多元耦合仿生疏水金属表面制备原理与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏水,特别是超疏水表面以其优异的憎水性在自清洁材料、微流体装置以及生物材料等许多领域有着重要的应用前景,倍受广泛关注。人们已经制备出许多人工疏水表面。金属材料在工业生产上和日常生活中越来越显示其重要性。因此,在具有高表面能的金属或合金基体上构建疏水表面成为近年来一个新兴领域和研究热点。本文从仿生学角度出发,基于耦合仿生理论,采用多种方法在铝合金和铜表面制备了疏水表面。进一步验证了固体表面的疏水性取决于表面形态、微-纳复合结构及化学组成的三元耦合。具体主要研究工作如下:
     1、选取典型荷叶为生物原型,通过激光扫描共聚焦显微镜(LSCM)、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)对比观察分析了荷叶上、下表面的微观形貌、组织结构和化学成分。结果表明,荷叶上、下表面的化学成分相近,即覆盖一层蜡纸晶粒,而不同的是荷叶上表面由于存在微米级乳突形态和乳突上分布若干纳米绒突形成的复合结构,其疏水性强于只有单一“网格”状微观形态的下表面。模拟荷叶这一现象,建立了两种金属表面仿生耦合疏水模型,即由非光滑微形态、微-纳复合结构和低能材料三元耦合的仿生模型和微米形态与微-纳复合结构二元耦合的仿生模型。
     2、在仿生铝合金表面,采用硬质阳极氧化技术和分子自组装法制备了仿生耦合超疏水表面。利用LSCM、SEM和接触角测量仪对仿生氧化铝表面进行了表征。结果表明,仿生氧化铝表面形成了由较小微米尺度的氧化铝团聚体组成的凸凹不平的“小山丘”形态和微-微复合结构。其表面水接触角从小于90°提到约137°,而未低能化处理实现了金属表面由亲水到疏水的转变。继而采用分子自组装法,用十八烷基硫醇进行修饰,使仿生氧化铝表面获得了150±2°的超疏水特性。
     3、通过碱性湿化学刻蚀及其与阳极氧化相结合的方法对铝合金表面进行仿生疏水处理。利用LSCM、SEM、FESEM、XPS和接触角测量仪对仿生疏水表面进行了表征。结果表明,碱刻蚀铝表面获得了微米级非光滑形态,其水接触角平均增加到约118o;而由碱刻蚀与阳极氧化相结合方法制备的氧化铝表面,同时获得了微观非光滑形态和微米级凹凸不平与纳米级的团簇凸包及孔洞构成的复合结构,其水接触角达到约148o,未经低能化处理,获得与荷叶下表面非常接近的表面形貌和疏水特性。
     4、通过电沉积技术与低温氧化法结合,在碳钢基体上制备了复合铜薄膜,获得水接触角约150o的超疏水特性。通过LSCM、SEM、XPS和接触角测量仪对复合铜薄膜表面进行了表征。结果表明,经上述方法处理后,碳钢表面形成了具有由大纳米尺度(500nm-1μm)的球状单体构成的类乳突状团簇体,和团簇体与团簇体之间的小纳米尺度的空隙构成的微-纳复合结构的仿生耦合铜薄膜。这种仿生耦合铜薄膜的形态和结构使其具有与荷叶上表面接近的粗糙度和疏水特性,水接触角接近150o。
     5、基于生物耦合及其仿生原理与规律,提出金属表面构建多元耦合仿生疏水特性机制,并揭示出其共性规律,实现高能表面从亲水到疏水的转变。
Hydrophobic and super-hydrophobic surfaces have considerable technological potentialfor various applications ranging from self-cleaning materials to microfluidic devices andbiomaterials due to their extremely good water-repellent properties. A number of studieshave been carried out to produce artificially bionic roughness-induced hydrophobic surfaces.Especially, more and more attention on hydrophobic properties in metal and alloy materialswith high surface energy were arose up because of their great importance in daily life as wellas in various industrial and biological applications such as self-cleaning characteristics.Therefore, building a hydrophobic surface on the metal or alloy substrate with high surfaceenergy become an emerging area in recent years and research focus. The wettability of metaland alloy surfaces depends strongly on multi-coupling of microscopy and/or microstructureand chemical composition of solid surface. Based on the bionics coupling theory, the thesisis engaged to reparation and research of bionic coupling hydrophobic surfaces in aluminumalloy and steel materials by using a variety of experimental methods. The main work of thethesis is listed as following:
     1、The resultant surfaces of lotus leaves were characterized by means of scanningelectron microscopy (SEM), laser scanning confocal microscopy (LSCM), x-rayphotoelectron spectrograph (XPS) and water contact angle measurements (WCA). Theresults show that the chemical composition of the surface of lotus leaves covered with alayer of waxy grain is much similar to their converse surfaces, and the difference is that thelotus leaves surface micro/nanostructure with micron mastoid morphology and a number ofnano-velvet mastoid is main factor affecting the wettability on the converse surface onlywith a single terrace-like morphology of lotus leaves. Based on the phenomenon of lotus leaves, the two models were established for coupling bionic hydrophobicity. The one iscomposed of non-smooth morphology, microstructure and low-energy materials, and theother is composed of micro morphology and micro/nano composite structure.
     2、Bionic alumina samples were fabricated on convex dome type aluminum alloysubstrate by using a hard anodizing technique. The resultant surfaces were characterized bymeans of scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM)and water contact angle measurements (WCA). The measurement of the wetting propertyshowed that the water contact angle of the unmodified as-anodized alumina bionic samplesincreases from90°to137°with increasing anodizing time. The increased water contractangle with anodizing time arises from the gradual formation of the hierarchical structure orcomposite structure. The structure is composed of the micro-scaled alumina columns andpores and the change in the height of columns and the depth of pores. The water contactangle increases significantly from96°to152°when the samples were modified withself-assembled monolayer of octadecanethiol (ODT), showing a change in the wettabilityfrom hydrophobicity to super-hydrophobicity.
