间歇采暖太阳能建筑热过程及设计优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以充分发挥被动太阳房调节作用,减少采暖系统间歇运行时间和运行负荷,实现节能最大化为目标。针对被动太阳能及地板辐射间歇采暖耦合调节中所涉及的关键技术问题,通过理论分析、数值模拟和现场测试相结合的方法研究了以下内容:掌握保温和热惯性参数对围护结构传热的影响关系;在现有被动太阳能集热部件得热研究基础上,为实现被动太阳能得热最大化,集热部件的运行管理方案及构件优化设计方法;地板辐射间歇供暖地板蓄放热量规律,及地板运行、设计参数对该规律的影响关系;在被动太阳房动态负荷特征基础上,研究与之匹配的间歇供暖地板蓄放热特性,进而获得间歇供暖系统运行控制策略;周期性双波动外扰与阶跃性内扰联合作用下房间热环境状况及节能效果分析。得到以下研究结果:
     (1)利用数学分析方法对围护结构在周期波动双外扰和阶跃内扰单独作用下非稳态传热过程进行分析。得到围护结构温度和热流密度分布的分析解,可分析围护结构保温和热惯性参数对传热的影响关系。通过实例计算,表明了分析解结果计算方便、实用特性。
     (2)对太阳能建筑集热部件流动和传热特性分析。提出内遮阳窗帘系统在考虑窗帘褶皱、窗帘类型和窗户类型等情况下附加热阻计算方法,并给出典型窗帘附加热阻值及其最佳空气层厚度值;获得集热蓄热墙通风孔在日出2-3h开启、日落前1h关闭的最佳管理方案;得到集热蓄热墙蓄放热量特性,墙体蓄热量在16:00左右达到最大值,7:00-8:00之间达到最小值。
     (3)通过对间歇运行地板辐射供暖系统动态热过程研究。获得系统在运行期、间歇期和预热期不同组合情况下地板蓄放热规律,得到了地板设计、运行参数对该蓄放热量规律的影响关系。结果表明:地板辐射采暖连续运行期,盘管运行水温对地板表面温度和热流密度的影响最大;预热运行期,盘管间距对预热时间影响最大;间歇运行期,地板填充层厚度对放热时间影响最大;将地板下表面按绝热处理引起的误差小于7%,数值计算与实测结果相比,平均误差为6.6%,最大误差也仅为6.9%,认为数值计算方法可靠。
     (4)以被动太阳房动态负荷特性为基础,研究了与之匹配的间歇供暖地板蓄放热特性,获得间歇供暖系统运行控制策略及地板结构性能参数选用依据。
     (5)通过研究阶跃性内扰和周期性双波动外扰耦合作用下围护结构动态传热过程及蓄放热特性,得到该耦合作用下房间热负荷及热环境变化规律。结果表明:太阳能建筑与地板辐射间歇采暖耦合调节房间室温平均值在18℃左右,且波动幅度为2-3℃,满足人体热舒适要求;文中提及的数种太阳能建筑热负荷规律,与地板辐射间歇采暖耦合调节节能率分别为50%、67%和83%,可见该耦合采暖方式具有很好的节能效果。
     综上结论可见,被动太阳能与间歇采暖耦合调节供暖方式,在很大程度上节约采暖能源的同时也避免了由于连续采暖造成的室内过热现象。研究结果将为太阳能采暖建筑设计、建筑节能相关规范修订提供基础数据和理论支持。
The object of this paper is to give full play to the adjustment function of the passivesolar houses, reduce operation time and load of the intermittent heating system, realize the maximization of energy saving. According to the key technical problems of the coupling regulation between passive solar energy and floor radiantion intermittent heating, this paper study the following contents used by theoretical analysis, numerical simulation and field test method: Master the influence relation of the heat preservation and heatinertia parameters on the heat transfer of palisade structure; Based on the study of heatgain of passive solar components, to realize the heat gain maximization of passive solarenergy, the operation management of collection hot parts and the component designoptimization method are obtained; The storage and release heat rules of the floor radiantintermittent heating and the effect of floor operation and design parameters on this laware obtained; Based on the dynamic load characteristics of passive solar houses, thematching exothermic storage characteristics of intermittent heating floor and theoperation control strategy of the intermittent heating system are obtained; Based on theabove mentioned problems, the research results as follows:
     Firstly, the unsteady heat transfer process of building enclosure is analyzed underthe influence of both the external and internal thermal disturbances used bymathematical method. The analysis solution of temperature and heat flux densitydistribution of palisade structure is obtained, and the analysis solution is benefit toanalyze the influence relationship of heat preservation and structure inertia parameterson heat transfer. Also, the experiment results attested the calculation result, which showed that this solution was accurate, practical and more accessible.
