基于ANSYS的大型预焙铝电解槽热电场的仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝电解槽中电、热场分布状况直接影响到电解槽的稳定性以及电流效率和能量消耗,而且,在生产实践中,铝电解槽的电、热场分布难以直接测量。因此,对铝电解槽电、热分布的计算机仿真研究有着十分重要的意义。
     本文借助大型通用有限元分析软件ANSYS,对铝电解槽电、热场分布进行了研究。首先,分析了铝电解槽结构,针对正常生产情况,给出了铝电解槽电、热场三维静态物理模型及数学模型,并结合铝电解槽的实际情况,给出模型的边界条件。其次,结合160KA铝电解槽进行了铝电解槽电、热场的仿真分析,结果表明:160KA铝电解槽正常生产过程,能量总支出为每秒607.96KW,其中:槽体上部散热量143.48KW、槽体侧部散热量114KW、槽体底部散热量13.8KW、补偿电解所需能量336.68KW;能量总收入为每秒610.24KW,槽总电压为3.814V,其分布为:阳极压降0.36V、阴极压降0.357V、极间压降1.297V、极化压降1.8V。在此基础上,通过相应的参数调整,对350KA铝电解槽电、热场进行了计算,重点给出铝电解槽达到静态能量平衡且各阳极高度相同时,槽内阳极炭块电、热场的分布情况,并对铝电解正常生产中,新换阳极不导电和完全导电时,槽内正常工作的阳极炭块的电、热场分布情况分别做了仿真分析。最后,针对160KA铝电解槽阳极结构尺寸进行了优化设计,给出了两种可行的优化设计方案,两优化方案中,阳极炭块尺寸均增加,钢爪直径、钢爪深度也均增加。其中一方案,阳极炭块长、宽、高依次增加62mm、5mm、55mm,钢爪直径、深度依次增加18mm、13mm;另一方案,阳极炭块长、宽、高依次增加76mm、6mm、11mm,钢爪直径、深度依次增加25mm、18mm。两种优化方案降低槽电压分别为58mV、91mV,电能消耗相应的减少了197.2KWh/t-Al、309.4KWh/t-Al。
The thermal-electric distribution of the aluminum reduction cell has a direct impact on its stability, current efficiency and energy consumption. It is difficult to measure the thermal-electric distribution directly. Therefore, it has great significance to conduct the research by the computer.
     This paper studied the thermal-electric field of large prebaked aluminum reduction cell by use of ANSYS. Firstly, the structure about aluminum reduction cell was analyzed, and the 3D physics model and mathematics model for the normal production state were set up. The thermal and electric boundary conditions were given according to the industrial process. Secondly, the paper studied the thermal-electric field distribution of the 160kA aluminum reduction cell. The results showed that the total energy consumption of the 160kA reduction cell is 607.96kW per second, which included the anode heat loss 143.48kW, side heat loss 114kW, bottom heat loss 13.8kW and energy needed for electrolysis 336.68kW; the total energy input into the cell is 610.24kW per second, and the total voltage drop of the cell is 3.814V, which comprises the anode voltage 0.36V, cathode voltage 0.357V, voltage between anode and cathode 1.297V and the chemic reaction voltage 1.8V. The computation of thermo-electric distribution of 350KA cell was also conducted based on the same analysis process as 160KA aluminum reduction cell with changing some structure parameters and other parameters. It strengthens the anode thermal-electric field distribution in the condition of static energy balance and all anodes being the same height, and the thermal-electric field distribution of anode with the conditions that there is no electricity through the new anode and there" is full electricity through the new anode during the normal running of the cell. Thirdly, the anode structure parameters of 160KA aluminum reduction cell were studied and two new designs were made. In the two designs, the anode parameters and stub parameters have been increased. In one design, the length, width and height of the anode was increased respectively by 62mm, 5mm and 55mm, the diameter and the depth of the stub was increased respectively by 18mm and 13mm. In the other design, the length, width and height of the anode was increased respectively by 76mm, 6mm and 11mm, the diameter and the depth of the stub was increased respectively by 25mm and 18mm. The results showed the voltage of the cell was reduced respectively by 58mV and 91mV and energy input into the cell were reduced respectively by 197.2kWh per ton Al and 309.4kWh per ton Al.