     3、A hydrophobic surface was fabricated on etched aluminum alloy by using a hardanodizing technique. The resultant surfaces were characterized by means of scanningelectron microscopy (SEM), field scanning electron microscopy (FESEM), x-rayphotoelectron spectrograph (XPS), laser scanning confocal microscopy (LSCM) and watercontact angle measurements (WCA). The results show that cater-like pits and submicronporous aluminum films constitute a hierarchical rough aluminum surface after etching andsubsequent anodizing treating. The hierarchical micro/nanostructure exhibits excellenthydrophobic properties with water contact angles of about148o. And, the etchedaluminum alloy substrate exhibits hydrophobic properties with water contact angles of about118o. Without the low-energy treatment, the coupling surface gets very close surfaceroughness and hydrophobicity with the same as the lotus leaf lower surface.
     4、A electrochemical deposition process and thermal oxidation technology were used to fabricate rough surfaces and obtain excellent hydrophobic with an average water contactangle of150°on polycrystalline carbon steel substrates. The resultant surfaces werecharacterized by means of scanning electron microscopy (SEM), x-ray photoelectronspectrograph (XPS), laser scanning confocal microscopy (LSCM) and water contact anglemeasurements (WCA). The results show that the uniformity distributed micrometer-scalecauliflower clusters bodies were found to be consist of further nanometer scale oxidizedcopper spherical monomer on the oxidized copper substrate. This special structure is muchsimilar to that of the lotus leaf. The oxidized copper film with the hierarchicalmicro/nanostructure exhibits excellent super-hydrophobic properties with water contactangle of about150°.
     5、Based on the biological coupling and its bionic principles and laws, multi-couplingbionic hydrophobic characteristics mechanism on metal surface are proposed and thecommon law are revealed, to achieve the transformation of high-energy surface fromhydrophilic to hydrophobic.
引文
[1] T. Li, S. Liu, S. Feng, C.E. Aubrey. Face-integrated fukui function, under-standingwettability anisotropy of molecular crystals from density functional theory.Am.Chem. Soc,2005,127(5):1364-1365.
    [2]S. H. Wang, K.P. Lee, D.S. Lee, S.E. Powers. Effects of fractional wettability oncapillary pressure-saturation-relative permeability relations of two-fluid systems.Adv. Water Resour,2006,29:212-226.
    [3] U. Makal, N. Uslu, K. J. Wynne. Water makes it hydrophobic, contraphilic wettingfor polyurethanes with soft blocks having semifluorinated and5,5-dimethylhydantoin side chains. Langmuir,2007,23:209-216.
    [4] A. Nakajima. Design of a transparent hydrophobic coating. J. Ceram. Soc. Jpn,2004,112:533-540.
    [5] Z. Guo, F. Zhou, J. Hao, W. Liu. Stable biomimetic duper-hydrophobic engineeringmaterials. J. Am. Chem. Soc,2005,127:15670-15671.
    [6] M.L. Ma, R. M. Hill. Superhydrophobic surfaces. Curr. Opin. Colloid In,2006,11:193-202.
    [7] R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel. Wetting and self-cleaningproperties of artificial super-hydrophobic surfaces. Langniuir,2005,21(3):956-961.
    [8] R.Blossey. Self-cleaning surfaces-virtual realities. Nature Mater,2003,2:301-306.
    [9]李正雄,彦军,戴瑾瑾.纺织品超疏水表面研究进展[J].印染,2006,24:48-52.
    [10]吴济宏,陈小燕,郭亚星.拒水导湿针织面料的研究[J].上海纺织科技,2006,36(8):45-47.
    [11] T.Kako, A.Nakajima, H.Irie, Z.Kato, K.Uematsu, T.Watanabe, K.Hashimoto.Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilicchannels. J. Mater. Sci,2004,39:547-555.
    [12] G.Yamauehi, H.Saito, K.Takai. Proceedings of the surface characterization ofadsorption and interfacial reactions11.Keauhou-Kona, Hawaii, USA,1998,121.
    [13] A.R. Parker, C.R. Lawrence. Water capture a desert beetle. Nature,2001,414:3-34.
    [14] J. Kim, C.J. Kim. Nanostructured surfaces for dramatic reduction of flow resistancein droplet-based microfluidics. Proceedings of the IEEE Conference on MEMS.LasVegas, NV,2002,479-482.
    [15] J.Ou, B. Perot, J.P. Rothstein. Laminar drag reduction in microchannels usingultrahydrophobic surfaces. Phys. Fluids,2004,16:4635-4643.
    [16] J.P. Rothstein. Direct velocity measurements of the flow past drag-reducingultrahydrophobic surfaces. Phys. Fluids,2005,17(10):103606-103615.
    [17] T. Sun, H. Tan, D. Han, Q. Fu, L. Jiang. No platelet can adhere-largely improvedblood compatibility on nanostructured superhydrophobic surfaces. Small,2005,1(10):959-963.
    [18] G. M. Whitesides, A. D. Stroock. Flexible methods for microfluidics. Phys.Today,2001,54:42-48.
    [19] X. Gao, L. Jiang. Water-repellent legs of water striders. Nature,2004,432:36.
    [20] A. Nakajima, K. Hashimoto, T. Watanabe. Recent studies on super-hydrophobicfilms. Monatsh.Chem,2001,132:31-41.
    [21] Z. Guo, F. Zhou, J. Hao, W. Liu. Stable biomimetic super-hydrophobic engineeringmaterials. J. Am. Chem. Soc,2005, ASAP article.
    [22] K. Watanabe, Y. Udagawa, H. Ugadawa. Drag reduction of newtonian fluid in acircular pipe with a highly water-repellent wall. J. Fluid Mech,1999,381:225-238.
    [23] K. Fukuda, J. Tokunaga, T. Nobunaga, T. Nakatani, T. Iwasaki, Y. Kunitake.Frictional drag reduction with air lubricant over a super-water-repellent surface.J.Mar.Sci.Technol,2000,5:123-130.
