喷杆喷雾机风助风筒多目标优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国常用的大田喷杆喷雾机在施药过程中存在农药飘失严重,雾滴在冠层中的穿透性较差、作物中下部沉积少、分布均匀性差、雾滴减飘效果受自然风速影响较大等问题,在借鉴国内外对气流辅助式防飘喷雾技术的研究基础上,本文从风助风筒结构参数优化、设计安装新型结构导流器和优化多工况控制参数的角度,减少农药飘失,提高药物沉积率,研制了基于新型导流器的风助风筒型喷杆喷雾机,防飘效果显著,并进行了试验研究和性能测试。具体完成的研究工作如下:
     1、从理论上分析了气流辅助式喷杆喷雾机防止雾滴飘失的机理。
     2、采用计算流体力学(CFD)技术对风助风筒内流场及工作外流场组成的三维区域进行了建模和仿真。并对原型风筒流场仿真结果进行了分析,分析表明:原型风筒内流场存在强旋流、流道窄的缺点,导致工作外流场风速变异系数大。
     3、针对气流辅助式喷杆喷雾机的风助风筒原始设计的缺陷,提出了一种集成相关向量机、多目标遗传算法和模糊推理技术的多目标优化设计方法。首先为了增加辅助气流的减飘和穿透能力,构造出风助风筒的设计优化目标函数。利用均匀设计安排试验方案,并通过流体动力学仿真完成训练样本采集。选定相关向量机作为优化设计的评估函数。结合多目标遗传算法,求解出问题的Pareto最优解集,建立模糊推理系统获取问题的最终解。应用CFD验证经圆整后的最终解,其流速分布均匀性指标得到显著提高。改进的样机试验证明出口平均风速较改进前增加了25.26%,0.5m处平均风速较原始设计提高13.11%,0.5m处风速变异系数提高了35.6%。
     4、为彻底克服内流场强旋流、流道窄的不足,在结构参数多目标优化设计的基础上,增加导流器装置,更进一步优化了流场结构,减小损耗,提高效率,使流场在风筒长度方向上具有良好的风速一致性。本文还对两种不同结构的导流器对风筒的内流场和外流场的影响效果进行对比分析,仿真结果表明圆孔式导流器可大幅提高工作效率但出风口下方0.5米处风速变异系数较大;槽式导流器可小幅提高效率,更能很大程度的减小0.5m处风速变异系数。增加槽式导流器后,样机试验风速变异系数5.5%,相比未加导流器风速变异系数降低52.6%。
     5、在有风大田作业时,优化的喷雾机工作参数对于减小喷雾机功耗、减少雾滴漂移、提高植物表面的药物沉积非常重要。为进一步提高农药利用率、减少农药施用量,面向喷雾效果的施药技术应能得到足够重视。本文采用计算流体力学(CFD)技术,研究喷雾机在自然风影响下,风助风筒气流流场与离散雾滴在三维区域内的交互耦合作用,进行了综合仿真。结果表明:增大风筒气流出口速度,可以胁迫雾滴向靶标运动,增加雾滴沉积率。为了建立优化的喷雾机控制参数,建立了不同自然风速下减飘模型,运用多目标优化方法进行了工作参数的优化,并通过建立模糊决策支持系统对模型未考虑变量进行工作参数修正。
     6、对优化设计有导流器的气流辅助式喷杆喷雾机进行了样机设计和加工,并通过气流辅助喷雾和常规喷雾两种作业方式的室内试验、样机试验的对比,评价了有导流器的气流辅助式喷雾机的风幕风速均匀性、防飘性能和二次雾化性能。实验结果证明,有导流器的气流辅助式喷杆喷雾机与常规喷雾相比雾滴密度提高了29.5%,分布变异系数降低了78.5%。雾滴穿透性试验,在作物上层,雾滴密度提高52.5%,分布变异系数降低37.4%;在作物中层,雾滴密度提高18.72%,分布变异系数降低15.05%;在作物下层,雾滴密度提高61.7%,分布变异系数降低18.3%。二次雾化性能测试,DR值提高13.115%。在防飘测试中,飘失量减少达66.7172%。
The wildly used boom sprayer in conventional field today in China is suffering some problems, such as serious pesticide drift, poor droplet penetration through the canopy of crops, less deposition of the lower part of crops, poor uniformity distribution, and serious effect of droplet drift reduction influenced by natural wind. On the basis of many domestic and foreign research on the air-assisted spray technology, this paper promote to drift reduction and higher pesticide deposition in the perspective of optimum structure parameters of air duct, novel flow deflector and optimized operating parameters under multiple working conditions. The novel flow deflector air-assisted duct boom spraryer is develped with strong anti-drift performance, which validate in the indoor experment and field test. The main work has been completed as follows:
     1、The anti-drift mechanism of air-assisted boom sparyer is analysised firstly, and mainly dicussed from the droplet accelerative motion by the function of air flow, secondary atomization, twist to the crop and boost to droplet penetration, and etc.