     Secondly, this article analyzed the peculiarity of the heat collection components, inwhich the flow and heat transfer model of the window and the curtain influenceddirectly by the solar radiation was established. By the thermal network analysis method,the additional thermal resistance factor of the curtain and its recommended installingposition was got. At the same time, by the locale test research to the demonstrationproject, the way for getting the best open and close time of ventilation holes on the heatstorage and release wall was confirmed. Also, the analysis to the heat flow and transfermodel of this wall can help get the heat storage and release law of these ventilationholes. The result showed that these holes should be open2hours after the sunrise, whilethey should be closed1hour before the sunset. Also, the result illustrated that influencefrom the heat storage and release law from the opening and the closing of the ventilatingholes was weak; the heat storage value of the wall could get to the maximum at16:00,while the minimum at7:00to8:00.
     Thirdly, established mathematical physics models of radiation heating floorrespectively in operation、break and preheat period. The discipline of the floor surfaceheat dissipating capacity, the discipline of floor heat storage and release and the impactof coil running water temperature and filled layer thickness and coil spacing were got bynumerical calculation and test method of validation. The results showed that: when theradiant floor heating run continuously, the coil running water temperature influenced thefloor surface temperature and heat-flow density most, filled layer thickness had lessinfluence and the influence of coil spacing was between them. When coil spacing for100mm,200mm and300mm, the time from full release heating to stable state wereabout2.5h,5h and7.5h, therefore, coil spacing had a big influence on preheating. Thediscipline of floor heat storage and release in operation、 break and preheat period wasalso got through theoretical analysis and numerical calculation. The actual measurementdata compared with numerical calculation results showed that the error was less than7%when the lower surface of floor board was considered as a thermal isolation surfaceand compared to the actual measurement data, the mean error was6.6%, the maximumerror was just6.9%, the numerical calculation was considered reliable.
     Forthly, based on the dynamic load characteristics of passive solar houses, the exothermic storage characteristics of intermittent heating floor is studied and the floorstructure performance parameter and intermittent operation mode are obtained.
     Finally, the change rules of room heat load and thermal environment are obtainedby studing dynamic heat transfer process and exothermic storage properties of palisadestructure under the regulation by coupled thermal process between solar architectureand intermittent heating. The results showed that: the room temperature under theregulation by coupled thermal process between solar architecture and intermittentheating was18℃or so, and fluctuations in2-3℃, completely satisfied human thermalcomfort requirements. The energy saving rate of several kinds of load law mentioned inthis paper were as high as50%,67%, and83%, by using coupled regulation. It meantthis coupled heating way had a high energy conservation effect.
     In conclusion, the heating regulation method of solar buildings coupled withintermittent heating save heating energy and avoid the indoor overheat caused bycontinuous heating greatly. The results will provide based data and theoretical supportfor heating design of solar buildings and revision of related standard for building energysaving.
引文
[1]中国工程院咨询项目,清华大学建筑节能研究中心.中国建筑节能年度发展报告(2007)
    [M].北京:中国建筑工业出版社2007.
    [2]江亿.中国建筑能耗现状及节能途径分析[J].新建筑,2008,(02):4-7.
    [3]涂逢祥.治理北方城市冬季大气污染必须重视降低采暖能耗[J].建筑节能,2000,(02):7-11.