    [24] K. Watanabe, H. Udagawa. Drag reduction of non-newtonian fluids in a circularpipe with a highly water-repellent wall. AIChE J,2001,47(2):256-262.
    [25] T Liu, Y S Yin, S G Chen, X T Chang, S Cheng. Super-hydrophobic surfacesimprove corrosion resistance of copper in seawater. Electrochimica Acta,2007,52:3709-3713.
    [26]任露泉,梁云虹.生物耦元及其耦联方式[J].吉林大学学报(工学版),2009,39(6):1504-1511.
    [27] Y.X. Lu. Significance and progress of bionics. Journal of Bionics Engineering.2004,1(1):1-3.
    [28] N.R. Bogatyrev.“Living” machine. Journal of Bionics Engineering,2004,1(2):79-87.
    [29] L.Q. Ren. Progress in the bionic study on anti-adhesion and resistance reduction ofterrain machines. Science in China Series E: Technological Sciences,2009,52(2):273-284.
    [30]任露泉.地面机械脱附减阻仿生研究进展[J].中国科学E辑:技术科学.2008,38(9):1353-1364.
    [31]任露泉,尚广瑞,杨晓东.禽羽结构及羽表脂质对其润湿性能的影响[J].吉林大学学报(工学版),2005,02:213-218.
    [32]王淑杰,任露泉,韩志武等.植物叶表面非光滑形态及其疏水特性的研究[J].科技通报.2005,5(21):553—556.
    [33] M. Dickinson. Animal locomotion: how to walk on water. Nature,2003,424:621-622.
    [34] W. Barthlott, C. Neinhuis. Purity of the sacred lotus, or escape from contam-ination in biological surfaces. Planta,1997,202:1-8.
    [35] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu.Super-hydrophobic surfaces: from natural to artifical. Adv. Mater.,2002,14:1857-1860.
    [36] Z. Guo and W. Liu. Biomimic from the superhydrophobic plant leaves in nature:binary structure and unitary structure. Plant Science,2007,172:1103-1112.
    [37] Ren L Q, Liang Y H. Biological Couplings: Classification and Characteristic Rules[J]. Sci China Ser E-Tech Sci,2009,52(10):2791-2800.
    [38]任露泉,梁云虹.耦合仿生学[M].北京.科学出版社.2011(ISBN978-7-03-030378-3).
    [39]孙久荣,戴振东.非光滑表面仿生学(II)[J].自然科学进展,2008,18(7):727-733.
    [40] Y. Fang, G. Sun, T. Q. Wang, Q. Cong, L. Q. Ren. Hydrophobicity mechanism ofnon-smooth pattern on surface of butterfly wing. Chinese Science Bulletin,2007,52:711-716.
    [41] Y. M. Zheng, X. F. Gao, L. Jiang. Directional adhesion of superhydrophobicbutterfly wings. Soft Matter,2007,3:178-182.
    [42] Bharat Bhushan, Yong Chae Jung. Natural and biomimetic artificial surfaces forsuperhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress inMaterials Science,2011,6(1):1-108.
    [43] X.Zhang, S.Tan, N.Zhao, X.Guo, X.Zhang, Y.Zhang, J.Xu. Evaporation of sessilewater droplets on superhydrophobic natural lotus and bomimetic plymer surfaces.Chem.Phys.Chem,2006,7:2067-2070.
    [44] R.Truesdell, A. Mammoli, P.Vorobieff, F.V.Swol, C.J.Brinker. Drag reduction on apatterned superhydrophobic surface. Phys. Rev. Lett,2006,97:044504-044507.
    [45] N.Yoshida, Y.Abe, H.Shigeta, A. Nakajima, H. Ohsaki, K.Hashimoto, T.Watanabe.Sliding behavior of water droplets on flat polymer surface. J.Am. Chem. Soc,2006,128:743-747.
    [46] A.Dupuis, J.M.Yeomans. Dynamics of sliding drops on superhydrophobic surfaces.Europhys. Lett,2006,76:10597-105104.
    [47] G.McHale, D.L.Herbertson, S.J.Elliott, N.J.Shirtcliffe, M.I.Newton. Electrowettingof nonwetting liquids and liquid marbles. Langmulr,2007,23:918.
    [48] Y.Shen, A.Couzis, J.KoPlik, C.Maldarelli, M.S. Tomassone. Moleeular dynamiesstudy of the influence of surfactant structure on surfactant-facilitated spreading ofdroplets on solid surfaces. Langmuir,2005,21:12160-12190.
    [49] T.Young. Philosophical transactions of the royal society of london. Cohesion ofFluids,1805,95:65-87.
    [50] Quéré, David. Rough ideas on wetting. Physica.A,2002,313:32-46.
    [51] P.G.de Gennes. Wetting: statics and dynamics. Rev. Mod. Phys,1985,57(3):927-963.
    [52] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda. The lowest surfacefree energy based on-cf3alignment. Langmuir,1999,115:4321-4323.
    [53] R.N. Wenzel. Resistance of solid surface to wetting by water. Ind.Eng.Chem.1936,28:988-994.
    [54] A.B.D.Cassie, S.Baxter. Wettability of porous surfaces. Transactions of the FaradaySociety,1944,40:546-551.
    [55]郗金明.超疏水超双疏材料的制备与研究[D].中国科学院化学研究所博士学位论文,2008.
    [56] A.Marmur. The lotus effect: superhydrophobicity and metastability. Langmuir,2004,20:3517-3519.
    [57] A.Dupuis, J.M.Yeomans. Modeling droplets on superhydrophobic surfaces:equilibrium states and transitions.Langmuir,2005,21:2624-2629.
    [58] N.A.Patankar. On the modeling of hydrophobic contact angles on rough surfaces.Langmuir,2003,19:1249-1253.
    [59] N.A.Patankar. Transition between superhydrophobic states on rough surfaces.Langmuir,2004,20(17):7097-7102.
    [60] A.Lafuma, D.Quere. Superhydrophobic states. Nat.Mater,2003,2:457-460.