     2、Using computational fluid dynamics (CFD) technology to simulate the internal and external flow field of duct consisting of three-dimensional modeling area. Prototype duct flow field simulation results are analyzed. The analysis showed that there are strong swirlings of flow field, narrow flow channel in the prototype duct, and then lead high velocity variation coefficient of the work flow field.
     3、To improve the original design flaws of air duct of air-assisted boom sprayer, a multi-objective optimization approach integrated relevance vector machines (RVM), multi-objective genetic algorithms (MOGA) and fuzzy system is presented for the optimal design problem. Firstly, the multi-objectives of the air duct are constructed so as to improve the capability of reduced spray drift and increased penetration. The computational fluid dynamics (CFD) analysis of air-flow generating duct are utilized for sampling scheme given by uniform design to collect the train dataset. Sequentially, RVM based meta-model as fitness function is combined with MOGA to obtain the Pareto optimal set. Finally, a fuzzy inference system is established as decision-making support to obtain the optimum preference solution. Therefore, the optimized air duct structure with the round solution analyzed by CFD shows the promising improvement on flow speed variation. And the modified physical prototype proofed feasibility and efficiency of this approach. Improved export of prototype testing proved that the average wind speed improvement over an increase of 15.4%, 0.5m at an average wind speed increased 25.6% over the original design.
     4、To improve the drawbacks of original designed air-assisted duct of boom sprayer: huge wind consumption, low efficiency, large Coefficient Variation (CV) of wind velocity, the three-dimensional flow field of interior duct and exterior free flow region is simulated by using computational fluid dynamics (CFD). Flow field analysis of the simulation results showed that: strong swirling and narrow flow channel in the flow field of prototype air-assisted duct, and result in large CV in exterior free flow field. In response to these shortcomings, two kinds of improvement designs are proposed: (1) decreasing the outlet size and outlets spacing greatly reduces the CV of wind velocity, but not fundamentally change the flow structure; (2) on the basis of above optimization, adding a flow deflector overcomes the strong swirling flow and narrow flow channel so as to changing the flow field structure reasonable. The final scheme meets the design requirement. Two kinds of optimized designs provide an optimized boom sprayer and a direction for further air-assisted spraying optimization. Simulation results show that the hole-type plate can significantly improve efficiency but at the outlet velocity of 0.5 m below the larger coefficient of variation; slotted plate can be slightly more efficient, more a large degree of variation of wind speed reduction at 0.5m coefficient. Increase the slot spoiler, the prototype test wind speed coefficient of variation of 5.5%, compared with no additional wind deflector reduces the coefficient of variation 52.6%.
