极紫外光子计数探测器成像特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球等离子体层作为内磁层最重要的活跃区域之一,在揭示地球磁场的众多复杂的相互作用的过程中,是一个非常关键的研究对象。“嫦娥二期”工程中已经将基于光子计数探测器的月基极紫外(EUV)相机列为有效载荷,用于对地球等离子体层进行拍摄。极紫外光子计数探测器作为EUV相机的关键技术之一,其成像性能直接影响相机的研制水平。本论文对极紫外光子计数探测器的成像特性展开了深入研究,为工程研制提供了理论和试验依据。
     本文在楔条形阳极位置灵敏理论研究及仿真模型建立的基础上,验证了光子计数探测器成像应用的可行性。详细分析了倍增器件微通道板(MCP)的各项工作参数对探测器成像性能的影响,确定了其最佳工作状态;提出了位敏元件楔条形阳极的最优化设计原则,并给出了加工设计参数;介绍了探测器的前端电子系统,搭建数据采集系统,编写了图像采集及处理软件。提出检测方案,对探测器的图像分辨率、成像非线性、MTF、暗噪声、光子计数率等成像性能进行了检测,结果表明我们研制的楔条形光子计数探测器的分辨率达到了140um,光子计数率高达67k cps,图像整体非线性度低于0.3%;初步完成了对月基EUV相机进行整机的成像检测。针对月基EUV相机可能存在的离焦模糊和空间周期性噪声,我们提出用维纳滤波算法对图像进行离焦模糊的复原,通过频域陷波滤波器滤除周期性空间噪声,仿真实验表明上述算法能有效解决可能出现的图像问题。
As one of the most important active regions in the inner magnetosphere, plasmasphere is a very critical factor to reveal many complex interactions in the Earth's magnetic field. EUV Camera based on photon counting detector has officially become a payload in the "Chang'e 2" project, using to image Earth's plasmasphere. As one of the key technologies of EUV camera, imaging performance of EUV photon counting detector impact on the developing level of the camera directly. This thesis carried out an in-depth research on the imaging characteristic of EUV photon counting detector, provided a theoretical and experimental basis for the project.
     Based on the theoretical study of wedge-strip anode, a simulation model of wedge-strip anode photon counting detector has been established and verifies the feasibility of its principles by the simulation target imaging. A Scheme design for the detector has been proposed, and Micro-Channel Plate’s various parameters have been optimized to ensure detector’performance; based on the the analysis of the main factors to position sensitive component (wedge-strip anode)’s imaging performance, an optimum design discipline of wedge -strip anode has been proposed and the design parameters has been given. Detector’s front-end electronic systems also have been introduced; a data acquisition system has been set up, and the image acquisition software has been coded. We introduced an imaging performance testing program for wedge-strip anode photon counting detector, which involved resolution test, linearity test, background noise test, and photon counting rate test. The testing result show that, our developing detector has a resolution of 140um, counting rate of 66k cps, linearity superior to 0.3%, fully able to meet the design requirements for EUV camera; has completed the imaging testing of the whole EUV carema preliminary. For the possible image problems of EUV camera, as defocus blur and spatial periodic noise, we propose Wienar filter algorithm to restore those defocus blurred images, and frequency-domain notch filter to filter out the cyclical spatial noise. Simulation result shows these methods can effectively solve the image problems that may arise.
引文
[1].维焦新,傅绥燕.太空探索[M].北京大学出版社. 2003: 20-35.
    [2]. http://kepu.ccut.edu.cn/100k/read-htm-tid-8989.html
    [3]. http://pluto.space.swri.edu/IMAGE/glossary/plasmasphere.html
    [4].徐荣栏.地球等离子体层摄影术[J].科学世界, 2006,11:5-10.
    [5]. R. L. Smith. Properties of the Outer Ionosphere Deduced from Nose Whistlers[J]. Journal of Geophysical Research, 1961: 3709-3716.