    [61] J.Bico, C.Marzolin, D.Quere. Pearl drops. Europhys.Lett,1999,47:220-226.
    [62] C.Ishino, K.Okumura, D.Quere. Wetting transitions on rough surfaces. Europhys.Lett,2004,68:419-425.
    [63] B.He, N.A.Patankar, J.Lee. Multiple equilibrium droplet shapes and designcriterion for rough hydrophobic surfaces. Langmuir,2003,19:4999-5003.
    [64] N.A.Patankar. Mimicking the lotus effect: influence of double roughness structuresand slender pillars. Langmuir,2004,20:8209-8213.
    [65] A.Otten, S.Herminghaus. How plants keep dry: a physicist’s point of view.Langmuir,2004,20:2405-2408.
    [66] J.C.Baret, M. Decre, S.Herminghaus, R.Seemann. Electroactuation of fluid usingtopographical wetting transitions. Langmuir,2005,21(16):12218-12221.
    [67] J.Buehrle, S.Herminghaus, F.Mugele. Impact of line tension on the equilibriumshape of liquid droplets on patterned substrates. Langmuir,2002,18:9771-9777.
    [68] S.R.Wasserman, Y.T.Tao, G.M.Whitesides. Structure and reactivity of aikylsiloxanemonolayers formed by reaction of alkyltrichlorosilanes on slicon substrates.Langmuir,1989,5(4):1074-1087.
    [69] Y.Xia, G. M.Whitesides. Extending microcontact printing as a microlithographictechnique. Langmuir,1997,13:2059-2067.
    [70] E.Delamarche, A.Bernard, H.Schmid, B.Michel, H. Biebuyck. Patterned delivery ofimmunoglobulins to surfaces using microfluidic networks. Science,1997,276:779-781.
    [71] W.Bu, H.Li, H.Sun, S.Yin, L.Wu. Polyoxometalate-based vesicle and itshoneycomb architectures on solid surfaces. J.Am.Chem.Soc,2005,127:8016-8017.
    [72] A.V.Rao, M.M.Kulkarni, S. D.Bhagat. Transport of liquids using superhydrophobicaerogels. J. Colloid lnterf. Sci.2005,285(1):413-418.
    [73] M.Ma, R. M. Hill. Superhydrophobic surface. Curr Opin Colloid Interf Sci,2006,11(4):193-202.
    [74] KTsujii, T.Yamamoto, T.Onda, S.Shibuichi. Superoil-repellent surfaces [J]. Angew.Chen1Int. Ed.Engl,1997,36(9):1011-1012.
    [75] S.Shibuichi, T.Yamamoto, T.Onda, K.Tsujii. Super water and oil repellent surfacesresulting from fractal structure [J]. Colloid Interface Sci,1998,208:287-294.
    [76] T.Tadanaga, J.Morinaga, A.Matsuda, et al. Superhydrophobic-superhydrophilicmicropatterning on flowerlike alumina coating film by the sol-gel method. ChemMater,2000,12(3):590-592.
    [77] K.Tadanaga, K.Kitamuro, A.Matsuda,et al. Formation of superhydrophobic sluminacoating films with high transparency on polymer substrates by the sol-gel method. JSol-Gel Sci Techn,2003,26(l-3):705-708.
    [78] S.Ren, S.Yang, Y.Zhao, T.Yu, X.Xiao. Preparation and characterization of anultrahydrophobic surface based on a stearic acid self-assembled monolayer overpolyethyleneimine thin films [J]. Surf.Sci,2003,546:64-74.
    [79] W.Lee, M. K.Jin, W.C. Yoo, E.S.Jang, J.H. Choy, J.H.Kim, K.Char, J.K.Lee.Nanostructured metal surfaces fabricated by a nonlithographic template method.Langmuir,2004,20(2):287-290.
    [80] D.A.Brevnov, M.J.Barela, M.J.Brooks, et al. Fabrication of anisotropicsuper-hydrophobic/hydrophilic nanoporous membranes by plasma polymerizationof C4F8on anodic aluminum oxide. J.Electrochem Soc,2004,151(8): B488-B489.
    [81] B.T.Qian, Z.Q.Shen. Fabrication of superhydrophobic surfaces bydislocation-selective chemical etching on aluminum, copper and zinc substrates [J].Langmuir,2005,21:9007-9009.
    [82] M.Thieme, R.Frenzel, S.Schmidt, F.Simon, A.Hennig, H.Worch, K.Lunkwitz,D.Schamweber. Generation of ultrahydrophobic properties of aluminium-a fast stepto self-cleaning transparently coated metal surfaces [J]. Adv.Eng.Mater,2001,3(9):691-695.
    [83] D.Kim, W.Hwang, H.C.Park, et al. Superhydrophobic nano-wire entanglementstructures. J.Micromech Microeng,2006,16(12):2593-2597.
    [84]栗常红,肖怡等.一种多尺度仿生超疏水表面制备[J].无机化学报,2006,22(5):785-788.
    [85] G.Cui, W.Xu, X.Zhou, et al. Rose-like superhydrophobic surface based onconducting dmit salt. Colloid Surf A: Physicochem. Eng. Aspects,2006,272(1-2):63-67.
    [86] E.Puukilainen, T.Rasilainen, M.Suvanto, etal. Supethydrophobic polyolefinsurfaces: controlled micro-and nanostructures. Langmuir,2007,23(13):7263-7268.
    [87] W.C. Wu, X.L. Wang, D.A. Wang, M Chen, F Zhou, et al. Alumina nanowireforests via unconventional anodization and super-repellency plus low adhesion todiverse liquids. Chem.Commun,2009:1043-1045.
    [88] N.J.Shirtcliffe, G. McHale, M.I.Newton, C.C Perry. Wetting and wetting transitionson copper-based super-hydrophobic surfaces. Langmuir,2005,21(3):937-943.
    [89] X.Wu, G.Shi. Fabrication of a lotus-like micro-nanoscale binary structured surfaceNanotechnology,2005,16(10):2056-2060.