     5、Many studies have shown that air assisted spray have effect on the droplet drift reduction. However, the strength of the natural air flow effects on spray drifting reduction. In the wind field operations, the optimum working parameters is very important for the sprayer to reduce power consumption and droplet drifting, and to improve the plant surface drug deposition. However, to further improve the utilization of pesticides, reducing pesticide application rate, for the effects of pesticide spray technology has not been sufficient attention. This paper uses computational fluid dynamics (CFD) technology to study the air-assisted boom sprayer under the influence of natural wind, the wind flow field of air duct and discrete droplets in the three-dimensional interactive coupling region has been simulated. The results showed that: Increasing outlet velocity of air duct can stress target droplet movement to increase the droplet deposition rate. When the natural wind speed increases, the need to increase the blowing air speed can achieve better anti-floating effect. Air-assisted spray droplet drift angle on the reduction of loss of no significant impact. In order to establish optimal spraying control parameters, the different nature of wind drift model is established, and multi-objective optimization methods is used for the optimization of operating parameters, further fuzzy decision support system model is built to verify the non-considered variable operating parameters of prototype to correct the optimization parameters.
     6、The optimal designed prototype of air-assisted boom sprayer with flow deflector is built, and its air-assisted anti-drift and conventional spray operating modes are compared in the indoor experiment and filed test. The wind speed uniformity of air-assisted screen, anti-drift performance and secondary atomization performance are evaluated. Experimental results show that the droplet density sparyed by air-assisted boom sprayer with flow deflector increases 29.5% compared with the conventional sprayer and the distribution coefficient of variation decreases 78.5%. In droplet penetration test, droplet density in the crop top increases 52.5%, 37.4% lower distribution coefficient of variation; In the middle of crops, the droplet density increases 18.72%, 15.05% lower distribution coefficient of variation; In the bottom of crops, droplet density increases 61.7%, 18.3% lower distribution coefficient of variation. In secondary atomization performance testing, DR value increased 13.115 %. In anti-float test, drift loss by up to 66.7172%.
引文
[1]何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004,(1).
    [2]屠予钦等.我国农药的有效利用率与农药的负面影响问题[J].世界农药,2003(6):1~4.
    [3]杨学军,严荷荣,徐赛章.植保机械与施药技术的研究现状及发展趋势[J].农业机械学报,2002. 33(6): 129~132.
    [4]何雄奎,严苛荣,储金宇,汪健,曾爱军,刘亚佳.果园自动对靶静电喷雾机设计与试验研究[J].农业工程学报,2003,(6).
    [5]迟明梅,宋坚利,曾爱军,刘亚佳,宋卫堂,张录达,何雄奎.施药条件对施药者体表污染的影响[J].农业工程学报,2010,(5).
    [6]祁力钧.优化液体农药喷施技术的研究[D].北京:中国农业大学,1999.
    [7] Hewitt A. J. Spray drift: impact of requirements to protect the environment, Crop Protection 2000, 19: 623~627.
    [8] Young B W. 1979.Studies on theretention and deposite characteristics of pesticide sprays on foliage. Proc. 9th CIGR congress, East Lansing, MT.
    [9] Robert Wolf. Strategies to reduce spray drift. Engineering and Technology, 1997 (6):1~4.
    [10]曾爱军.减少农药雾滴飘移的技术研究:[博士学位论文].北京:中国农业大学,2005.
    [11]赵辉,宋坚利,曾爱军,何雄奎.喷雾液动态表面张力与雾滴粒径关系[J].农业机械学报,2009,(8).
    [12]何雄奎,曾爱军,何娟.果园喷雾机风速对雾滴的沉积分布影响研究[J].农业工程学报,2002,(4).
    [13]邓巍,何雄奎,丁为民.用大喷头脉宽调制间歇喷雾提高沉积率试验研究[J].农业工程学报, 2009, (1).
    [14]宋坚利,宮少俊,何雄奎.隧道式循环喷雾机发展研究[J].农业机械,2006,(10).
    [15]宋坚利.“Π”型循环喷雾机药液回收与飘失研究[博士学位论文].北京:中国农业大学,2007.
    [16]张京,杨雪玲,何雄奎,宋坚利.改进双圆弧罩盖减少雾滴飘失试验[J].农业机械学报,2009,(7).
    [17]张京,李伟,宋坚利,曾爱军,何雄奎.挡板导流式喷雾机的防飘性能试验[J].农业工程学报,2008,(5).
