TiO_2光阳极优化及其吡咯并吡咯二酮和联噻唑类敏化剂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于新一代的太阳能电池:染料敏化太阳能电池(DSSCs)由于其相对较低的制备成本,在世界范围内引起了广泛关注。在电池的组成部分中,Ti02光阳极和光敏染料作为电池捕获太阳光和完成电子传输的关键部分发挥着重要的作用。本文改善了TiO2光阳极的制备方法,并且对光阳极进行修饰;同时合成了一系列D-π-A-π-D型和D-A-π-A型染料,研究了染料结构对电池转换效率的影响,并对电池器件性能进行了优化。
     第一章:简要介绍了现阶段染料敏化太阳能各组成部分光阳极、光敏染料,电解质和对电极的研究进展,并且在此基础上,提出本课题的主要研究内容和意义。
     第二章:在以硫酸钛为前驱体制备浆料的过程中,加入葡萄糖,控制纳米颗粒的生长,得到了一维结构的纳米棒状二氧化钛,长约150nm,直径约为31.60nm。一维棒状结构的纳米晶二氧化钛具有较高的电子传输性能,提高了从激发态注入二氧化钛导带的电子传输到外电路的速率,降低了电子回传和复合的几率,使其电池的开路电压达到848mV,光电转换效率高达8.57%;在以钛酸异丙酯作为钛前驱体的浆料制备过程中,加入乙基纤维素抑制二氧化钛纳米颗粒尺寸的增长,成功得到了更小粒径的纳米二氧化钛颗粒(粒径从36.72nm减小到15.75nm),基于N719染料电池的短路电流从14.61增加到18.05mA/cm2,光电转换效率从7.86%提高到9.59%,提高了22%。
     第三章:为了丰富吡咯并吡咯二酮(DPP)类染料在染料敏化太阳能电池中的应用研究,设计合成了两个以三苯胺和N,N-二(4-甲氧基苯基)苯胺为给体,DPP单元为共轭桥,羧酸基团作为电子受体的D-π-A-π-D型纯有机染料DPP-I和DPP-Ⅱ.分别测试了两种染料的光物理和电化学性能。电化学测定的数据表明,给体的改变能够有效调节染料的HOMO和LUMO能级,调节染料的电子注入和染料再生的驱动力。基于染料DPP-Ⅰ的染料敏化太阳能电池表现更好的光伏性能:最高单色光入射光电流转换效率(IPCE)达到了80.6%,总的转换效率为2.68%。而在相同的条件下,染料DPP-Ⅱ的电池效率仅为0.51%。在以共吸附剂CDCA优化后,DPP-Ⅱ的效率提高到了1.37%。
     第四章:为了降低二氧化钛光阳极中电子回传和复合的几率,采用连续离子层吸收和反应法(SILAR)将CuInS2量子点层沉积在二氧化钛薄膜表面,修饰光阳极。然后将两个联噻唑为π-共轭桥的染料(BT-C1和BT-C2)敏化到含有CuInS2量子点的Ti02膜上形成染料/CuInS2/TiO2型光阳极。实验结果表明:CuInS2能垒层不仅可以有效地改善电池的开路电压(Voc),而且能略微提高短路光电流(Jsc)。而传统ZnO能垒层在提高开路电压的同时,却明显减少Jsc。交流阻抗谱(EIS)测试进一步证实了CuInS2在光阳极表面形成了抑制注入电子和电解质中离子复合的能垒层,提高电池的开路电压。在AM1.5(100mW cm-2)光强条件下,基于BT-C1和BT-C2敏化的光阳极在以CuInS2,为能垒层的电池中开路电压增加了22和27mV,电池总的转换效率达到7.20%和6.74%。
     第五章:设计合成了三种分别以咔唑,三苯胺和吲哚啉为电子给体的联噻唑D-A-π-A型有机染料(BT-T1-T3),研究了给体对染料敏化电池光伏性能的影响,紫外-可见吸收光谱表明,以吲哚啉为给体的染料BT-T3吸收光谱明显红移,其吸收的截止波长扩展到近700nm。同时BT-T3具有最宽的IPCE谱图响应范围,并且在580-650nm范围内保持高于BT-T1和BT-T2的IPCE谱图10-15%的数值。电化学测量数据表明,电子给体对染料分子的HOMO和LUMO能级具有影响。在AM1.5(100mWcm-2)光强条件下,基于吲哚啉为给体的BT-T3染料电池得到了最高转换效率7.86%(短路电流为15.26mA/cm2,开路电压为747mV,填充因子为0.69)。
     第六章:噻吩作为π共轭桥链引入到染料敏化剂中,能够拓展染料的吸收光谱,提高染料的摩尔消光系数。针对三苯胺和吲哚啉为给体的染料BT-T2和BT-T3,在给体和联噻唑之间引入噻吩单元合成了染料TBT-T2和TBT-T3。在三苯胺为给体的染料中,引入噻吩后,染料的最大吸收波长和吸收截止波长都出现红移,染料摩尔消光系数提高。TBT-T2染料敏化电池的效率从7.12%提高到7.51%;有趣的是在以吲哚啉为给体的染料BT-T3中引入噻吩,染料的吸收光谱蓝移,染料分子内的电荷转移受阻,激发态染料的电荷分离效率降低,造成染料TBT-T3敏化电池的短路电流明显降低,从14.77mA/cm2降低到4.52mA/cm2,电池的效率也从7.86%减少到1.93%。
As a new generation of solar cells, the dye-sensitized solar cells (DSSCs) have attracted widespread concern in the world due to its relatively low cost of preparation. The photoanodes and sensitizers play an important role as the key part of capturing sun ligh and transporting electron in DSSCs. In this paper, modification and optimization of the photoanodes were studied. And a series of D-π-A-π-D-and D-A-π-A type sensitizers with diketopyrrolopyrrole and bithiazole core were synthesized and their photovoltaic performances have been investigated in detail.