    [90]陈志,耿兴国.不粘薄膜的微/纳米结构及其机理研究[J].材料保护,2005, l7(7):1-3.
    [91] S.Wang, L.Feng, L.Jiang. One-step solution-immersion process for the fabricationof stable bionic superhydrophobic surfaces. Adv.Mater,2006,18(6):767-770.
    [92] Y. Zhao, W. Yang, G. Zhang, etal. A hierarchical self-assembly of4,5-diphenylimidazole on copper. Colloid Surf A: Physicochem Eng Aspects,2006,277(l-3):111-118.
    [93]钱柏太,沈自求.控制表面氧化法制备超疏水CuO纳米花膜[J].无机材料学报,2006,21(3):747-752.
    [94] Zhiguang Guo, Jian Fang, Libo Wang. Fabrication of superhydrophobic copper bywet chemical reaction. Thin Solid Films,2007,515(18):7190-7194.
    [95] Z.Huang, Y.Zhu, J.Zhang, et al. Stable biomimetic superhydrophobicity andmagnetization film with Cu-Ferrite nanorods. J Phys Chem C,2007,111(18):6821-6825.
    [96] T.Liu, Y.Yin, S.Chen, et al. Super-hydrophobic surfaces improve corrosionresistance of copper in seawater. Electrochimica Acta,2007,52(11):3709-3713.
    [97] S.Wang, Y.Song, L.Jiang. Microscale and nanoscale hierarchical structured meshfilms superhydrophobic and superoleophilic properties induced by Long-chain fattyacids. Nanotechnology,2007,18(l):015103-015108.
    [98]尚广瑞,任露泉,杨晓东,丛茜. Cu—Zn合金仿生耦合表面的疏水性能[J].吉林大学学报(工学版),2007,37(5):1126-1131.
    [99] Z.Z.Luo, Z.Z.Zhang, L.T.Hu, W.M.Liu, etal. Stable bionic super-hydrophobiccoating surface fabricated by a conventional curing process. Adv.Mater,2008,20:970-974.
    [100] Xianli Liu, Zhonghao Jiang, Yuewen Guo, Zhihui Zhang, Luquan Ren. Fabricationof super-hydrophobic nano-sized copper films by electroless plating. Thin SolidFilms,2010,518:3731-3734.
    [101] Xianli Liu, Zhonghao Jiang, Jing Li, Zhihui Zhang, Luquan Ren.Super-hydrophobic property of nano-sized cupric oxide films. Surface and CoatingTechnology,2010,204(20):3200-3204.
    [102] M.Li, J.Zhai, H.Liu, et al. Electrochemical deposition of conductiveSuperhydrophobic zinc oxide thin films. J Phys Chem B,2003,107(37):9954-9957.
    [103] L.Feng, Z.Zhang, Z.Mai, et al. A super-hydrophobic and super-olephilic coatingmesh film for the separation of oil and water angew. Chem.Int.Ed,2004,43(15):2012-2014.
    [104] A.C.Chen, X.S.Peng, K.Koczkur,et al. Super-hydrophobic tin oxide nanoflowers.Chem.Commun,2004:1964-1965.
    [105] M.E.Abdelsalam, P.N.Bartlett, T.Kelf, J.Baumberg. Wetting of regularly structuredgold surfaces. Langmuir,2005,21(5):1753-1757.
    [106] F.Shi, Z.Q.Wang, X.Zhang. Combining a layer-by-layer assembling technique withelectrochemical deposition of gold aggregates to mimic the legs of water striders.Adv.Mater,2005,17:1005-1009.
    [107] Xuedong Wu, Lijun Zheng, DanWu. Fabrication of superhydrophobic surfacesfrom microstructured zno-based surfaces via a wet-chemical route. Langmuir,2005,21:2665-2667.
    [108] Y.Tian, H.Liu, Z.Deng. Electrochemical growth of gold pyramidal nanostructures:toward super-amphiphobic surfaces. Chem. Mater,2006,18:5820-5822.
    [109] C.H.Wang, Y.Y.Song, J.W.Zhao, etal. Semiconductor supported biomimeticsuperhydrophobic gold surfaces by the galvanic exchange reaction. Surf Sci,2006,600(4):38-42.
    [110] F.Shi, Y.Song, Niu.J, et al. Facile method to fabricate a large-scalesuperhydrophobic surface by galvanic cell reaction. Chem Mater,2006,18(5):1365-1368.
    [111] A.Satyaprasad, V.Jain, S.K.Nema. Deposition of superhydrophobic nanostructuredteflon-like coating using expanding plasma arc. Appl Surf Sci,2007,253(12):5462-5466.
    [112]江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2003,22(12):1258-1264.
    [113] M.L. Ma, R.M. Hill. Superhydrophobic surfaces. Current Opinion in Colloid&Interface Science.2006,11:193-202.
    [114] M.Jin, X.Feng, J.Xi, J.Zhai, K.Cho, L.Feng, L.Jiang. Super-hydrophobic PDMSsurface with ultra-low adhesive forcea. Macromol. Rapid Commun.2005,26:1805–1809.
    [115] A.Ruiz, A.Valsesia, G.Ceccone, D.Gilliland, P.Colpo, F.Rossi. Fabrication andcharacterization of plasma processed surfaces with tuned wettability. Langmuir,2007,23:12984–12989.
    [116] A.D.Tserepi, M.E.Vlachopoulou, E.Gogolides. Nanotexttaing of poly(dimethylsiloxane) inplasmas for creating robust super-hydrophobic surfaces.Nanotechnology,2006,17(15):3977–3983.
    [117] Z.Yoshimitsu,A.Nakajima,T.Watanabe,et al. Effects of surface structure on thehydrophobicity and sliding behavior of water droplets. Langmuir,2002,18(15):5818-5822.
    [118] A.Torkkeli, J.Saarilahti, A. Haara,et al. Electrostatic transportation of waterdroplets on superhydrophobic surfaces. IEEE Traps Ind App,1998,34(4):732-737.