    [4]2011-2015“十二五”规划低碳发展战略研究报告[R].北京:2010.
    [5]中国法制社.中华人民共和国可再生能源法[M].北京:中国法制出版社,2010.
    [6]中华人民共和国建设部,JGJ142-2004,地面辐射供暖技术规程[S].中国建筑工业出版社,2004.
    [7] Ozisik.M.N.著,俞昌铭主译.热传导[M].北京:高等教育出版社,1983.
    [8] Ozisik.M.N. Boundary Value Problems of Heat Conduction, International Textbook Company,1986,chapter5.
    [9] Beck.J.V, Blackwell.B and St.Clair.C.R. Inverse Heat Conduction, Ill-Posed Problems, JohnWiley and Sons,Inc., New York,1985.
    [10]陈景仁.流体力学及传热学[M].北京:国防工业出版社,1984.
    [11]陈沛霖,曹叔维,郭建雄.空气调节负荷计算理论与方法[M].上海:同济大学出版社,1987.
    [12]彦启森,赵庆珠.建筑热过程[M].北京,中国建筑工业出版社,1986.
    [13] А.B.Luikov著,任兴季,张志清译.建筑热物理理论基础[M].北京:科学出版社,1965.
    [14] D. G. Stephenson and G. P. Mitalas. Room thermal response factors. ASHRAE Transactions,1967,73(1):261-266.
    [15] D.G. Stephenson and G. P. Mitalas.Cooling load calculation by thermal response factor method.ASHRAE Transactions,1967,73(1):152~165.
    [16] G..M.Dusinberre. Heat Transfer Calculations by Finte Differences, International TextbookCompany, Scranton Pa.,1961.
    [17] Smith.G..D. Numerical solution of patical differentical equations(finite difference methods).3thed. Oxiford: Clarendon Press,1985.
    [18] Richtmyer.R.D, Morton.K.W. Difference methods for initial problems,2nded. New York:Interscience Publisher,1967.
    [19] A.K.Aziz, ed., Numermical Solution of Boundary Value problems for Ordinary DifferenticalEquations, Academic Press, Inc., New York,1975.
    [20] M.L.James, G..M.Smith. Applied Numerical Methods for Digital Camputation, IEP-Dun-d-Donnelley Pubilsher, New York,1977.
    [21]谭维炎.计算浅水动力学[M].北京:清华大学出版社,1988,III.
    [22]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988,1-2.
    [23] Versteeg.H.K, Malalsekera.W. An introduction to computational fluid dynamics. The finitevolume method. Essex: longman Science&technical,1995.
    [24] O.C.Zienkiewicz, I.K.cheung. The finite Element Method in Engineering Science.McGraw-Hill Book Company, New York,1971.
    [25] H.C.Martin, G.F.Carey. Introducition to Finite-Element Analysis. McGraw-Hill Book Co.,NewYork,1973.
    [26]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.341,395-400.
    [27]孔祥谦.有限元法在传热学中的应用(第三版)[M].北京:科学出版社,1998.
    [28]刘西云,赵润祥.流体力学中的有限元法与边界元法[M].上海:上海交通大学出版社,1993.
    [29] Chen.C J,Bernatz R. Finite analytic methods in flows and heat transfer. New York: Taylor&Francis,2000.
    [30] Carslaw.H.S, Jaeger.J.C. Conduction of heat in solids.2nded. Oxford:Clarendon Press,1986.
    [31] M.P.Morse, H.Feshbach:Methods of Theoretical of Physics, Part I, McGraw-Hill Book Company,New York,1953.
    [32] J.W.Dettman:Mathematical Methods in Physics and Engineering, McGraw-Hill Book Company,New York,1962.
    [33] R.V. Churchill:Fourier Series and Boundary Value Problems, McGraw-Hill Book Company, NewYork,1963.
    [34] C. C. Lin&L. A. Segel, Mathematics Applied to Deterministic Problems in the NaturalSciences, Macmillan Inc., New York,1974.
