistance for ammonium nitrate can reach 120 minutes and 1000 hours for salt fog without appearing rust. Meanwhile, the bond strength between coat and substrate is very well. The coat does not have the chromium completely, conforms to the environmental protestion requirement.
     6. The superficial appearance and the composition of coating were analysised by using SEM and EDS. Meanwhile, the mechanism of coat formation and corrosion resistance were deduced by using SEM and EDS. The mechansim of corrosion resistance mainly is following several ways:Screening effect of structure; Zinc and aluminum is consumed as the anode;The ferric substrate has been protected;Zinc oxide and aluminium oxide inactivation effect.
引文
[1] 鲁开文,涂料与应用[M].北京:化学工业出版社,1984,(1):1
    [2] 王泳厚,实用涂料防腐技术手册[M].北京:冶金工业出版社,1994,3
    [3] 徐峰,无机涂料与涂装技术[M].北京:化学工业出版社,2002
    [4] 李荣俊等,涂料工业[J].2000,(1):32—34
    [5] 魏秀鹏,田奎祥,陈家福,锌铝基涂层研究[J].扰顺石油学院学报.2003,23(2):47—53
    [6] 曲志敏,黄金玲,达克罗处理技术的应用概况[J].中国涂料.2005,20(3):47—48
    [7] 刘永辉,张佩芬,金属腐蚀学原理[M].北京:航空工业出版社,1993:2
    [8] 王胜民,刘丽,赵晓军,镀锌中的绿色技术[J].中国表面工程.2002,1:17—20
    [9] 于萍,主沉浮,陈超,镀锌方法与环境保护[J].山东环境.1998,83(2):17—18
    [10] 王士逯,表面处理工业的清洁生产[J].电镀与精饰.1996,18(2):3—4
    [11] 应宪明,金属防锈技术—达克罗涂覆[J].汽车工艺与材料.2002,2:12—13
    [12] Roberto, Oscar, Maxim, etal, Dual Coated Metal Substrates and Method of Making. United States Patent 5486414, January 23,1996(5 of 15)
    [13] A. Sontag. Zinc/Aluminium Coating for Corrosion Protection[J]. Finishing, 1992,16(8):38—40
    [14] 张伟明,交美特—取代达克罗的表面处理技术[J].中国涂装.2003,18:21—24
    [15] 汪庆年,达克罗与无铬达克罗的应用及其发展趋势[J].涂装指南.2004,3:55—57
    [16] 张伟明,交美特—取代达克罗的表面处理新技术[J].材料保护.2003,36(4):8—9
    [17] 中国腐蚀与防护学会网站.http://www.cscp.org.cn/cn/zpxx/2005311115543.htm
    [18] Lonca M. Dacrotizingan effective protection against corrosion[J].Finishing. 1990,9(1): 35—37
    [19] Wilcox C D, Wharton J A, A Review of Chromate—Free Passivation Treatments for Zinc and Zinc Alloys[J].Trans IMF. 1997, 75(6), 140
    [20] Foure Z M, Gheno D F, White P E, The Application of Zinc—Aluminium Flake Non—Electrolytic Surface Coatings[J]. Trans IMF. 1993,72(1):21
    [21] Bibber J W, An overview of non-hexavalent conversion coating[]]. Metal Finishing. 2001,65(12):15—17
    [22] Me Cluskey P. Post passivate systems for zinc and zinc alloys[J]. Tras IMF. 1996, 74(4):119—122
    [23] 虞兆年,防腐蚀涂料与涂装.北京:化学工业出版社,2002,7
    [24] 世界金属导报.日本钢铁工业镀锌板生产现状.2002,3,12
    [25] 金井洋,无铬表面处理镀锌钢板及无铬预涂层电镀锌钢板.世界钢铁.2000,6月板线材专集:17—19
    [26] 尾田富男,绿色涂层技术GX(无铬表面处理钢板)开发.神户制钢技报.2001,51(1):53—55
    [27] 于兴文,曹楚男,达克罗技术研究进展[J].腐蚀与防护.2001,22(1):1—4
    [28] 郝其勋,吉奥米(GEOMET)新的表面处理技术[J].汽车工艺与材料.2003(8),6
    [29] 蔡光耀,环保型高耐蚀的达克罗技术简介[J].中国电镀材料信息.2001(1):64—65
    [30] Fourz M, Gheno D F, White P E, The Application of Zinc Aluminium Flake Non-Electrolytic Surface Coatings[J]. Transactions of the Institute of Metal Finishing. 1993,71(1):21—25
    [31] Naoto Yoshimi, Properties of Chromium-free Coated Steel Sheet 'Geo-frontier-coat' [J]. NKK Technical Review. 2001,84:24—29
    [32] Gutcho, Metal surface treatment[M]. USA. Noyes Datu Corporation. New Jerse. 1982,120—122
    [33] Ping H K, Kui W J, Decorative and Protective Coatings on Zinc Using Rave Earths[J]. Trans Metal Fin(Ass India),1996,5(2):83
    [34] Roman L, Blidariu M, Cristescu C, et al, Study of Conversion Coatings on Zinc Deposition Obtained From Low Pollution Solutions[J]. Trans IMF, 1996,74(5):171