    [6]. M. J. Rycroft. Magnetospheric Plasma Flow and Electric Fields Derived from Whistler Observations[J]. in D. E. Page (ed.), Correlated Interplanetary and Magnetospheric Observations, Dordrecht, Holland, D. Reidel Publishing Company, 1974: 317-335.
    [7]. Y. Corcuff. Probing the Plasmapause by Whistlers[J]. Annales de Géophysique, 1975, 31: 53-67.
    [8]. Gy. Tarcsai. Routine Whistler Analysis by Means of Accurate Curve Fitting[J]. Journal of Atmospheric and Terrestrial Physics, 1975, 37: 1447-1457.
    [9]. S. S. Sazhin. M. Hayakawa and K. Bullough, Whistler Diagnostics of Magnetospheric Parameters: A Review[J]. Annales Geophysicae, 1992, 10: 293-308.
    [10]. D. L. Carpenter. Whistler Studies of the Plasmapause in the Magnetosphere, 1, Temporal Variations in the Position of the Knee and Some Evidence on Plasma Motions Near the Knee[J]. Journal of Geophysical Research, 1966, 71: 693-709.
    [11]. D. L. Carpenter and K. Stone. Direct Detection by a Whistler Method of the Magnetospheric Electric Field Associated with a Polar Substorm[J]. Planetary and Space Science, 1967, 15: 395-397.
    [12]. N. R. Thomson,. Causes of the Frequency Shift of Whistler-Mode Signals[J].Planetary and Space Science, 1976, 24: 447-454.
    [13]. A. Nishida. Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail[J].J.Geophys. Res., 1966, 5: 669-685.
    [14]. D. L. Carpenter. Whistler evidence of a‘knee’in the magnetospheric ionizationdensityprofile[J]. J. Geophys. Res., 1963,1 : 675-692.
    [15]. C. R. Chappell, , K. K. Harris, and G. W. Sharp. A study of the influence of magnetic activity on the location of the plasmapause as measured by OGO 5[J]. J.Geophys. Res., 1970,5: 50-64.
    [16]. R. R. Meier. Ultraviolet spectroscopy and remote sensing of the upper atmosphere [J]. Space Sci. Rev., 1991, 58: 1-12.
    [17]. E. C. Roelof, B. H. Mauk, Barry, and R. R. Meier. Instrument requirements for imaging the magnetosphere in extreme and energetic neutral atoms derived from computer-simulated images [J]. Proc. SPIE, 1992, 19: 1744-1754
    [18]. Masato Nakamura, Tatsundo Yamamoto, Koichiro Tsuruda, Yoshifumi Saito. Interplanetary He II extreme-ultraviolet observation on PLANET-B[J]. Society of Photo-Optical Instrumentation Engineers, 1993, 32 : 3033-3037.
    [19]. B. R. Sandel, A. L. Broadfoot, C. C. Curtis .The EXTREME ULTRAVIOLET IMAGER INVESTIGATION FOR THE IMAGE MISSION[J]. Space Science Reviews , 2000,91: 197–242.
    [20]. M. W.Liemohn, J. U. Kozyra, M. F. Thomsen. Dominant role of the asymmetric ring current in producing the stormtime DST [J], J. Geophys. Res., 2001, 106(10): 883-890.
    [21]. C. G.Park. Whistler observations of the interchange of ionization between the ionosphere and the protonosphere [J]. Geophys. Res., 1970, 75, (4): 249-256.
    [22]. M. B. Moldwin, M. F. Thomsen, S. J. Bame, D. J. McComas, and K. R. Moore An examination of the structure and dynamics of the outer plasmasphere using multiple geosynchronous satellites[J]. Geophys. Res., 1994, 99, (11): 475-483.
    [23]. G. Lu, T. E. Holzer, D. Lummerzheim, J. M. Ruohoniemi .Ionospheric response to the interplanetary magnetic field southward turning: Fast onset and slow reconfiguration[J]. Geophys. Res., 2002, 107(A8): 1153-1160.
    [24]. T.Ogawa and T. Tohmatsu. Sounding rocket observation of helium 304 and 584 ? glow [J]. Geophys. Res., 1971, 76: 6136-6142.