    [35] Champeney, D. C. Fourier transforms and their physical applications. New York: AcademicPress,1973.
    [36] C.J.沙万特琼著,李哲岩译.拉普拉斯变换原理[M].西安:陕西科学技术出版社,1984.
    [37]周肇锡.拉普拉斯变换与傅里叶变换[M].北京:国防工业出版社,1990.
    [38] R.C.Bartels, R.V.Churchill. Bull.Am. Math. soc.48,276-282,1942.
    [39]杨强生,浦保荣.高等传热学[M].上海:上海交通大学出版社,1996.
    [40] E. N. Economou, Green's Function in Quantum Physics, Springer-Verlag, Berlin, Heidelberg,1979.
    [41] G.D.Mahan,Many Particle Physics, Plenum Press, New York and london,1981.
    [42]曲小钢.数学物理方程变分法[M].西安建筑科技大学研究生教材,1996.
    [43]陈恕行,秦铁虎.数学物理方程[M].上海:复旦大学出版社,2002.
    [44]王定江,应用偏微分方程[M].杭州:浙江大学出版社,2007.
    [45]汤燕斌,吴娥子.应用偏微分方程[M].北京:科学出版社,2010.
    [46] ВласовОЕ, Плоские тепловые волны,《Известия теплотехническото инстнута》,1927,вып.3(26).
    [47] СеливерстовГ.А.,Теплоустойчивость зданий, Госстройиздат,1934.
    [48] Швидковский Е.Г.К теории плоских температурныхволн, ЖТФ,1940,т.Х,вып.2.
    [49] МуромовС.И.,Расчетные температуры наржного воздуха и теплоустойчивостьзданий, Стройиздат Наркомстроя,1939.
    [50] C.O.Mackey, L.T.Wright: Hulbert L.E., et al. Periodic Heat Flow-Composite Walls or Roofs.Heating, Piping and Air Conditioning, June1946.
    [51]单寄平.空调负荷实用计算方法[M].北京:中国建筑工业出版社,1989.
    [52]陈友明.建筑围护结构非稳态传热分析新方法[M].北京:科学出版社,2004.
    [53] А.М.什克洛维尔著,陈在康,蔡祖康译.周期性热作用下的传热[M].北京:中国工业出版社,1964.
    [54] K. Kimura, D.G. Stephenson. Theoretical study of cooling load caused by lights. ASHRAETransactions,1968,74(1):152~165.
    [55] D. G. Stephenson and G. P. Mitalas. Calculation of heat conduction transfer function formultilayer slabs. ASHRAE Transactions,1971,77(2):1-17.
    [56]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [57] Shih.T.M.著,陈越南等译.计算传热学[M].北京:科学出版社,1987.
    [58] G.Strang, G.J.Fix著,崔俊芝等译.有限元法分析法[M].北京:科学出版社,1983.
    [59]陈景仁(Ching Jen Chen),Richard Bernatz,Richard Bernatz等,赵明登译.流动与传热中的有限分析法[M].北京:中国水利水电出版社,2010.
    [60] Felix Trombe, Albert Le Phat Vinh. Thousand kW solar furnace, built by the National Center ofScientific Research, in Odeillo (France). Solar Energy,1973,15(1):57-61.
    [61] Felix Trombe, Leon Gion, Claude Royere, Jean Francois Robert. First results obtained with the1000kW solar furnace. Solar Energy,1973,15(1):63-66.
    [62] J.D.Balcomb,J.C.Hedstrom,R.D.McFarland. Simulation analysis of passive solar heatedbuildings Preliminary results. Solar Energy,1977,19(3):277-282.
    [63] D.P. Grimmer, R.D. McFarland, J.D. Balcomb. Initial experimental tests on the use of smallpassive-solar test-boxes to model the thermal performance of passively solar-heated buildingdesigns. Solar Energy,1979,22(4):351-354.
    [64] J.D.Balcomb,etc.. Passive Solar Design HandBook.1980.