     In chapter1, the definition of the structure and principle for the dye-sensitized solar cells, electrolytes and counter electrode are introduced. Recent researches of nanoporous semiconductor electrode and new dye-sensitizers have been reviewed. Then the research strategy of the dissertation is presented on that basis.
     In chapter2, in the process of titanium sulfate as the precursor, the glucose was added to control the growth of particles to obtain a one-dimensional structure of nano-rod-shaped titanium oxide which was about150nm lengths and31.60nm diameters. The one-dimensional rod-like structure of titanium dioxide has higher electron transmission efficiency and improves the rate of electron transmission to the external circuit. Electrons from the excited dye were injected into the conduction band of titanium dioxide can reduce the probability of electron recombination. Finally, the cell performaned an improving open circuit voltage of848mV and overall conversion efficiency reached8.57%. Ethyl cellulose was added in the process of Titanium (IV) Isopropoxide as the titanium precursor to control the size of titanium dioxide nano-particle size. A smaller particle size of titanium dioxide was obtained (Particle size decreased from36.72nm to15.75nm) successfully. The short-circuit current for DSSCs based on N719was increased from14.61to18.05mA/cm2, and an overall conversion efficiency was up to9.59%.
     In chapter3, two new metal-free organic dyes (DPP-Ⅰ and DPP-Ⅱ) with diketopyrrolopyrrole (DPP) core were designed and synthesized to enrich the application of DPP unit in DSSCs, in which triphenylamine or N,N-bis(4-methoxyphenyl)benzenamine moieties was used as the electron donor, DPP units as theπ-conjugated bridge, and carboxylic acid group as the electron acceptor. Photophysical and electrochemical properties of two dyes were investigated by UV-vis spectrometry and cyclic voltammetry. Electrochemical measurement data indicate that the tuning of the HOMO and LUMO energy levels can be conveniently accomplished by alternating the donor moiety. The DSSC based on dye DPP-I showed better photovoltaic performance:a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of80.6%corresponding to an overall conversion efficiency of2.68%. Although the power conversion efficiencies are not so high, this work explores new donor-π-accepter-π-donor models and the effects of molecular design on optical properties
     In chapter4, the quantum dot CuInS2layer was deposited on TiO2film using successive ionic layer absorption and reaction (SILAR) method, then two bithiazole-bridged dyes (BT-C1and BT-C2) were sensitized on the CuInS2films to form dye/CuInS2/TiO2photoanodes for DSSCs. It was found that the quantum dots CuInS2as an energy barrier layer can improve the solar cell open-circuit voltage (Voc) effectively. Moreover, the CuInS2barrier layer can also increase short-circuit photocurrent (Jsc) compared to the large decrease in Jsc with ZnO as energy barrier layer. The electrochemical impedance spectroscopy (EIS) measurement showed that the CuInS2formed a barrier layer to suppress the recombination from injection electron to the electrolyte and improve Voc. Finally, the Voc increased about22and27mV for CuInS2coating TiO2-based BT-C1and BT-C2-sensitized cells, the overall conversion efficiencies also reached to7.20%and6.74%, respectively.
     In chapter5, three metal-free bithiazole organic dyes (BT-T1~T3) based on D-A-π-A building blocks were designed and synthesized for dye-sensitized solar cells (DSSCs) to study the influence of different electron donors on photovoltaic properties, in which the electron donors of BT-T1~T3were carbazole, triphenylamine and indoline moieties, respectively. The UV/Vis absorption spectra showed that BT-T3containing indoline as electron-donor displayed red-shift absorption compared to the other two dyes and the most broadened spectrum was an onset close to700nm.n And the IPCE spectra of BT-T3were also broadened and kept higher IPCE value during580-650nm. Electrochemical measurement data indicated that the HOMO and LUMO energy levels could be tuned through introducing different electron-donor in the dye molecular. It was found that the overall conversion efficiency of indoline donor based dye BT-T3showed the highest efficiency of7.86%under AM1.5irradiation (100mW/cm2). The electron lifetime calculated from electrochemical impedance spectroscopy (EIS) measurements demonstrated the reduced charge recombination and the higher open-circuit voltage
     In chapter6, thiophene as the π-conjugated bridge chain could expand the absorption spectrum and improve the molar extinction coefficient of the dye when it was introduced into the dye sensitizers. Thiophene was introduced into the dyes molecular (BT-T2with triphenylamine as donor, BT-T3with indoline as donor) between donor and bithiazole to afford TBT-T2and TBT-T3. For the dyes with triphenylamine, the introduction of thiophene afforded a red-shift maximum absorption and threshold wavelength and improved molar extinction coefficient. The dye-sensitized cell efficiency increased from7.12%to7.51%. While the experimental and the theoretical density functional calculation result indicated that the introduction of thiophene in the indoline dye leaded to a blue shift absorption spectra. The intramolecular charge transmission was blocked. The decreased rate of charge separation efficiency caused the short-circuit current of TBT-T3sensitized solar cell reduced significantly, from14.77mA/cm2to4.52mA/cm2. And the efficiency also reduced from7.86%to1.93%.
引文
[1]Becquerel E. Mcoire Surles effets electriques produits Sous I'influence des rayons Solaires[J]. Comptes Rendus de 1'Academie des Sciences de Paris,1839,9:561-567
    [2]Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power[J]. Journal of Applied Physics,1954, 25(5):676-677.
    [3]Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook[J]. Materials Science and Engineering:R:Reports,2003,40(1):1-46.
    [4](a) Gissler W, Memming R. Semiconductor-electrolyte solar cells-A new re-chargeable redox solar battery[C]. Photovoltaic Solar Energy Conference.1978,1: 425-435. (b) Gissler W, Memming R. Photoelectrochemical processes at semiconducting WO3 layers[J]. Journal of the Electrochemical Society,1977,124(11): 1710-1714.