    [25].叶培建,彭兢.深空探测与我国深空探测展望,深空探测研究.2007,5(l): l-6.
    [26].欧阳自远,邹永廖,李春来.月球:人类走向深空的前哨站[M].清华大学出版社,2002:
    [27]. R. N. Wilson. Reflecting Telescope Optics I, Second Edition [M]. Springer, 2004,38-102.
    [28].张以谟.应用光学.1987年版次.天津大学.1990,263.
    [29]. M.玻恩,E.沃耳夫.光学原理[M].北京:科学出版社,1978:77-95.
    [30]. P.H Berning. Theory and calculations of optical thin films. In: J.Hass, ed.. Physics of Thin Films. New York: Academic, 1963,100.
    [31]. P. Dhez, A Erko, E Khzmalian et al. Kirkpatrick-Baez microscope based on a Bragg-Fresnel X-ray multilayer focusing system. Appl. Opt., 1992, 31(31):6622~6667
    [32]. Daniel Malacara, Zacarias Malacara. Handbook of Optical Design, Second Edition [M]. Marcel Dekker, Inc. 2004, 68.
    [33].袁旭沧.光学设计[M].北京理工出版社,1986,111.
    [34]. MkGVN992-1996, Image intensifier tubes specifications Philips Photonis [S].
    [35].宁静.三代微通道板玻璃的初步探讨[C].北京:中国硅酸盐学会,1998. 180-182.
    [36].刘术林,李翔,邓广绪等.低噪声、高增益微通道板的研制[J].应用光学,第27卷,第6期:552-557.
    [37]. B. N. Laprade, S. T. Reinhart, Wheeler. A low noise figure microhannel plate optimized for Gen III image intensification systems [J]. SPIE, 1990, 1243:162-172.
    [38].黄敏等. GDB-601型微通道板光电倍增管.光电子技术,1995,159(4).
    [39]. A. Boksenberg, D. E. Burgess. Image photon counting system for optical astronomy. Adv Electron and Electron Physics, 1972, 33B: 835-849.
    [40]. J.L.A.Fordharm, et al. Astronomical performance of a microchannel plate intensifered photon counting detector. Mon. Not. R. Astr. Soc., 1989, 237:513-521.
    [41]. Yutaka Tsuchiya, et al. Photon counting image acquisition system and its applications [J]. Imaging Technol 1985, 11:215-220.
    [42]. D.B.Kasle, J.S.Morgan, et al. High resolution decoding of multi-anode microchannel array detector. Pro.SPIE, 1991, 1549:52-58.
    [43].赵勋杰,石方山.光子计数成像技术及其应用[J].光电对抗与无源干扰, 2002,第三期:1-4.
    [44].王苏生.显微光子计数成像系统[J]。光学学报,1999,20(8).
    [45]. J.Sebay, G. Lelivre. Wavefront sensing and deconvolution of turbulence degraded photon counting images [J]. Proc. SPIE, 1993, 1982:368-372.
    [46]. R. W. Aircy. DQE enhancement of MCP intensifiers for astronomy results of the MIC X programmer [J]. Proc SPIE, 1990, 1235:338-346.
    [47]. CAO Gen-rui, Yu Xin. Accuracy analysis of a Hartmann-shcak wavefront sensor operated with a faint object [J]. Proc SPIE, 1994, 2033:331-335.
    [48]. B. O. Chet, R. C. George. Evalution of large format electron bombarded virtual phase CCDs as ultraviolet imaging detector [J]. Proc SPIE, 1990, 1334:139-145.
    [49]. D. C. Slater. Imaging MAMA Detector Systems. SPIE, 1990:1243.
    [50]. J.ChrisBlades.Ultraviolet and visible Detectors for Future Space Astro Physies Missions.Ultraviole and Visible Detectors Roadmap Report.
    [51]. J. G. Timothy, J.S.Morgan et al. MaMa detector system: A status report. Proc.SPIE, 1989, 1158:104-117.
    [52]. H. O. Anger, U.S. Patent 3,209,201. Beam Position Identificaiton Means. Sept, 28, 1965.