    [65] J.D.Baleomb,etc..Evaluating of The Performance of Passive Solar Heated Buildings.LA-UR-83-003.
    [66] R.M.Lebens. Passive Solar Heating Design. London: APPlied Seienee Publishers LTD,1981.
    [67] Duffie J. A.,Beckman W. A..Solar Engineering of Thermal Processes. John Wiley and Sons,NewYork,1980.
    [68]高文娟,狄洪发.花格式集热蓄热墙热性能的简化计算[J].农业工程学报,1989,5(4):40-45.
    [69]叶宏,葛新石.几种集热-贮热墙式太阳房的动态模拟及热性能比较[J].太阳能学报.2000,21(04):349-357.
    [70]王德芳,牛锁平.附加阳光间式太阳能采暖数学模型及模拟计算程序PHHS[J].甘肃科学学报,1990,2(2):18-21
    [71]胡京等.附加阳光间式被动太阳房数学模型及模拟程序PASOL-SS[J].太阳能学报,1988,10(02):18-21.
    [72]方贤德.被动式太阳房的通用模拟程序[J].太阳能学报,1994,15(4):363-367.
    [73]清华大学DeST开发组.建筑环境系统模拟分析方法—DeST [M].北京:中国建筑工业出版社,2006.
    [74]郑瑞澄,路宾等.被动式太阳能采暖建筑的优化设计技术[J].建筑科学,1997,(1):10-15.
    [75]郑瑞澄,郭晓光.直接受益集热窗热特性分析[J].太阳能学报,1989,10(2):157-166.
    [76]王德芳,牛锁平.附加阳光间式太阳能采暖数学模型及模拟计算程序PHHS[J].甘肃科学学报,1990,2(2):18-21.
    [77]王德芳,午锁平,喜文华.被动式太阳能采暖房数学模型及模拟计算程序—直接受益型和集热墙型PSHDC(上篇)[J].甘肃科学学报,1989,1(1):1-8.
    [78]王德芳,午锁平,喜文华.被动式太阳能采暖房数学模型及模拟计算程序—直接受益型和集热墙型PSHDC(下篇)[J].甘肃科学学报,1990,1(2):19-27.
    [79]李元哲等.被动式太阳房的原理及设计[M].北京:能源出版社,1989.
    [80]李元哲.被动式太阳房热工设计手册[M].北京:清华大学出版社,1993.
    [81] US DePt.of Energy. PassiveSolarDesignHandBook. Vol. l,1980.
    [82] US DePartment of Housing and Urban Devolopment. NewEnergy-Conseing passive SolarSingle Family Homes.1981.
    [83] L.Boadeau. Satisfaetion and Behaviour of the OecuPants of Buildings with Sunspaceinfuence on the Energy Savings. CSTB Franee,1986.
    [84] J.D.Baleomb,et al. PassiveSolar Heating Analysis(AdesignManual). ASHRAE,1984.
    [85]刘加平,杜高潮.无辅助热源被动式太阳房热工设计[J].西安建筑科技大学学报,1995,27(4):370-374.
    [86]刘加平.被动式太阳房动态模型研究[J].西安冶金建筑学院学报,1994,26(4):343-348.
    [87]刘加平,杨柳.零辅助能耗窑居太阳房热工设计[J].太阳能学报,1999,20(3):302-310.
    [88]孟长再,巴特尔,马广兴.被动式太阳房的集热部件优化选型及集热面积简易计算方法探讨[J].内蒙古工业大学学报,2002,21(4):311-316.
    [89]陈滨,孟世荣,陈会娟等.被动式太阳房集热蓄热墙对室内湿度调节作用的研究[J].暖通空调,2006,36(3):42-46.
    [90]刘伟等.多孔介质传热传质理论与应用[M].科学出版社,2006.
    [91]西藏自治区地方标准DB54/0016-2007.居住建筑节能设计标准[S].西藏人民出版社,2007.
    [92]方贤德,葛新石.玻璃窗拉布帘后传热系数的实验研究[J].南京航空航天大学学报,1993,25(6):772-779.