    [35] 许乐生,李卫东,“达克罗”技术及其应用[J].山东城报.2004,6:39—41
    [36] 李爱莲,朱晓云,郭忠诚,张欢,宋曰海,王少龙,不同溶剂对锌基涂层耐蚀性的影响[J].电镀与涂饰.2003,22(2):8—10
    [37] Tyson J A B, "Hutton" production risers-a novel cleaning problem. An up-to-the moment case history[J]. Corrosion Prevention & Control. 1985(4):122—130
    [38] 于兴文,曹楚男,达克罗技术工艺及转化涂膜[J].涂料工业.2000,12:23—26
    [39] Mulkin J, Dacroment-a nem corroson protection for fasteners[P]. US:3671331,1973—02—24
    [40] 郭慧林,宁生科,李恒新,达克罗技术简介[J].化学工程师.2002,1:63—64
    [41] 林兵,国内达克罗技术的发展方向[J].电镀与精饰.2003,25(6):12—14
    [42] 乌维皓,介绍一种表面处理新技术—锌铬膜涂覆[J].零八一科技.2002,1:47—49
    [43] 王敏,黄鑫,王家禄等,达克罗技术及应用[J].电镀与涂饰.2001,20(2):65—67
    [44] Alam Sontag, Zinc/Aluminium Coatings for Corrosion Protection[J]. Finishing. 1992,16(8):38—42
    [45] L Sziraki, A Cziraki, Z Vertesy, L Kiss, V Lnanova, G Raichevski, S Vitkova S, Ts Marmova, Zn and Zn-Sn Alloy Coating with and without Chromate Layers. Part Ⅰ: Corrosion Resistance and Structural Analysis[J].Journal of Applied Electrochemistry. 1999,29:927—937
    [46] Furez M, Gheno F, White P E, The application of zinc-aluminum flake non-electroytic surface coatings[J]. Trans IMF. 1993,71(1):21—25
    [47] A.D. Wilson, et al, Surface Coating. London, New York:Elsevier Applied Science. 1998,107
    [48] Vukasovich M S, Farr J P G, Molybdate in Corrosion Inhibition—A Review[J]. Materials Performance. 1986,25(5):9
    [49] 张俊敏,李英培,达克罗技术及其发展前景[J],表面技术.2000,29(3):20 —22
    [50] 肖合森,达克罗处理技术的应用和发展预测[J].电镀与涂饰.2004,23(2):43—46
    [51] 张俊敏,张宏,文自伟,王永琪,达克罗技术的现状与发展方向[J].表面技术.2004,33(6):11—12
    [52] 张俊敏,王永琪,达克罗技术的现状与发展方向[J].涂装指南.2004,1:17—19
    [53] 葛世名,高红外达克罗涂层快速烧结实验[J].材料保护.2000,33:47—49
    [54] 文光男,低温热固型锌铬酸盐转化涂层的研究[J].东北大学学报.1996,17(1):75—79
    [55] Guhde Loe-cure coating copositon[P]. USP:4971635,1990—11—20
    [56] 闫洪,现代化学镀镍和复合镀新技术[M].北京:国防工业出版社,2001,2:204—205
    [57] 李宁,化学镀实用技术[M].北京:化学工业出版社,2004,1:59
    [58] 丁金城,赵增典,于先进,王元辉,达克罗涂覆过程中常见的问题及其处理方法[J].材料保护.2004,37(3):55—59
    [59] D·J·古德,T·E·多塞特,D·A·奥伯林恩,W·H·古恩,V·V·古曼诺,可提供防腐保护的水可稀释性涂料组合物[P].CN1172135A,1998,2,4
    [60] 孟中,徐关庆,镁合金无铬达克罗溶液涂料及其生产方法[P].CN1786091A(申请号:200510017284.6)2006,6,14
    [61] 徐关庆,孟中,镁合金无铬达克罗工艺研究[J].表面技术.2006,35(3):51—53
    [62] 郑淑萍,蔡晓兰,达克罗(锌铬膜)的检测方法[J].表面工程资讯.2005,5(1):36—37
    [63] 肖合森,达克罗处理的检测方法[J].电镀与涂饰.2004,23(1):45—48
    [64] 魏秀鹏,田奎祥,陈家福,锌铝基涂层研究[J].抚顺石油学院学报.2003,23(2):47—49
    [65] 郑淑萍,蔡晓兰,达克罗(锌铬膜技术)中的检测方法[J].现代涂料与涂装.2005,6:52—54
    [66] 陈玲,李宁,周德瑞,达克罗涂层的组织结构及电化学特征研究[J].高技术通 讯.2002,10:54
    [67] 东建中,达克罗(锌铬膜)生产中的质量检测[J].涂装指南.2004,1:131—133
    [68] 胡会利,李宁,韩家军,程谨宁,达克罗的研究现状[J].电镀与涂饰.2005,24(3):31—33
    [69] 朱晓云,郭忠诚,高耐蚀非水溶性锌基纳米防腐涂料[P].CN1563229A(申请号:200410022380.5),2005,1,12
    [70] 涂伟萍,水性涂料[M].北京:化学工业出版社,2006,2
    [71] 徐峰,无机涂料与涂装技术[M].北京:化学工业出版社,2002,4
    [72] Shaw B A, Moran P J, Characterization of the corrosion behavior of zinc-aluminum thermal spray coating[J]. Material Performance. 1985,24(11):22—31
    [73] B S Skerry, A Alavi, K I Lindgren, Environmental and electrochemical test methods for the evaluation of protective organic coating[J]. Journal of Coating Technology. 1998,60(765):97
    [74] P C Pistorus, Design aspects of electrochemical noise measurements for uncoated metals:electrode size and sampling rate[J]. Corrosion. 1997,53(4): 273
    [75] F Mansfeld, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings[J]. Journal of Applied Electrochemical. 1995,25(3):187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700