    [5](a) Allongue P, Costa-Kieling V, Gerischer H. Etching of Silicon in NaOH Solutions Ⅰ. In Situ Scanning Tunneling Microscopic Investigation of n-Si (111)[J]. Journal of The Electrochemical Society,1993,140(4):1009-1018. (b) Lewerenz H J, Gerischer H, Lubke M. Photoelectrochemistry of WSe2 Electrodes Comparison of Stepped and Smooth Surfaces[J]. Journal of The Electrochemical Society,1984,131(1):100-104.
    [6]B O'regan, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 thin film[J]. Nature,1991,353:737-740.
    [7]Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society,1993,115(14):6382-6390.
    [8]Chen C Y, Wang M, Li J Y, et al. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells[J]. Acs Nano,2009,3(10):3103-3109.
    [9]Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011, 334(6056):629-634.
    [10]Anderson S, Constable E C, Dare-Edwards M P, et al. Chemical modification of a titanium (Ⅳ) oxide electrode to give stable dye sensitisation without a supersensitiser[J]. Nature,280,1979:571-573.
    [11]Desilvestro J, Graetzel M, Kavan L, et al. Highly efficient sensitization of titanium dioxide[J]. Journal of the American Chemical Society,1985,107(10):2988-2990.
    [12]Nazeeruddin M K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nano-crystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex[J]. Chemical Communications,1997(18):1705-1706.
    [13]Barolo C, Nazeeruddin M K, Fantacci S, et al. Synthesis, characterization, and DFT -TDDFT computational study of a ruthenium complex containing a functionalized tetradentate ligand[J]. Inorganic chemistry,2006,45(12):4642-4653.
    [14]Nazeeruddin M K, Wang Q, Cevey L, et al. DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications[J]. Inorganic chemistry,2006,45(2):787-797.
    [15]Cao Y, Bai Y, Yu Q, et al. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio) thiophene conjugated bipyridine[J]. The Journal of Physical Chemistry C,2009,113(15):6290-6297.
    [16]Islam A, Singh S P, Yanagida M, et al. Amphiphilic ruthenium (II) terpyridine sensitizers with long alkyl chain substituted β-diketonato ligands:an efficient coadsorbent-free dye-sensitized solar cells[J]. International Journal of photoenergy, 2011,2011,757421.
    [17]Wadman S H, Kroon J M, Bakker K, et al. Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells[J]. Chemical Communications,2007 (19): 1907-1909.
    [18]Bessho T, Yoneda E, Yum J H, et al. New paradigm in molecular engineering of sensitizers for solar cell applications[J]. Journal of the American Chemical Society, 2009,131(16):5930-5934.
    [19]Chou C C, Wu K L, Chi Y, et al. Ruthenium (Ⅱ) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells[J]. Angewandte Chemie International Edition,2011,50(9):2054-2058.
    [20]Kay A, Graetzel M. Artificial photosynthesis.1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins[J]. The Journal of Physical Chemistry,1993,97(23):6272-6277.
    [21]Nazeeruddin M K, Humphry-Baker R, Officer D L, et al. Application of metall-oporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity[J]. Langmuir:the ACS journal of surfaces and colloids,2004,20(15): 6514-6517.
    [22]Wang Q, Campbell W M, Bonfantani E E, et al. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films[J]. The Journal of Physical Chemistry B,2005,109(32):15397-15409.
    [23]Campbell W M, Jolley K W, Wagner P, et al. Highly efficient porphyrin sensitizers for dye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2007,111(32): 11760-11762.
    [24]Lu H P, Tsai C Y, Yen WN, et al. Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of coadsorbate[J]. The Journal of Physical Chemistry C,2009,113(49): 20990-20997.
    [25]Hsieh C P, Lu H P, Chiu C L, et al. Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry,2010,20(6):1127-1134.
    [26]Mozer A J, Wagner P, Officer D L, et al. The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells[J]. Chemical Communications,2008 (39): 4741-4743.
    [27]Bessho T, Zakeeruddin S M, Yeh C Y, et al. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins[J]. Angewandte Chemie International Edition,2010,49(37):6646-6649.
    [28]Lin C Y, Wang Y C, Hsu S J, et al. Preparation and spectral, electrochemical, and photovoltaic properties of acene-modified zinc porphyrins[J]. The Journal of Physical Chemistry C,2009,114(1):687-693.
    [29]Wu C H, Pan T Y, Hong S H, et al. A fluorene-modified porphyrin for efficient dye-sensitized solar cells[J]. Chemical Communications,2012,48(36):4329-4331.
    [30]Wang C L, Chang Y C, Lan C M, et al. Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells[J]. Energy & Environmental Science,2011,4(5):1788-1795.
    [31]Lu H P, Mai C L. Tsia C Y, et al. Design and characterization of highly efficient porphyrin sensitizers for green see-through dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics,2009,11(44):10270-10274.
    [32]Lee C Y, Hupp J T. Dye sensitized solar cells:TiO2 sensitization with a bodipy-porphyrin antenna system[J]. Langmuir,2009,26(5):3760-3765.
    [33]YeonaLee C, CheonaJeong N. Porphyrin sensitized solar cells:TiO2 sensitization with a π-extended porphyrin possessing two anchoring groups[J]. Chemical Communications,2010,46(33):6090-6092.
    [34]Chang Y C, Wang C L, Pan T Y, et al. A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells[J]. Chemical Communications,2011,47(31): 8910-8912.
    [35]Wang C L, Lan C M, Hong S H, et al. Enveloping porphyrins for efficient dye-sensitized solar cells[J]. Energy & Environmental Science,2012,5(5):6933-6940.
    [36]Sauve G, Cass M E, Coia G, et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes[J]. The Journal of Physical Chemistry B,2000,104(29):6821-6836.
    [37]Sauve G, Cass M E, Doig S J, et al. High Quantum Yield Sensitization of Nanocrystalline Titanium Dioxide Photoelectrodes with cis-Dicyanobis (4, 4'-dicarboxy-2,2'-bipyridine) osmium (Ⅱ) or Tris (4,4'-dicarboxy-2,2'-bipyridine) osmium (Ⅱ) Complexes[J]. The Journal of Physical Chemistry B,2000,104(15): 3488-3491.