引文
[1] K.格里奥特海姆,B.J.韦尔奇著;邱竹贤,李德祥,等译.铝电解技术.北京:冶金工业出版社,1985
    [2] 田应甫.大型预焙铝电解槽生产实践.中南工业大学出版社,1997
    [3] K.格罗泰姆,H.克望德主编;邱竹贤,等译.铝电解导论.沈阳:《轻金属》编辑部,1994
    [4] 邱竹贤.预焙槽炼铝.北京:冶金工业出版社,2005
    [5] 高子忠.轻金属冶金学.冶金工业出版社,1993
    [6] W.E. Haupin. Calculating thickness of walls frozen from melt [J].TMS-AIME annual meeting pager, New York, 1971:305
    [7] G. peacy, G.W. Medlin. Cell sidewall studies at Noranda aluminum [J].Light metals, 1973: 85
    [8] A.EK, G.E. Flank mark. Simulation of Thermal, Electrical and Chemical Behavior of an Aluminum Cell on a Digital Computer [J].Light metals, 1990:203
    [9] Dupuis M. Computation of aluminum reduction cell energy balance using ANSYS finite element models [J]. Light Metals, 1998:409
    [10] H.A. Ahmed, F.A. Elrefaie, M.F.EL demerdash. Development of a thermal model for prebaked aluminum reduction at the aluminum company of Egypt [J].Light Metals, 1993: 375
    [11] K.J. Fraser, D. Billinghurst, K.L. Chen. Some applications of mathematical modeling of electric current distributions in Hall Heroult cells[J].Light Metals, 1989:219
    [12] 游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究[D].博士学位论文,长沙:中南工业大学,1997
    [13] 罗海岩,陆继东,等.铝电解槽电热场解析技术的发展.轻金属,2002,1
    [14] 梅炽,汤洪清,孟柏庭.铝电解槽电、热解析数学模型及数值仿真试验[J].中南矿冶学院学报,1986,52(6):29
    [15] 梅炽,王前普,彭小奇.有色冶金炉窑的仿真与优化[J].中国有色金属学报,1996,6(4):19
    [16] 周萍,梅炽.铝电解槽槽膛内形的连续监测[J].轻金属,1992(4):19
    [17] 梅炽,游旺,王前普.铝电解槽槽膛内形在线显示仿真软件的研究与开发[J].中南工业大学学报,1997,28(2):138
    [18] 游旺,王前普.铝电解槽槽膛内形在线仿真理论研究[J].中国有色金属学报,1998,8(4):695
    [19] 贺志辉,陶先绪,陈世玉.电解槽槽膛内形对电流分布的影响[J].轻金属,1987(6):28
    [20] 梁芳慧,冯乃祥,孙阳.利用槽膛形状的计算机仿真技术确160KA预焙槽最佳铝液高度[J].轻金属,2000(1):33
    [21] J. Zoric, I. Rousar, J. Thonstad. Mathematical modeling of current distribution and anode shape in industrial aluminum cells with pre-baked anodes [J].Light Metals, 1997: 449
    [22] 韦涵光,张大有,译.铝电解槽阳极的温度及其应力[J].轻金属,1985(12):26
    [23] 梅炽,王前普.铝电解槽热场研究[J].轻金属,1992(1):29
    [24] 李景江,邱竹贤.铝电解槽阴极电场的计算机仿真[J].东北工学院学报,1989,10(6):591
    [25] 黄永忠,王化章,等.铝电解生产.中南工业大学出版社,1994
    [26] 童春秋,罗英涛,等.铝用炭素材料(续3).炭素技术,2000,1
    [27] 王楚,李椿,周乐柱.电磁学.北京:北京大学出版社,2000
    [28] 杨世铭,陶文铨.传热学.北京:高等教育出版社,1998
    [29] S.A. Sherbinin, V.V. Pingin, A.G. Barantsev.3D Thermo-Electric Field Modeling Tool and Its Application for Energy Regime Simulations in Aluminum Reduction Cells. Light Metals, 2000:323-329
    [30] 李德祥,郭天立.铝电解槽内熔体与槽帮间的换热系数计算.有色金属,1993,45(1):52-54
    [31] M.P. Taylor, et al. Bath/Freeze Heat Transfer Coefficients: Experimental Determination and Industrial Application. Light Metals, 1985:781-786
    [32] John J.J, et al. A study of cell ledge heat transfer using an analogue Ice-Water Model. Light Metals, 1994:285-290
    [33] 冯乃祥,梁芳慧.160KA大型预焙铝阳极铝电解槽温度场及槽帮与熔体间换热系数的计算.有色金属(冶炼部分),1999(3):18-22
    [34] J.G. Peacey, G.W. Medlin. Cell sidewall studies at Noranda aluminum. Light Metals, 1979(1):475-492
    [35] A. Solhiem. Heat transfer coefficients between bath and side ledge in aluminum cells. Light Metals, 1983:425-435
    [36] 白葳,喻海良.通用有限元分析ANSYS8.0基础教程.北京:清华大学出版社,2005
    [37] 谢刚,铝电解槽阳极效应的不可逆过程特征,昆明理工大学学报,1996,12(8):50-55
    [38] 张明杰,邱竹贤,王宏宽.铝电解中的电极过程-阳极过程,东北大学学报(自然科学版)2001,4,22(2):123-126
    [39] 陶沙.铝电解槽三维全槽模拟研究.华中科技大学,硕士论文,2005
    [40] 铝电解槽能量平衡测试与计算方法.中华人民共和国有色金属行业标准,YS/T120-92.
    [41] 程迎军.铝电解槽阳极-熔体电热场及惰性阳极热应力的计算机仿真与优化.中南大学,硕士论文.
    [42] 党建平.浅谈新建大型预焙槽首次阳极更换顺序.有色金属(冶炼部分),2001(4):30-32
    [43] 赵天德,党建平,等.新建190kA预焙槽系列焙烧启动实践.轻金属,2001(4):44-46
    [44] 张家奇,周乃君,李贺松.预焙阳极铝电解槽阳极电阻变化研究.湖南冶金,2006,34(4):16-18、21
    [45] 罗忠臣.预焙阳极炭块最佳配料方案的选择及实践[J].Light Metals,1995(10):47-50
    [46] 李劼,程迎军,周乃君,姜昌伟.预焙阳极铝电解槽阳极电、热场的数值仿真与优化,中国有色金属报,2003,13,2
    [47] Marc Dupuis, Warren Haupin. Performing fast trend analysis on cell key design parameters. Light Metals, 2003:255-262
    [48] 博弈创作室.参数化有限元分析技术及其应用实例.北京:中国水利水电出版社,2004
    [49] 小飒工作室.最新经典ANSYS及Workbench教程.北京:电子工业出版社,2004
    [50] 徐顺生.铝电解槽电流强化与电热场仿真研究及应用.中南大学:硕士论文,2003
    [51] 王煊.160KA预焙电解槽强化电流试验研究.中南大学:硕士论文,2003
    [52] 阎照文,苏东林,李朗如,杨溢.基于ANSYS分析的铝电解槽电流场的优化设计,轻金属,2004(12):31-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700