    [53]. C.Martin, P.Jelinsky, et.al.. Wedge-and-strip anode for centroid-finding position-sensitive photon and particle detectors [J]. Rev.Sci.Instrum, 1981, 52(7): 1067-1074.
    [54]. http://www.ssl.berkeley.edu/euve
    [55]. J. W. Stumpel, P. W. Sanford. A position sensitive proportional counter with high spatial resolution [J]. J. Phys. E: Sci. Instrum. 1973,6: 397-405.
    [56]. M. Lampton , C. W. Carlson. Low-distortion resistive anodes for two-dimensional position-sensitive MCP systems [J]. Rev. Sci. Instrum, 1979, 50:1093–1097.
    [57]. Erik Wilkinson, Steven V.Penton, Johon V.Vallerga, et al. Algorithms for correcting geometric distortions in delay line anodes. Proc, SPIE, 2000,4498.
    [58]. C. B. Johnson. Ultraviolet Sensing Technology Development at ITT. SPIE, 1989:687.
    [59]. A. Rasmussen , C. Martin. Development and Testing of a Prototype Mosaics Wedge-and-Strip Anode detector [J]. SPIE, 1989, 1159: 538-550.
    [60]. M. Lampteom, F. Paresce. The Ranicon: A resistive anode image converter [J]. Rev.Sci.Instrum, 1974, 45(9):1098-1105.
    [61]. J. L. Wiza, P. R. Henkel, and R. L. Roy. Improved microchannel plate performance with a resistive anode encoder [J]. Rev. Sci. Insrum, 1977, 48(9):1217-1221.
    [62].宁传刚,任雪光等.楔条形位置灵敏探测器特性[J].清华大学学报, 2004, 44(9): 1290-1294.
    [63]. R. H. Brigham, R. J. Bleiler,P. J. McNitt,et al. Characterization of two resistive anode encoder Position-sensitive detectors for use in ion microscopy [J]. Rev. Sci. Instrum.,1993, 64(2):420-429.
    [64]. O. H. W. Sieglnund, J. M. Stoek, D. R. Marsh, et al. Delay line detectors for the UVCS and SMMER Instruments on the SOHO satellite [J]. SPIE,1994,2280:89-100.
    [65]. O. H. W. Siegmund, M. Gummin, G. Gaines, et al. Performance of the double delay line microchannel plate detectors for the Far Ultraviolet Spectroscopic Explorer [J]. Proc, SPIE,1997,3114:283-294.
    [66]. O. H. W. Siegmund, M. Lampton, et al. Operational characteristics of wedge and strip image readout system [J]. IEEE, Transaction on Nuclear Science, 1989, 33(1): 724-727.
    [67]. E. O. Brighm. The Fast Fourier Transform [M]. Englewood Cliffs: Prencie-Hall, 1974.
    [68]. M. Takeda, I. Hideki. Fourier transforms method of fringe-pattern analysis for computer-based topography and interferometer [J]. Opt. Soc, 1982, 72(1): 156-160.
    [69]. H. J. NUSSBAUMER. Fast Fourier transform and convolution algorithms /2nd revised edition [J]. Springer-Verlag, 1982: 102.
    [70]. Shmuel Winograd. On computing the Discrete Fourier Transform [J]. PNAS, 1976, 73(1):1005-1006.
    [71]. Charles Van Loan. Computational frameworks for the fast Fourier transform [M]. Society for Industrial and Applied Mathematics, 1992.
    [72].缪坤治,詹卓群.微通道板用玻璃的发展[J] .中国建材科技, 2006(6): 14-17.
    [73].孙忠文,黄永刚,贾金升等.酸蚀对微通道板的影响口[J].应用光学,20 0 8, 2 9 ( 2 ) :1 6 1-1 6 5 .
    [74].乐务时,陈楠等.小孔径微通道板[J].应用光学,2009,30(5):810-814.
    [75]. M. C. Hettrick, S. Bowyer, R. F. Malina, C. Martin. Extreme Ultraviolet Explorer spectrometer [J]. Appl. Opt. 1985, 24:1737-1756.