    [119] N.T.Krupenkin, A.J.Taylor, M.T.Schneider, et al. From rolling ball to completewetting: the dynamic tuning of liquids on nanostructured surfaces. Langlmuir,2004,20(10):3824-3827.
    [120] L.Zhu, Y.Feng, X.Ye, et al. Tuning wettability and getting superhydrophobicsurface by controlling surface roughness with well-designed microstructures.Sensor Actuat A-Phys,2006,130-131:595-600.
    [121] J.Ou, B.Perot, P.J.Rothstein. Laminar drag reduction in microchannels usingultrahydrophobic surfaces. Phys.Fluids,2004,16(12):4635-4643.
    [122] S.Tsoi, E.Fok, C.J.Sit, et al. Superhydrophobic, high surface area,3-D SiO2Nanostructures through siloxane-based surface functionalization. Langmuir,2004,20(24):10771-10774.
    [123] F.M.Wang, N.Raghunathan, B.Ziain. A nonlithographic top-down electrochemical aproach for creating hierarchical(micro-nano) superhydrophobic silicon surfaces.Langmuir,2007,23(5):2300-2303.
    [124] C.Chen, Q.Cai, C.Tsai, et al. Dropwise condensation on superhydrophobic surfaceswith two-tier roughness. Appl.Phys.Lett,2007,90(17):173108-173110.
    [125] X.Gao, X.Yao, L.Jiang. Effects of rugged nanoprotrusions on the surfacehydrophobicity and water adhesion of anisotropic micropatterns. Langmuir,2007,23:4886–4891.
    [126] M. Morra, E. Occhiello, F. Garbassi. Contact angle hysteresis in oxygen plasmatreated poly(tetrafluoroethylene). Langmuir,1989,5(3):873-876.
    [127] K.Ogawa, M.Soga, Y.Takada, I.Nakayama. Development of a transparent andultrahydrophobic glass plate. Jpn.J. Appl. Phys.1993,32: L614-615.
    [128] T.J.McCarthy. Effects of topography length scales on wettability. Langmuir,2000,16:7777-7782.
    [129] Zhiguang Guo,Feng Zhou,Jingcheng Hao. Effects of system parameters onmaking aluminum alloy lotus. Journal of Colloid and interface science,2006,303:298-305.
    [130] X.H. Chen,G.M. Chen,Y.M. Ma,X.H. Li,L Jiang. F.S. Wang. Conductivesuper-hydrophobic surfaces of polyaniline modified porous anodic aluminamembranes. J. Nanosci. Nanotechnol,2006,6(3):783–786.
    [131] M. Qu, B. Zhang, S. Song, L. Chen, J. Zhang, X. Cao. Fabrication ofsuperhydrophobic surfaces on engineering materials by a solution-immersionprocess. Adv.Funct.Mater,2007,17:593–596.
    [132] X.Zhang, F.Shi, X.Yu, H.Liu, Y.Fu, Z.Wang, L.Jiang, X.Li. Polyelectrolytemultilayer as matrix for electrochemical deposition of gold clusters:towardsuper-hydrophobic surface. J. Am.Chem. Soc,2004,126:3064–3065.
    [133] T.J.Han, Y.Jang, Y.D.Lee, H.J.Park, Song, H.S.Y.D.Ban, K.Cho. Fabrication of abionic superhydrophobic metal surface by sulfur-induced morphologicaldevelopment. J. Mater. Chem.2005,15:3089-3092.
    [134] E.M.Abdelsalam, N.P.Bartlett, T.Kelf, J.Baumberg. Wetting of regularly structuredgold surfaces. Langmuir,2005,21(5):1753-1757.
    [135] S.Wang, L.Feng, H.Liu, T.Sun, X.Zhang, L.Jiang, D.Zhu. Manipulation of surfacewettability between superhydrophobicity and superhydrophilicity on copper films.Chem.Phys.Chem,2005,6:1475-1478.
    [136] X.Yu, Z.Wang, Y.Jiang, X.Zhang. Surface gradient material: fromsuperhydrophobicity to superhydrophilicity. Langmuir,2006,22:4483–4486.
    [137] Nicolas, M.Guittard, F.Géribaldi, S.Angew. Chem.Int.Ed.2006,45,2251-2254.
    [138] H.M.Bok, S.Kim, S.H.Yoo, S.K.Kim, S.Park. Synthesis of perpendicular nanorodarrays with hierarchical architecture and water slipping superhydrophobicproperties. Langmuir,2008,24:4168–4173.
    [139] H.M.Bok, T.Y.Shin, S.Park. Designer binary nanostructures toward water slippingsuperhydrophobic surfaces. Chem. Mater,2008,20:2247-2251.
    [140] M.Qu, G.Zhao, X.Cao, J.Zhang. Biomimetic fabrication of lotus-leaf-like structuredpolyaniline film with stable superhydrophobic and conductive properties.Langmuir,2008,24:4185-4189.
    [141] G. Decher, D.J.Hong. Buildup of ultrathin multilayer films by a self-assemblyprocess:111. consecutive adsorption of anionic and cationic bipolar amphiphiles oncharged surfaces. Thin Solid Films,1992,210-211:831-835.
    [142] V. Phuvanartnuruks, J.T. McCarthy. Stepwise polymer surface modification:Chemistry-layer-by-layer deposition. Macromolecules,1998,31(6):1906-1914.
    [143] W.Chen, J.T.McCarthy. Layer-by-Layer deposition: a tool for polymer surfacemodification. Macromolecules,1997,30(1):78-86.
    [144] G.Decher, Fuzzy. Nanoassemblies: Toward layered polymeric multicomposites.Science,1997,277:1232-1237.
    [145] X.Zhang, J. Shen. Self-assembled ultrathin films: from layered nanoarchitectures tofunctional assemblies. Adv.Mater,1999,11:1139-1143.