    [93] ASHRAE Handbook of Fundamentals, Chapter29, American Society of Heating, Refrigeration,and Airconditioning Engineers Inc., Atlanta,1997.
    [94] M.S. Reilly, F.C. Winkelmann, D.K. Arasteh, W.L. Carroll. Modeling windows in DOE-2.1E,Energy and Buildings,1995,22(1):59-66.
    [95] J.R. Verde著,仁泽霖等译.工程传热学[M].西安:人民教育出版社,1982.
    [96]陈启高.建筑热物理基础[M].西安:西安交通大学出版社,1991.
    [97] Jubran.B.A,Hnardna.M.A. ModellingrfeeeonveetioninaTrombewall. Renewable Energy,1991,(1):351-360.
    [98] Omriston.S.JRaithby.G.D. Numerical Predietions of eonveetion in a Tromb ewall system.International Journal of Hea tMass Transfer,1986,29(6):869-877.
    [99] Hulbert L.E., et al. Heat flow analysis in panel heating or cooling sections. Case I-uniformlyspaced pipes buried within a solid slab. ASHVE trans,1950,(57):221-232.
    [100] Schutrum L. F., et al. Heat exchange in a floor panel heated room. ASHVE trans,1953,(59):495.
    [101] Schutrum L. F., Humphery C M. Effects of non-uniformity and furnishings on panel heatingperformance. ASHVE trans,1954,(60),121-134.
    [102] Oliverri J.B. How to design heating–cooling comfort systems. Birmingham, MI: BusinessNews Publishing company,1973, p179.
    [103] R. E. Hogan. Heat transfer analysis of radiant heating panel–hot water pipes in concrete slabfloor, MS thesis, Louisiana Tech. University,1979.
    [104] R. E. Hogan, B. F. Blackwell. COMPARISON OF NUMERICAL MODEL WITH ASHREADESIGEN PROCEDURE FOR WARM WATER CONCRETE FLOOR HEATING PANELS,ASHREA trans. SF-86-13,1986:589-602.
    [105] Bohle. J., W. Kast and H. K lan. Kühlleistung von Kühldecken mit FEM berechnet. HLHVol.43, S,658-663.
    [106] Kilkis B., M. Coley. DEVLOPMENT OF A COMPUTER DESIGN SOFWARE FORHYDRONIC FLOOR HEATING OF BUILING, ASHREA trans, CH-95-19-1,1995:1201-1213.
    [107] Kilkis B. Enhancement of heat pump performance using radiant floor heating systems,ASM,1992, Vol.28:119-129.
    [108] Kilkis B., et al. A simplified model for the design of radiant in-slab heating panels, ASHREAtrans.1995,101(01):210-216.
    [109] Timothy. L. R, Kilkis B. An Analytical Model for the Design of In-Slab Electric HeatingPanels,ASHREA trans, SF-98-9-5,1998:1112-1115.
    [110]胡松涛等.地板辐射供暖系统运行工况动态仿真[J].暖通空调,1999,29(4):15-17.
    [111] Jurgen Bohle, Herbert Klan:Design of Panel Heating and Cooling Systems, ASHREA tran.DA-00-8-1,2000:677-683.
    [112] Athienitis.A.K. Numerical model of floor heating system. ASHRAETransactions,1994,100(01):1024-1030.
    [113] Athienitis.A.K,T Y Chen. Numerical study of thermostat setpoint profiles forfloor radiantheating and the effect of thermal mass.ASHRAE Trans.,1997,103(1):939-948.
    [114] Athienitis.A.K, Yang Chen. A Three-Dimensional Numerical Investigation of theEffect ofCover Materials on Heat Transfer in Floor Heating Systems.ASHREA trans., TO-98-24-4,1998:1350-1355.
    [115]冯晓梅,肖勇全.低温地板辐射供暖的动态仿真[J].建筑热能通风空调,2001,20(6):16-18.