    [18]张京.挡板导流式喷雾机及其防飘性能研究:[博士学位论文].北京:中国农业大学,2008.
    [19]陶雷,何雄奎,曾爱军,刘亚佳.开口双圆弧罩盖减少雾滴飘失效果的CFD模拟[J].农业机械学报,2005, 36(1):35~37.
    [20]宋坚利,何雄奎,曾爱军,刘亚佳,张浩.罩盖喷杆喷雾机的设计与防飘试验[J].农业机械学报,2007,(8).
    [21]傅泽田,祁力钧,王俊红,精准施药技术研究进展与对策[J],农业机械学报,2007,38(1).
    [22]何雄奎,曾爱军,刘亚佳,等.水田风送低量喷杆喷雾机设计及其参数研究[J].农业工程学报, 2005,21(9),76~79.
    [23] Furness G.O. A Comparison of a Simple Bluff Plate and Axial Fans for Air-Assisted, High-Speed, Low-Volume Spray Application to Wheat and Sunflower Plants. J.agric. engng Res. 1991,48:57~75.
    [24] Taylor W. A. and Andersen P. G.. The Use of Air Assistance in Field Crop Sprayer to reduce drift and modify drop trajectories. In Proc. Brighton Crop Protection Conference: Weeds 2, Bear Farm, Binfield, Bracknell, Berkshire, U.K.: BCPC Publications, 1989, 631~639.
    [25] Howard, K. D., J. E. Mulrooney, and L. D. Gaultney. 1994. Penetration and deposition of air?assisted sprayers. ASAE Paper No. 941024. St. Joseph, Mich.: ASAE.
    [26]刘青. 9WZCD-25型风送式喷雾机喷雾性能优化试验研究[硕士学位论文].新疆:新疆农业大学,2003.
    [27] Panneton, B., H. Philion, P. Dutilleul, R. Theriault, and M. Khelifi. 1999. Full factorial design versus central composite design: Statistical comparison and implications for spray droplet deposition experiments. Trans. ASAE 42(4): 877?883.
    [28] Pompe, J. C. A. M., and H. J. Holterman. 1992. Technical aspects of pesticide application. Agrotechnion Bomenweg 4 6703 HD. Wageningen, The Netherlands: Wageningen Agricultural University.
    [29] Rocamora, M. C., L. Val, and M. Perez. 2002. Modelling the performance of air?assisted spraying on artichoke. Biosystems Eng. 81(4): 385?393.
    [30]王欣.导流器减少农药飘移效果的研究:[硕士学位论文].北京:中国农业大学,1996.
    [31] Tsay J, Fox R D, O zkan H E, et al. Evaluat ion of a pneumat ic2sh ielded spraying system by CFD simulat ion.Transact ions of the ASAE, 2002, 45 (1) : 47~54
    [32]邓巍,丁为民,何雄奎.变量喷施技术及其雾化特性评价方法综述[J].中国农业大学学报,2009,(3).
    [33]宋坚利,何雄奎,杨雪玲.喷杆式喷雾机雾流方向角对药液沉积影响的试验研究[J].农业工程学报,2006,(6).
    [34]邓巍,丁为民,何雄奎,变量喷施技术及其雾化特性评价方法综述,中国农业大学学报,2009,14(3):94-102.
    [35]中国农业机械化科学研究院.一种喷杆喷雾机:中国, ZL 200620157987.9[P]. 2008-03-05.
    [36]邓巍,丁为民,何雄奎,变量喷施技术及其雾化特性评价方法综述,中国农业大学学报,2009,14(3):94-102.
    [37]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.9
    [38]刘新阳,罗金耀,高传昌.滴灌用水力旋流器中颗粒分离的数值模拟[J].农业工程学报,2010,26(2):7-11.