    [38]Altobello S, Argazzi R, Caramori S, et al. Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes[J]. Journal of the American Chemical Society,2005,127(44):15342-15343.
    [39]Ferrere S, Gregg B A. Photosensitization of TiO2 by[FeⅡ (2,2'-bipyridine-4,4'-dicarboxylic acid)2(CN)2]:Band Selective Electron Injection from Ultra-Short-Lived Excited States[J]. Journal of the American Chemical Society,1998,120(4):843-844.
    [40]Islam A, Sugihara H, Hara K, et al. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum (II) diimine dithiolate complexes [J]. Inorganic Chemistry,2001,40(21):5371-5380.
    [41]Wu W, Xu X, Yang H, et al. D-π-M-π-A structured platinum acetylide sensitizer for dye-sensitized solar cells[J]. Journal of Materials Chemistry,2011,21(29): 10666-10671.
    [42]Hara K, Kurashige M, Ito S, et al. Novel polyene dyes for highly efficient dye-sensitized solar cells[J]. Chemical communications,2003 (2):252-253.
    [43]Hara K, Sato T, Katoh R, et al. Novel Conjugated Organic Dyes for Efficient Dye-Sensitized Solar Cells[J]. Advanced Functional Materials,2005,15(2):246-252.
    [44]Hara K, Miyamoto K, Abe Y, et al. Electron transport in coumarin-dye-sensitized nano- crystalline TiO2 electrodes[J]. The Journal of Physical Chemistry B,2005, 109(50):23776-23778.
    [45]Hara K, Tachibana Y, Ohga Y, et al. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes[J]. Solar Energy materials and Solar cells,2003,77(1): 89-103.
    [46]Wang Z S, Cui Y, Hara K, et al. A High-Light-Harvesting-Efficiency Coumarin Dye for Stable Dye-Sensitized Solar Cells[J]. Advanced Materials,2007,19(8):1138-1141.
    [47]Kitamura T, Ikeda M, Shigaki K, et al. Phenyl-conjugated oligoene sensitizers for TiO2 solar cells[J]. Chemistry of materials,2004,16(9):1806-1812.
    [48]Chen D Y, Hsu Y Y, Hsu H C, et al. Organic dyes with remarkably high absorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution[J]. Chemical Communications,2010,46(29):5256-5258.
    [49]Chen B S, Chen D Y, Chen C L, et al. Donor-acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2011,21(6):1937-1945.
    [50]Zhou D, Cai N, Long H, et al. An energetic and kinetic view on cyclo-pentadithiophene dye-sensitized solar cells:the influence of fluorine vs ethyl substituent[J]. The Journal of Physical Chemistry C,2011,115(7):3163-3171.
    [51]Xu M, Zhou D, Cai N, et al. Electrical and photophysical analyses on the impacts of arylamine electron donors in cyclopentadithiophene dye-sensitized solar cells[J]. Energy & Environmental Science,2011,4(11):4735-4742.
    [52]Zeng W, Cao Y, Bai Y, et al. Efficient dye-sensitized solar cells with an organic photo sensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks[J]. Chemistry of Materials,2010,22(5):1915-1925.
    [53]Lin L Y, Tsai C H, Wong K T, et al. Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells[J]. The Journal of Organic Chemistry,2010,75(14):4778-4785.
    [54]Chen J H, Tsai C H, Wang S A, et al. Organic Dyes Containing a Coplanar Indaceno-dithiophene Bridge for High-Performance Dye-Sensitized Solar Cells[J]. The Journal of organic chemistry,2011,76(21):8977-8985.
    [55]Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells[J]. Chemical Communications,2003 (24):3036-3037.
    [56]Horiuchi T, Miura H, Sumioka K, et al. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes[J]. Journal of the American Chemical Society,2004, 126(39):12218-12219.
    [57]Kuang D, Uchida S, Humphry-Baker R, et al. Organic Dye-Sensitized Ionic Liquid Based Solar Cells:Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers[J]. Angewandte Chemie International Edition,2008, 47(10):1923-1927.
    [58]Liu B, Zhu W, Zhang Q, et al. Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells:tuning photovoltaic performance by structural modification of donor group in donor-π-acceptor system[J]. Chemical Communications,2009 (13):1766-1768.
    [59]Li W, Wu Y, Li X, et al. Absorption and photovoltaic properties of organic solar cell sensitizers containing fluorene unit as conjunction bridge[J]. Energy & Environmental Science,2011,4(5):1830-1837.
    [60]Cui Y, Wu Y, Lu X, et al. Incorporating Benzotriazole Moiety to Construct D-A-π-A Organic Sensitizers for Solar Cells:Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group[J]. Chemistry of Materials,2011,23(19): 4394-4401.
    [61]Velusamy M, Justin Thomas K R, Lin J T, et al. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells[J]. Organic Letters,2005,7(10): 1899-1902.
    [62]Lin L Y, Tsai C H, Wong K T, et al. Efficient organic DSSC sensitizers bearing an electron-deficient pyrimidine as an effective π-spacer[J]. Journal of Materials Chemistry,2011,21(16):5950-5958.
    [63]Kim J J, Choi H, Lee J W, et al. A polymer gel electrolyte to achieve≥6% power conversion efficiency with a novel organic dye incorporating a low-band-gap chromophore[J]. Journal of Materials Chemistry,2008,18(43):5223-5229.
    [64]Tang Z M, Lei T, Jiang K J, et al. Benzothiadiazole Containing D-π-A Con- jugated Compounds for Dye-Sensitized Solar Cells:Synthesis, Properties, and Photovoltaic Performances[J]. Chemistry, an Asian journal,2010,5(8):1911-1917.
    [65]Zhu W, Wu Y, Wang S, et al. Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response[J]. Advanced Functional Materials,2011,21(4): 756-763.
    [66]He J, Wu W, Hua J, et al. Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance[J]. Journal of Materials Chemistry,2011, 21(16):6054-6062.