    [116] Pyeongchan Ihm.MODELING AND OPTIMIZATION IN SLAB-ON-GRADERADIANTHEATING FLOOR SYSTEMS. Doctor Dissertation.University of Colorado,2003.
    [117]刘艳峰.地板供暖设计与运行理论研究[D].博士学位论文,西安建筑科技大学,2004.
    [118]马继涌,张伟华,朱荣利.间歇采暖与间歇调节经济性分析方法[J].应用能源技术.1995(1):17-21.
    [119]赵志安,单寄平.公楼类型空调建筑物间歇空调设计负荷的简化计算法.[J].暖通空调,1990,20(2):3-8.
    [120] Fraisse G, Virgone J, Brau J. An analysis of the performance of different intermittent heatingcontrollers and an evaluation of comfort and energy consumption. HVAC&R Research,1997,3(4):369-86.
    [121] Hokoi, S., Matsumoto. An analysis of stochastic properties of the heating load in anintermittently air-conditioned building by optimal control theory. Energy and Buildings,1991(16):525-531.
    [122] P.T. Tsilingiris. Wall heat loss from intermittently conditioned spaces—The dynamic influenceof structural and operational parameters. Energy and Buildings,2006,38(3):1022–1031.
    [123] D. P. Bloomfield, D. J. Fisk. The optimization of intermittent heating for variable efficiencyheating systems. Energy and Buildings,1981,3(4):295-301.
    [124]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.
    [125]刘加平.建筑物理(第四版)[M].北京:中国建筑工业出版社,2009.
    [126] GB50176-93.中华人民共和国国家标准[S].民用建筑热工设计规范1993.
    [127] JGJ134-2001.中华人民共和国国家标准[S].夏热冬冷地区居住建筑节能设计标准.2001.
    [128]陆耀庆:供暖通风设计手册[M].北京,中国建筑工业出版社,1987.
    [129] Tuncer Cebeci, Peter Bradshaw,朱自强等译.对流传热的物理特性和计算[M].北京:清华大学出版社,1988.
    [130]章熙民等.传热学(第四版)[M].北京:中国建筑工业出版社,2001.
    [131] Xiande Fang. A study of the U-factor of a window with a cloth curtain[J].Applied ThermalEngineering,2001,(21):549-558.
    [132]贺平,孙刚.供热工程[M].北京:中国建筑工业出版社,1993.
    [133] Jones W. P.,Launder B.E.:The prediction of laminarization with a two-equation model ofturbulence,Int. Heat Mass Transfer.1972,(15),301-311.
    [134] Jones W. P.,Launder B.E.:The calculation of low-Reynold-number phenomena with atwo-equation model of turbulence,Int. Heat Mass Transfer.1973,(16):1119-1130.
    [135]冉春雨等.塑料管地板采暖系统的研究[J].哈尔滨建筑工程学院学报,1989,22(01):88-94,.
    [136] P. Chuangchid, ect.:Foundation heat loss from heated concrete slab-on-grade floors,Buildingand Environment,2001,(36):637-655.
    [137]王晓彤,郭强.地板辐射供暖系统埋管结构尺寸与地板表面温度均匀性的关系[J].建筑热能通风空调,2001,20(01):40-41.
    [138] M.H. Adjali, ec al. Temperatures in and under a slab-on-ground floor: two-and three-dimensional numerical simulations and comparison with experimental data.,Building andEnvironment,2000,(35):655-662.
    [139] R. Zmeureanu, et al. TERMAL PERFORMANCE OF RADIANT HEATING PLANELS,ASHREA trans.,1989,3148(95):13-26.
    [140] J.D.Dale ect.:THE THERMAL PERFORMANCE OF A RADIANT PANEL FLOORHEATING SYSYTRM,ASHREA trans.,1993,3624(99):23-34.
    [141] Peter A. Yost et al. AN EVALUTION OF THEMAL COMFORT AND NENEGYCONSUMPTION FOR ASUFACE-MOUNTED CEILING RADIANT PANEL HEATINGSYSTEM, ASHREA trans., CH-95-19-3,1995:1221-1236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700