    [146] T.P.Hammond. Form and function in multilayer assembly: new applications at thenanoscale. Adv.Mater,2004,16(15):1271-1293.
    [147] P.Bertrand, A.Jonas, A.Lasehewsky, R.Legras. Ultrathin polymercoatings bycomplexation of polyelectrolytes at interfaces: suitable materials, structure andproperties.Macromol. Rapid Commun,2000,21:19-348.
    [148]白硕,杨凌露,张茂峰,杨朝晖,张智峰,曹维孝.具有超疏水性质的图案化Ag膜[J].物理化学学报,2006,22(10):1296-1299.
    [149] A.O. Musa, T. Akomolafe, M.J. Carter. Production of cuprous oxide, a solar cellmaterial, by thermal oxidation and a study of its physical and electrical properties.Sol.Energ. Mat.Sol.C,1998,51(3-4):305-316.
    [150] M.Thieme, R.Frenzel, V.Hein, H.Worth. Metal surface with ultrahydrophobicproperties: perspective for corrosion protection and self-cleaning. JCSE,2003, l6:1-21.
    [151] Yuekun Lai, Changjian Lin, Jiangying Huang, Huifang Zhuang, Lan Sun, TinhNguyen. Markedly controllable adhesion of superhydrophobic sponge likenanostructure TiO2films. Langmuir,2008,24:3867-3873.
    [152] S.Veeramasuneni, J.Drelich, D.J.Miller, G.Yamauchi. Vitreous and porcelainenamels method of test of self-cleaning properties. Prog Org Coat,1997,31:265.
    [153] K.Tsjjii, T.Yamamoto, T.Onda, S.Shibuichi. Super oil-repellent surfaces. AngewChem. Int. Edl,1997,36(9):1011-1012.
    [154] M. Miwa, A. Nakajima, A. Fujishima et al. Effects of the surface roughness onsliding angles of water droplets on superhydrophobic surfaces. Langmuir,2000,16:5754-5760.
    [155] L. Feng, S.H. Li, H.J. Li et al. Super-hydrophobic surface of aligned poly acrylonitrilenanofibers. Angew.Chem.Int.Ed,2002,41(7):1221.
    [156] J. M. Xi, L. Jiang. Biomimic super-hydrophobic surface with high adhesive forces.Industrial&engineering chemistry research,2008,47:6354.
    [157] H. Tian, T.S. Yang, Y.Q. Chen,et al. Fabrication and characterization ofsuper-hydrophobic silica nanotrees. Journal of Sol-Gel Science and Technology,2008,48:277.
    [158] B. Balu, V. Breedveld, D.W. Hess. Fabrication of“roll-off” and “sticky” super-hydrophobic cellulose surfaces via plasma processing. Langmuir,2008,24:4785-4790.
    [159] J. Han, W. Gao. Surface wettability of nanostructured zinc oxide films. Journal ofElectronic Materials,2008,38:601-608.
    [160] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang and D. Zhu.Super-hydrophobic surfaces: from natural to artifical. Adv. Mater,2002,14:1857-1860.
    [161] L.Feng,Y.N.Zhang, J.M. Xi,et al. Petal effect:a super-hydrophobic state with highadhesive force. Langmuir,2008,24:4114.
    [162]董允等.现代表面工程技术[M].北京:机械工业出版社,1999.
    [163]任露泉.试验优化设计与分析[M].吉林:吉林科学技术出版社,2001.
    [164]许旋,罗一帆,林国辉.铝合金阳极氧化膜的性能研究[J].电镀与精饰,2001,20(2):35-38.
    [165] Wang Y H, Wang W, Zhong L, Wang J, Jiang Q L, Guo X Y. Super-hydrophobicsurface on pure magnesium substrate by wet chemical method. Applied SurfaceScience,2010,256:3837-3840.
    [166] H. Y. Erbil, A. L. Demirel, Y. Avci, O. Mert. Transformation of a simple plastic intoa superhydrophobic surface. Science,2003,299:1377-1380.
    [167] Y. Zhou, X.M. Song, M.N. Yu, B. Wang, H. Yan. Superhydrophobic surfacesprepared by plasma fluorination of lotus-leaf-like amorphous carbon films. SurfaceReview and Letters,2006,13:117-122.
    [168] Y. T. Cheng, D. E. Rodak. Is the lotus leaf superhydrophobic? Applied physicalletters,2005,86:144101-144103.
    [169] Y. C. Jung, B. Bhushan. Contact angle, adhesion and friction properties of microand nanopatterned polymers for superhydrophobicity. Nanotechnology,2006,17:4970-4980.
    [170]任露泉,丛茜,陈秉聪,吴连奎等.几何非光滑典型生物体表防粘特性的研究(J).农业机械学报,1992,23:29-33.
    [171]王淑杰.典型生物非光滑表面形态特征及其脱附功能特性研究(D).吉林大学博士学位论文,2006.
    [172] T. Onda, N. Shibuichi, N. Satoh, K. Tsuji.Langmuir,1996,12(9):2125-2127.
    [173] J.N.Shirtcliffe, G.McHale, I.M.Newton, C.C.Perry. Wetting and wetting transitionson copper-based super-hydrophobic surfaces. Langmuir,2005,21,937-943.
    [174]J.Jopp, H.Grüll. Yerushalmiz Rozenr. Langmuir,2004,20:10015-10019.
    [175]Y. Feng, W.K. Teo, K.S. Siow, Z.Goa, K.L. Tan, A.K. Hsieh. Coorrsion poretetionof copper by a sel-fassembled monolayer of alknaethiol. J.Eleertoehem.Soe.1997,144:55.
    [176] O.E. Barei, O.R. Matoos. Reaction model simulating the orle of sulfate andchloride in anodie-dissolution of iorn. Eleeortehim.Aeta.1990,35:1601.
    [177] O.E. Bacria, O.R. Matoos, N. Pebeer, B.Tribollet. Mass-tnarsport study for theeleetrodissolution of copper in1M hydrochloric-acid solution by impednaee.Eleertochem.Soe,1993,140:2825.