    [67]Chang D W, Lee H J, Kim J H, et al. Novel quinoxaline-based organic sensitizers for dye-sensitized solar cells[J]. Organic letters,2011,13(15):3880-3883.
    [68]Cui Y, Wu Y, Lu X, et al. Incorporating Benzotriazole Moiety to Construct D-A-π-A Organic Sensitizers for Solar Cells:Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group[J]. Chemistry of Materials,2011,23(19): 4394.4401.
    [69]Qu S, Wu W, Hua J, et al. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2009,114(2): 1343-1349.
    [70]Chou H H, Hsu C Y, Hsu Y C, et al. Dipolar organic pyridyl dyes for dye-sensitized solar cell applications[J]. Tetrahedron,2012,68(2):767-773.
    [71]Wu W, Hua J, Jin Y, et al. Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells[J]. Photochemical & Photobiological Sciences,2008,7(1): 63-68.
    [72]Jin Y, Hua J, Wu W, et al. Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo[e]indole for dye-sensitized solar cells[J]. Synthetic Metals,2008,158(1):64-71.
    [73]Wu W, Guo F, Li J, et al. New fluoranthene-based cyanine dye for dye-sensitized solar cells[J]. Synthetic Metals,2010,160(9):1008-1014.
    [74]Takechi K, Sudeep P K, Kamat P V. Harvesting infrared photons with tricarbocyanine dye clusters[J]. The Journal of Physical Chemistry B,2006,110(33):16169-16173.
    [75]Burke A, Schmidt-Mende L, Ito S, et al. A novel blue dye for near-IR dye-sensitised solar cell applications[J]. Chemical Communications,2007 (3):234-236.
    [76]Choi H, Kim J J, Song K, et al. Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications [J]. Journal of Materials Chemistry, 2010,20(16):3280-3286.
    [77]Paek S, Choi H, Kim C, et al. Efficient and stable panchromatic squaraine dyes for dye-sensitized solar cells[J]. Chemical Communications,2011,47(10):2874-2876.
    [78]Maeda T, Hamamura Y, Miyanaga K, et al. Near-infrared absorbing squarylium dyes with linearly extended π-conjugated structure for dye-sensitized solar cell applications[J]. Organic Letters,2011,13(22):5994-5997.
    [79]Ning Z, Zhang Q, Wu W, et al. Starburst triarylamine based dyes for efficient dye-sensitized solar cells[J]. The Journal of Organic Chemistry,2008,73(10):3791-3797.
    [80]Teng C, Yang X, Yuan C, et al. Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br-/Br3 Electrolytes[J].Organic Letters,2009,11(23):5542-5545.
    [81]Tian H, Jiang X, Yu Z, et al. Efficient Organic-Dye-Sensitized Solar Cells Based on an Iodine-Free Electrolyte[J]. Angewandte Chemie International Edition,2010,49(40): 7328-7331.
    [82]Kusama H, Arakawa H. Influence of pyrimidine additives in electrolytic solution on dye- sensitized solar cell performance[J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,160(3):171-179.
    [83]Konno A, Kitagawa T, Kida H, et al. The effect of particle size and conductivity of CuI layer on the performance of solid-state dye-sensitized photovoltaic cells[J]. Current Applied Physics,2005,5(2):149-151.
    [84]O'Regan B C, Lenzmann F. Charge transport and recombination in a nanoscale inter-penetrating network of n-type and p-type semiconductors:Transient photocurrent and photovoltage studies of TiO2/Dye/CuSCN photovoltaic cells[J]. The Journal of Physical Chemistry B,2004,108(14):4342-4350.
    [85]Chung I, Lee B, He J, et al. All-solid-state dye-sensitized solar cells with high effi-ciency[J]. Nature,2012.485(7399):486-489.
    [86]Hu L, Hecht D, Gruner G. Carbon Nanotube Thin Films:Fabrication, Properties, and Applications[J]. Chemical reviews 2010,110(10),5790-5844.
    [87]Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocry-stalline titanium dioxide and carbon powder[J]. Solar Energy Materials and Solar Cells, 1996,44(1):99-117.
    [88]Wang H, Hu Y H. Graphene as a counter electrode material for dye-sensitized solar cells[J]. Energy & Environmental Science,2012,5(8):8182-8188.
    [89]Wang M, Anghel A M, Marsan B, et al. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells[J]. Journal of the American Chemical Society,2009,131(44):15976-15977.
    [90]Yang J, Bao C, Zhang J, et al. In situ grown vertically oriented CuInS2 nanosheets and their high catalytic activity as counter electrodes in dye-sensitized solar cells[J]. Chemical Communications,2013,49(20):2028-2030.
    [91]Lenzmann F, Krueger J, Burnside S, et al. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: Indication for electron injection from higher excited dye states[J]. The Journal of Physical Chemistry B,2001,105(27):6347-6352.
    [92]Guo P, Aegerter M A. RU (Ⅱ) sensitized Nb2Os solar cell made by the sol-gel process[J]. Thin Solid Films,1999,351(1):290-294.
    [93]Jose R, Thavasi V. Ramakrishna S. Metal Oxides for Dye-Sensitized Solar Cells[J]. Journal of the American Ceramic Society,2009,92(2):289-301.
    [94]Ramasamy E, Lee J. Ordered Mesoporous SnO2- Based Photoanodes for High Perfor- mance Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2010, 114(50):22032-22037.
    [95]Tebby Z, Uddin T, Nicolas Y, et al. Low-Temperature UV Processing of Nanoporous SnO2 Layers for Dye-Sensitized Solar Cells[J]. ACS Applied Materials & Interfaces, 2011,3(5):1485-1491.
    [96]Burnside S, Moser J E, Brooks K, et al. Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices:increasing photovoltage through flatband potential engineering [J]. The Journal of Physical Chemistry B,1999, 103(43):9328-9332.