    [39]潘文全.工程流体力学[M].北京:清华大学出版社,1988
    [40]孙小华.基于喷雾流场的防飘移数值模拟研究:[硕士学位论文].北京:中国农业大学,2006
    [41]史岩.压力式变量施药系统研究:[博士学位论文].北京:中国农业大学,2004
    [42]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988
    [43]陶雷.雾滴飘失理论与试验研究:[硕士学位论文].北京:中国农业大学,2004
    [44]王俊.变量喷雾系统喷雾质量控制研究及喷头设计:[硕士学位论文].中国农业大学,2005.
    [45]刘巧.风送式喷杆喷雾机减少雾滴飘失的仿真模拟:[硕士学位论文].中国农业大学, 2009.
    [46]岳学军,洪添胜,李震,等.果树喷雾机防风罩对喷雾射程的影响[J].农业工程学报,2007,23(4):94-98.
    [47]傅泽田,王俊,祁力钧,王洪涛,.果园风送式喷雾机气流速度场模拟及试验验证[J].农业工程学报,2009,(1).
    [48]向清江,袁寿其,李红.全射流喷灌喷头射流元件的流场分析[J].农业工程学报,2010,26(1):135-139.
    [49]马辉.我国应大力发展农药精准施药技术[J].农药,2002,41(6):47-49
    [50]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001
    [51]祁力钧;傅泽田,影响农药施药效果的因素分析[J],中国农业大学学报,1998(2).
    [52]马承伟,严荷荣,袁冬顺,崔引安,液力式雾化喷头雾滴直径的分布规律[J],农业机械学报,1999,30(1).
    [53] Tsay J, O zkan H E,B razeeet R D, et al. CFD simulat ion of moving sp ray sh ields. Transactions of the ASAE, 2002,45 (1) : 21~26
    [54] Tsay J, O zkan H E, Fox R D, et al. CFD simulat ion of mechanical sp ray sh ields. Transactions of the ASAE, 2002,45 (5) : 1271~1280
    [55] K. Baetens, D. Nuyttens, P. Verboven, M. De Schampheleire, B. Nicolai, H. Ramon, Predicting drift from field spraying by means of a 3D computational fluid dynamics model, Computers and Electronics in Agriculture, 2007,56(2), Pages 161-173.
    [56] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T., 2002, A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), pp. 182–197.
    [57] M. E. Teske, P. C. H. Miller, H. W. Thistle, N. B. Birchfield, Initial development and validation of a mechanistic spray drift model for ground boom sprayers, Transactions of the ASABE, 52(4): 1089-1097.
    [58] M.A. Delele, P. Jaeken, C. Debaer, K. Baetens, A. Melese Endalew, H. Ramon, B.M Nicolai, P. Verboven, CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction, Computers and Electronics in Agriculture, 2007, 55(1):16-27.
    [59] H. Zhu, R. C. Derksen, H. E. Ozkan, M. E. Reding, C. R. Krause, Development of a canopy opener to improve spray deposition and coverage inside soybean canopies: part 2. opener design with field experiments, Transactions of the ASABE, 2008, 51(6): 1913-1921.
    [60] Xiang Qingjiang, Yuan Shouqi, Li Hong. Flow analysis on fluidic element of complete fluidic sprinkler [J]. Transactions of the CSAE, 2010, 26(1): 135-139. (in Chinese)
    [61] Bishop, C. 1995. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, UK.
    [62] Yuan, J., Tao, Y., Wang. K. 2006. A hybrid intelligent approach for optimal control of seed cleaner. In Proc. of IFIP TC5 International Conference of Prolamat: Springer, pp780-785.
    [63] L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst., Man Cybernet. 3 1 (1973), pp. 28–44.
    [64] Jang, J. 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference Systems, IEEE Trans. on System, Man, and Cybernetics. No. 5, Vol. 23, PP. 665-685.
    [65] Jang, S., Sun, C. and Mizutani, E. 1997. Neuro-fuzzy and soft computing, New Jersey: Prentice Hall.
    [66] Chan, W., Chan, C., Cheung, K. et al., 2001. On the modeling of nonlinear dynamic systems using support vector neural networks, Engineering Application of Artificial Intelligence, vol. 14, pp. 105-113.