    [76]. R. F. Floryan. Resistive Anode photomultiplier tube optimum operating conditions for photon correlation experiments [J]. Rev. Instrum, 1989, 60(3).
    [77].潘京生.微通道板及其主要性能[J].应用光学,2004,25(5):25-29.
    [78]. B. N. Laprade, et al. A low noise figure microchannel plate optimized for Gen III image intensification systems [J]. SPIE, 1990, 1243:162-172.
    [79].刘辉,黄英等.微通道板固定图案噪声成因探索[J].建筑玻璃与工业玻璃,2005,6:30-33.
    [80]. J. S. Lapington, H. E. The design and manufacture of wedge and strip anodes. IEEE Trans. Sci, 1996, 33(1):288-292.
    [81]. O. H. W. Siegmund, M.LamPton,J.Bixier, et al. Wedge and strip image readout systems for photon-counting detectors in space astronomy [J]. Opt. Soc. Am. A,1986,3(12):2139一2145.
    [82]. Andy Smith, Robert Kessel, et al. Modulation effects in wedge and strip anodes [J]. Rev.Sci.Instrum, 1989, 60(11):3509-3518.
    [83]. J.V.HATFIELD,S.BELL,et al. A Wedge and Strip Particle Detector Based on a Current Mode approach Circuits & Systems [J]. 1995,1:193-196.
    [84]. B. C. Bush, D. M. Cotton. High resolution two-dimensional imaging microchannel plate detector for use on a sounding rocket experiment [J]. SPIE, 1991, 1549:290-301.
    [85]. A. Rasmusse, C. Martin. Development and Testing of a Prototype Mosaic wedge-and-Strip Anode Detector [J]. SPIE,1989,1159:538-550.
    [86].苏弘,周波等.一种低噪声快电荷灵敏前置放大器的研制[J].核电子学与探测技术,2003,23(2):105-112.
    [87].李东仓,杨勇等.基于Sallen-Key滤波器的核脉冲成形电路研究[J].核电子学与探测技术,2008,28(3):563-566.
    [88].樊尚春,乔少杰.测技术与系统[M].北京航空工业出版社,2005.
    [89]. D.F.OGLETREE, G. S. BLACKMAN, R. Q. HWANG. A new Pulse counting low-energy electron diffraction system based on a Position sensitive detector [J]. Rev. Sci. Instrum.,1992, 63(1):104-113.
    [90].叶露,王肇勋.大口径长焦距平行光管主反射镜支撑与调整机构的研究[J].光学精密工程, 2002, 4: 462-465.
    [91]. Danniel Care, Bjorn Kemper, et al. Parameter-Optimized Digital Holographic Microscope for High-Resolution Living-Cell Analysis. Applied Optics, 2004, 43(36):6536-6544.
    [92].杨志文.光学测量[M].北京:北京理工大学出版社,1994.
    [93].郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1998.
    [94]. E. Samei, M.J.Flynn. A method for measuring the presampled MTF of digital radiographicsystems using an edge test device [J]. Med.Phys, 1998, 25(1):102-113.
    [95].于亦凡,周祥龙.模糊图像的滤波恢复方法[J].青岛大学学报.2001,16(:3)67-69.
    [96].王旭辉,郭光亚.二维匀速运动模糊图像恢复问题的研究[J].计算机应用,2000,20(10):25一28.
    [97].曹茂永,孙农亮,郁道银.离焦模糊图像清晰度评价函数的研究[J].仪器仪表学报,2001,2:36-42.
    [98].孙辉,张葆,刘晶红.基于维纳滤波的运动模糊消除算法及其在航空成像系统中的应用[J].光学精密工程,2005,13(6):735-740.
    [99]. Kenneth. R. Castleman. Digital Image Processing [M].Prentice Hall,1998.
    [100].刘东辉,孙晓云等.数字滤波及陷波器在心电图信号检测中的应用[J].工业仪表与自动化装置,2002,2:46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700