    [97]Tan B, Toman E, Li Y, et al. Zinc stannate (Zn2Sn04) dye-sensitized solar cells[J]. Journal of the American Chemical Society,2007,129(14):4162-4163.
    [98]Lana-Villarreal T, Boschloo Q Hagfeldt A. Nanostructured zinc stannate as semi-conductor working electrodes for dye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2007,111(14):5549-5556.
    [99]Pang S, Xie T, Zhang Y, et al. Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2007,111(49):18417-18422.
    [100]Gonzalez-Valls I, Lira-Cantu M. Dye Sensitized Solar Cells Based on Vertically-Aligned ZnO Nanorods:Effect of UV Light on Power Conversion Efficiency and Lifetime[J]. Energy & Environmental Science.2011,3(6):789-795.
    [101]Lin C-Y, Lai Y-H, Chen H-W, et al. Highly Efficient Dye-Sensitized Solar Cell with a ZnO Nanosheet-Based Photoanode[J]. Energy & Environmental Science.2011,4(9): 3448-3455.
    [102]Park N G, Schlichthorl G, Van de Lagemaat J, et al. Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4[J]. The Journal of Physical Chemistry B,1999, 103(17):3308-3314.
    [103]Byun H-Y, Vittal R, Kim D Y, et al. Beneficial Role of Cetyltrimethyl-ammonium Bromide in the Enhancement of Photovoltaic Properties of Dye-Sensitized Rutile TiO2 Solar Cells[J]. Langmuir.2004,20(16):6853-6857.
    [104]Jeong N C, Farha O K, Hupp J T. A Convenient Route to High Area, Nanoparticulate TiO2 Photoelectrodes Suitable for High-Efficiency Energy Conversion in Dye-Sensitized Solar Cells[J]. Langmuir,2011,27(5):1996-1999.
    [105]Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano letters,2006,6(2):215-218.
    [106]Yang L, Leung W W F. Application of a Bilayer TiO2 Nanofiber Photoanode for Optimization of Dye-Sensitized Solar Cells[J]. Advanced Materials,2011,23(39): 4559-4562.
    [107]Joshi P, Zhang L, Davoux D, et al. Composite of TiO2 nano fibers and nano particles for dye-sensitized solar cells with significantly improved efficiency[J]. Energy & Environmental Science,2010,3(10):1507-1510.
    [108]Tan B, Wu Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites[J]. The Journal of Physical Chemistry B,2006,110(32):15932-15938.
    [109]Alivov Y, Fan Z Y. Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles[J]. Applied Physics Letters,2009,95(6):063504-063504-3.
    [110]Jiu J, Isoda S, Wang F, et al. Dye-sensitized solar cells based on a single crystalline TiO2 nanorod film[J]. The Journal of Physical Chemistry B,2006,110(5):2087-2092.
    [111]Kang S H, Choi S H, Kang M S, et al. Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency[J]. Advanced Materials,2008,20(1):54-58.
    [112]Tetreault N, Horvath E, Moehl T, et al. High-efficiency solid-state dyesensitized solar cells:fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires[J]. ACS nano.2010.4(12):7644-7650.
    [113]Burschka J, Dualeh A, Kessler F, et al. Tris (2-(1H-pyrazol-1-yl)pyridine) cobalt (Ⅲ) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells[J]. Journal of the American Chemical Society, 2011,133(45):18042-18045.
    [114]Tetreault N, Gratzel M. Novel nanostructures for next generation dye-sensitized solar cells[J]. Energy & Environmental Science,2012,5(9):8506-8516.
    [115]Guerin V M, Magne C, Pauporte T, et al. Electrodeposited nanoporous versus nano-particulate ZnO films of similar roughness for dye-sensitized solar cell applications[J]. ACS Applied Materials & Interfaces,2010,2(12):3677-3685.
    [116]Martinson A B F, Elam J W, Hupp J T, et al. ZnO nanotube based dye-sensitized solar cells[J]. Nano letters,2007,7(8):2183-2187.
    [117]Yun S, Lee J, Chung J, et al. Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping[J]. Journal of Physics and Chemistry of Solids,2010, 71(12):1724-1731.
    [118]Law M, Greene L E, Radenovic A, et al. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells[J]. The Journal of Physical Chemistry B,2006, 110(45):22652-22663.
    [119]Qian J, Liu P, Xiao Y, et al. TiO2-Coated Multilayered SnO2 Hollow Micro-spheres for Dye-Sensitized Solar Cells[J]. Advanced Materials,2009,21(36):3663-3667.
    [120]Xing J, Fang W Q, Li Z, et al. TiO2-coated ultrathin SnO2 nanosheets used as photoanodes for dye-sensitized solar cells with high efficiency[J]. Industrial & Engineering Chemistry Research,2012,51(11):4247-4253.
    [121]Duan Y, Fu N, Liu Q, et al. Sn-Doped TiO2 Photoanode for Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C,2012,116(16):8888-8893.
    [122]Luo L, Lin C J, Tsai C Y, et al. Effects of aggregation and electron injection on photovoltaic performance of porphyrin-based solar cells with oligo (phenylethynyl) links inside TiO2 and Al2O3 nanotube arrays[J]. Physical Chemistry Chemical Physics, 2010,12(5):1064-1071.
    [123]Kim J Y, Kang S H, Kim H S, et al. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells[J]. Langmuir,2010,26(4): 2864-2870.
    [124]Antila L J, Heikkila" M J, Aumanen V, et al. Suppression of Forward Electron Injection from Ru (dcbpy)2(NCS)2 to Nanocrystalline TiO2 Film As a Result of an Interfacial Al2O3 Barrier Layer Prepared with Atomic Layer Deposition[J]. The Journal of Physical Chemistry Letters,2010,1(2):536-539.
    [125]Jeong N C, Farha O K, Hupp J T. A Convenient Route to High Area, Nanoparticulate TiO2 Photoelectrodes Suitable for High-Efficiency Energy Conversion in Dye-Sensitized Solar Cells[J]. Langmuir,2011,27(5):1996-1999.