    [67] Smola, A. and Sch?lkhopf, B. 2004. A Tutorial on Support Vector Regression. Statistics and Computing, vol. 14, pp. 199-222.
    [68] Muller, K., Mika, S., Ratsch, G., Tsuda, K. and Sch?lkhopf, B. 2001. An introduction to kernel-based learning algorithms, IEEE Trans. Neural Network, vol. 12, no. 2, pp. 181-201.
    [69] Zhang, H., Wang, X., Zhang, C. et al, 2006. Robust identification of non-linear dynamic systems using support vector machine, IEE Proceedings- Science, Measurement and Technology vol. 153, no. 3, pp. 125-129.
    [70] Tipping. M. 2001. Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research vol. 1, pp. 211-244.
    [71] Chen, S., Gunn, S. and Harris. C. 2001. The relevance vector machine technique for channel equalization application, IEEE Trans. Neural Networks Vol. 12, no. 6, pp. 1529-1532.
    [72] Holland, J. 1989. Searching nonlinear functions for high values, Applied Mathematics and Computation, vol. 32, pp. 255-274.
    [73] Bishop, C. M. Pattern Recognition and Machine Learning, Springer, 2006.
    [74] Tipping. M. 2004. Bayesian inference: An introduction to principles and practice in machine learning. Advanced Lectures on Machine Learning, vol. 3176, pp.41–62.
    [75]戴奋奋,风送喷雾机风量的选择与计算,植物保护[J], 2008, 34(6).
    [76] Radford M Neal. Bayesian Learning for Neural Networks. Springer, 1996.
    [77] Joaquin Qui?onero-Candela. Learning with Uncertainty - Gaussian Processes and Relevance Vector Machines. PhD thesis, Technical University of Denmark, Lyngby, Denmark, 2004.
    [78] Yao, X. 1999. Evolving artificial neural networks, Proceedings of the IEEE, vol. 87, no. 9, pp.1423-1447.
    [79] Fang, K. and Wang, Y. 1994. Number-theoretic Methods in Statistics. Chapman & Hall.
    [80] Zhang, L., Liang, Y., Jiang, J. et al. 1998. Uniform design applied to nonlinear multivariate calibration by ANN, Analytica Chimica Acta vol. 370, no. 1, pp.65-77.
    [81] Goldberg, D. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison-Wesley.
    [82] Chang, C. and Lin C., LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [83] Wang, G. G., Shan, S.,“Review of Metamodeling Techniques in Support of Engineering Design Optimization,”ASME Transactions, Journal of Mechanical Design, April 2007, pp.370-380.
    [84] Yuan Jin, Wang Kesheng, Yu Tao and Fang Minglun, 2007. "Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process", Engineering Applications of Artificial Intelligence, Vol. 20, no. 7, pp. 970-979.
    [85]杨建辉,樊未军等.离心式喷嘴雾化参数的计算[J].航空动力学报.2003.12,18(6),799-802
    [86] S. Nonnenmacher, M. Piesche. Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids. Chemical Engineering Science. 2000,(55):p4339-4348
    [87] H.B.Squire.Investigation of the Instability of a Moving Liquid Film. British Journal of Applied Physics, 4:167, 1953.
    [88] X. Li and R. S. Tankin. On the Temporal Instability of a Two-Dimensional Viscous Liquid Sheet. Journal of Fluid Mechanics, 226:425, 1991.
    [89] W.W. Hagerty and J. F. Shea. A Study of the Stability of Plane Fluid Sheets. Journal of Applied Mechanics, 22:509, 1955.
    [90] P. J. O'Rourke and A. A. Amsden. The TAB Method for Numerical Calculation of Spray Droplet Breakup. SAE Technical Paper 872089, SAE, 1987.
    [91] P.J. O'Rourke. Collective Drop Effects on Vaporizing Liquid Sprays. PhD thesis, Princeton University, Princeton, New Jersey, 1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700