    [126]Adachi M, Sakamoto M, Jiu J, et al. Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy [J]. The Journal of Physical Chemistry B.2006,110(28):13872-13880.
    [127]Fisher A C, Peter L M, Ponomarev E A, et al. Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells [J]. The Journal of Physical Chemistry B.2000,104(5):949-958
    [128]Bisquert J, Cahen D, Hodes G, et al. Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells [J]. The Journal of Physical Chemistry B.2004,108(24):8106-8118
    [129]Cozzoli P D, Kornowski A,Weller H. Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods [J]. Journal of the American Chemical Society.2003,125(47):14539-14548.
    [130]Liu B, Aydil E S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells [J]. Journal of the American Chemical Society.2009,131(11):3985-3990.
    [131]Ohsaki Y, Masaki N, Kitamura T, et al. Dye-Sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization [J]. Physical Chemistry Chemical Physics. 2005,7(24):4157-4163.
    [132]Xing M Y, Qi D Y, Zhang J L, et al. One-Step Hydrothermal Method to Prepare Carbon and Lanthanum Co-Doped TiO2 Nanocrystals with Exposed{001} Facets and Their High UV and Visible-Light Photocatalytic Activity [J]. Chemistry-A European Journal,2011,17(41):11432-11436.
    [133]Hoshikawa T, Yamada M, Kikuchi R, et al. Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells [J]. Journal of the Electrochemical Society,2005,152(2):E68-E73.
    [134]Verheijen W, Hofkens J, Metten B, et al. The Photo Physical Properties of Dendrimers Containing 1,4-Dioxo-3,6-Diphenylpyrrolo[3,4-c]pyrrole(DPP) as a Core[J]. Macromolecular Chemistry and Physics,2005.206(1):25-32.
    [135](a) T Beyerlein T, Tieke B, Forero-Lenger S, et al. Red electroluminescence from a 1, 4-diketopyrrolo [3,4-c] pyrrole (DPP)-based conjugated polymer[J]. Synthetic metals, 2002,130(2):115-119; (b) Cao D, Liu Q, Zeng W, et al. Diketopyrrolopyrrole-containing polyfluorenes:Facile method to tune emission color and improve electron affinity[J]. Macromolecules,2006,39(24):8347-8355.
    [136]Wienk M M, Turbiez M, Gilot J, et al. Narrow-Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells:The Effect of Processing on the Performance[J]. Advanced Materials,2008,20(13):2556-2560.
    [137]Bijleveld J C, Zoombelt A P, Mathijssen S G J, et al. Poly (diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics[J]. Journal of the American Chemical Society,2009,131(46):16616-16617.
    [138]J Bijleveld J C, Verstrijden R A M, Wienk M M, et al. Copolymers of diketo-pyrrolopyrrole and thienothiophene for photovoltaic cells[J]. Journal of Materials Chemistry,2011,21(25):9224-9231.
    [139]Min J, Peng B, Wen Y, et al. Low bandgap copolymer of 1,4-diketopyrrolo [3,4-c] pyrrole and thieno [3,2-b] thiophene:Synthesis and applications in polymer solar cells and field-effect transistors[J]. Synthetic Metals,2011,161(17):1832-1837.
    [140]Mishra S P, Palai A K, Patri M. Synthesis and characterization of soluble narrow band gap conducting polymers based on diketopyrrolopyrrole and propylenedioxythiophenes[J]. Synthetic Metals,2010,160(23):2422-2429.
    [141]Bijleveld J C, Gevaerts V S, Di Nuzzo D, et al. Efficient solar cells based on an easily accessible diketopyrrolopyrrole polymer[J]. Advanced Materials,2010,22(35): E242-E246.
    [142]Qu S, Qin C, Islam A, et al. Tuning the Electrical and Optical Properties of Diketopyrrolopyrrole Complexes for Panchromatic Dye-Sensitized Solar Cells[J]. Chemistry-An Asian Journal,2012,7(12):2895-2903.
    [143]Qu S, Qin C, Islam A, et al. A novel D-A-π-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells[J]. Chemical Communications,2012,48(55):6972-6974.
    [144]Qu S, Tian H. Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics[J]. Chemical Communications,2012,48(25):3039-3051.
    [145]Qu S, Wu W, Hua J, et al. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2009,114(2): 1343-1349.
    [146]Qu S, Wang B, Guo F, et al. New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells[J]. Dyes and Pigments, 2012,92(3):1384-1393.
    [147]Antila L J, Heikkila M J, Aumanen V, et al. Suppression of Forward Electron Injection from Ru (dcbpy) 2 (NCS) 2 to Nanocrystalline TiO2 Film As a Result of an Interfacial Al2O3 Barrier Layer Prepared with Atomic Layer Deposition[J]. The Journal of Physical Chemistry Letters,2009,1(2):536-539.
    [148]Diamant Y, Chappel S, Chen S G, et al. Core-shell nanoporous electrode for dye sensitized solar cells:the effect of shell characteristics on the electronic properties of the electrode[J]. Coordination Chemistry Reviews,2004,248(13):1271-1276.
    [149]Kay A, Gratzel M. Dye-sensitized core-shell nanocrystals:improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide[J]. Chemistry of Materials,2002,14(7):2930-2935.
    [150]Palomares E, Clifford J N, Haque S A, et al. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers[J]. Journal of the American Chemical Society,2003,125(2):475-482.
    [151]Zaban A, Chen S G, Chappel S, et al. Bilayer nanoporous electrodes for dye sensitized solar cells[J]. Chem. Commun.,2000 (22):2231-2232.
    [152]Sun W T, Yu Y, Pan H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. Journal of the American Chemical Society,2008,130(4): 1124-1125.
    [153]Lee Y L, Lo Y S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe[J]. Advanced Functional Materials,2009,19(4): 604-609.
    [154]Lee W, Lee J, Min S K, et al. Effect of single-walled carbon nanotube in PbS/TiO2 quantum dots-sensitized solar cells[J]. Materials Science and Engineering:B,2009, 156(1):48-51.
    [155]Kim D H, Lee Y H, Lee D U, et al. Significant enhancement of the power conversion efficiency for organic photovoltaic cells due to a P3HT pillar layer containing ZnSe quantum dots[J]. Optics Express,2012,20(10):10476-10483.
    [156]Liu W, Mitzi D B, Yuan M, et al.12% Efficiency CuIn (Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process[J]. Chemistry of Materials,2010,22(3): 1010-1014.
    [157]a) Li L, Coates N, Moses D. Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals[J]. Journal of the American Chemical Society,2010,132(1):22-23; b) Li T L, Teng H. Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes[J]. Journal of Materials Chemistry,2010,20(18):3656-3664; c) Li T L, Lee Y L, Teng H. CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells[J]. Journal of Materials Chemistry,2011,21(13): 5089-5098.
    [158]Yue W, Han S, Peng R, et al. CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells[J]. Journal of Materials Chemistry,2010.20(35):7570-7578.
    [159]Clifford J N, Palomares E, Nazeeruddin M K, et al. Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films[J]. Journal of the American Chemical Society,2004,126(18):5670-5671.
    [160]Choi H, Kim S, Kang S O, et al. Stepwise Cosensitization of Nanocrystalline TiO2 Films Utilizing Al2O3 Layers in Dye-Sensitized Solar Cells[J]. Angewandte Chemie International Edition,2008,47(43):8259-8263.
    [161]Gao Y, Zou X, Sun Z, et al. Enhancement of electron transfer efficiency in solar cells based on PbS QD/N719 dye cosensitizers[J]. Journal of Nanomaterials,2012,2012:8.
    [162]Han S, Kong M, Guo Y, et al. Synthesis of copper indium sulfide nanoparticles by solvothermal method[J]. Materials Letters,2009,63(13):1192-1194.
    [163]Xiao J, Xie Y, Tang R, et al. Synthesis and Characterization of Ternary CuInS2 Nanorods via a Hydrothermal Route[J]. Journal of Solid State Chemistry,2001,161(2): 179-183.
    [164]a) Yao J, Rudyk B W, Brunetta C D, et al. Mn incorporation in CuInS2 chalcopyrites: Structure, magnetism and optical properties[J]. Materials Chemistry and Physics, 2012.136(2-3):415-423; b) Xiang W, Zhao H, Zhong J. et al. The Preparation and the Third-Order Optical Nonlinearities of Sodium Borosilicate Glass Doped with CuInS2 Quantum Dots[J]. Journal of the American Ceramic Society,2012,95(5):1588-1594.
    [165]Chen C, Ali G, Yoo S H, et al. Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer[J]. Journal of Materials Chemistry,2011,21(41):16430-16435.
    [166]Wang P, Klein C, Humphry-Baker R, et al. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells[J]. Journal of the American Chemical Society,2005,127(3):808-809.
    [167]Velusamy M, Justin Thomas K R, Lin J T, et al. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells[J]. Organic Letters,2005,7(10): 1899-1902.
    [168]Li K C, Huang J H, Hsu Y C, et al. Tunable novel cyclopentadithiophene-based copolymers containing various numbers of bithiazole and thienyl units for organic photovoltaic cell applications[J]. Macromolecules,2009,42(11):3681-3693.
    [169]He J, Guo F, Li X, et al. New Bithiazole-Based Sensitizers for Efficient and Stable Dye-Sensitized Solar Cells[J]. Chemistry-A European Journal,2012,18(25): 7903-7915.
    [170]Lai L F, Qin C, Chui C H, et al. New fluorenone-containing organic photo sensitizers for dye-sensitized solar cells[J]. Dyes and Pigments,2013.96:516-524.
    [171]a) Wu W, Yang J, Hua J. et al. Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units[J]. Journal of Materials Chemistry, 2010,20(9):1772-1779; b) Wan Z, Jia C, Duan Y, et al. Influence of the antennas in starburst triphenylamine-based organic dye-sensitized solar cells:phenothiazine versus carbazole[J]. RSC Advances,2012,2(10):4507-4514.
    [172]Dreuw A, Head-Gordon M. Failure of time-dependent density functional theory for long-range charge-transfer excited states:The zincbacteriochlorin bacteriochlorin and bacteriochlorophyll-spheroidene complexes[J]. Journal of the American Chemical Society,2004,126(12):4007-4016.
    [173]Robertson N. Optimizing Dyes for Dye-Sensitized Solar Cells[J]. Angewandte Chemie International Edition,2006,45(15):2338-2345.
    [174]Ooyama Y, Harima Y. Photophysical and Electrochemical Properties, and Molecular Structures of Organic Dyes for Dye-Sensitized Solar Cells[J]. ChemPhysChem,2012, 13(18):4032-4080.
    [175]Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry,1994,98(45):11623-11627.
    [176]Schafer A, Horn H, Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr[J]. The Journal of chemical physics,1992,97:2571-2577.
    [177](a) Eichkorn K, Treutler O, Ohm H, et al. Auxiliary basis sets to approximate Coulomb potentials[J]. Chemical Physics Letters,1995,240(4):283-290; (b) Eichkorn K, Weigend F, Treutler O, et al. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials[J]. Theoretical Chemistry Accounts,1997,97(1-4):119-124.
    [178]Neese F, Wennmohs F, Hansen A, et al. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A'chain-of-spheres'algorithm for the Hartree-Fock exchange[J]. Chemical Physics,2009,356(1):98-109.
    [179]Sinnecker S, Rajendran A, Klamt A, et al. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (Direct COSMO-RS)[J]. The Journal of Physical Chemistry A,2006,110(6):2235-2245.
    [180]Preat J, Michaux C, Andre J M, et al. Pyrrolidine-based dye-sensitized solar cells:A time-dependent density functional theory investigation of the excited state electronic properties[J]. International Journal of Quantum Chemistry,2012,112(9):2072-2084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700