    [178] H. PLee, K. Nobe. Kinetics and mechanisms of cu-eleetrodissolution in chloridemedia. J.Eleetroehem.Soe.1986,133,2035.
    [179] H. Ma, S. Chen, L. Niu, S. Shang, S. Zhao, S. Li, Z. Quan. Studies on electro-chemical behavior of copper in aerated NaBr solutions with Sehiffbase-N,-o-phenylen-bis(3-methoxysalicylidenimine). J.Eleertoehem.Soe.2001,148, B208.
    [180] S.Karaborni, K.Esselink, J.A.P.Hilbers. Simulating the self-assembly of Gemini(dimeric) surfactants. Science,1994,266:254-256.
    [181] S.Q.Huo, I.D.Margolese, U.Ciesla, et al. Generalized synthesis of periodicsurfactant/inorganic composite materials. Nature,1994,368:317-321.
    [182] T.P.Tanev, J.TPinnavaia. A neutral templating route to mesoporous molecularsieves. Science,1995,267:865-867.
    [183] H. Ma, S.Chen, B. Yin, S. Zhao, X. Liu. Impedance spectroscopic study ofcorrosion inhibition of copper by surfactants in the acidic solutions. Corros. Sci,2003,45,867.
    [184] E. Boubour, R.B. Lennox. Stability of functionalized sel-assembled monolayers asa function of applied potential. Lnagmuir.2000,16,7464.
    [185] G.X. Pang, J.D. Daie, D.Y. Kwok. An integrated study of dropwise condensationhead transfor on self-assembled organic surfaces through Fourier transforminfra-red spectroscopy and ellipsometry. International Journal of Heat and MassTransfer.2005,48:307.
    [186] H. Ma, C. Yang, B.Yin, G. Li, J.Luo. Electrochemical characterization of coppersurface modified by n-alknaethiols in chloride-conatining solutions. Appl. Surf.Sci.2003,218:143.
    [187] S. Vermuri. J.K. Kim, B.D. Wood. Long term testing for drop wise condensationusing self-assembled monolayer coatings of n-octadecyl mercaptan. AppliedThermal Engineering.2006,26:421.
    [188] Y. Y. Yuichi, N. Hiroshi and A. Kunitsugu. Self-assembled layers of alkanethiolson copper for protection against corrosion. Journal of the electrochemical society,2003,140,436.
    [189] A. Kunitsugu, S. Tadashi. Prevention of passive film breakdown on iron in a boratebuffer solution containing chloride ion by coverage with a self-assembledmonolayer of hexadecanoate ion. Corrosion Science.2003,45,2639.
    [190]刘涛.金属基体超疏水表面的制备及其海洋防腐防污功能的研究(D).中国海洋大学博士学位论文,2009.
    [191]E.F.Bartell, W.J.Shepard. The effect of surface roughness on apparent contactanglesand on contact angle hysteresis. The system paraffin-water-air. J. Phys. Chem,1953,57,211.
    [192]K. Teshimaa, H. Sugimurab, Y. Inouec, O. Takaic, A. Takano. Transparent ultrawater-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasmatreatment and subsequent hydrophobic coating. Appl. Surf. Sci,2005,244:619.
    [193]X. Song, J. Zhai, Y. Wang, L. Jiang. Fabrication of super-hydrophobic surfaces byself-assembly and their water-adhesion properties. Phys. Chem. B,2005,109:4048-4052.
    [194]T.J. McCarthy. Effects of topography length scales on wettability. Langmuir,2000,16:7777-7782.
    [195] M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, L. Jiang. Super-hydrophobicPDMS surface with ultra-Low adhesive force. Macro. Rapid. Commun.2005,26:1805-1809.
    [196] K.Tsjjii, T.Yamamoto, T.Onda, S.Shibuichi, Angew. Chem.Int.Edl,1997,36:1012.
    [197]Y.F. Li, Z.J. Yu, Y.F. Yu, S.B. Huo, S.P. Song. Fabrication of super-hydrophobicsurfaces on aluminum alloy. Journal of Chemical Engineering of ChineseUniversities.2008,22(1):6.
    [198] Y.F. Li, Z.J. Yu, Y.F. Yu, F.Y. Sun. Preparation of super-hydrophobic surface onbrass by chemical etching. Journal of Chemical Industry Engineering (China).
    [199]Y.F. Chen, G.J. Yi. Preparation of super-hydrophobic surface on aluminum alloy bychemical etching. Science Technology and Engineering.2010,10(20):3.
    [200]Nanocope command reference manual. Off-line/Analyze menu: Section commandpp12.
    [201]M. Jin,X. Feng,L. Feng,T. Sun,J. Zhai,T. Li,L. Jiang. Super-hydrophobicaligned polystyrene nanotube films with high adhesive force. Adv.mater.2005,17:1977.
    [202]X. Hong, X. Gao, L. Jiang, J. Am. Soc. Application of superhydrophobic surfacewith high adhesive force in no lost transport of superparamagnetic microdroplet.Chem.2007,129:1478-1479.
    [203]K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny,R. Fearing,R.J. Full. Adhesive force of a single gecko foot-hair. Nature,2000,405:681-685.
    [204]A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Y.Shapoval. Microfabricated adhesive mimieking gecko foot-hair. Nat.Mater.2003,2:461.
    [205]A.Y. Oral, E. Mensur, M. H. Aslan, E. Basaran. The preparation of copper (Ⅱ)oxide thin films and the study of their microstructure and optical properties.Materials Chemistry and Physics,2004:83:140-144.
    [206]S. Anandan, X. Wen, S. Yang. Room temperature growth of CuO nanorod arrays oncopper and their application as a cathode in dye-sensitized solar cells. MaterialsChemistry and Physics,2005,93(1):35-40.
    [207]Ogwu, E. Bouquerel,O. Ademosu, S. Moh, E. Crossan, F. Placido. An investigationof the surface energy and optical transmittance of copper oxide thin films preparedby reactive magnetron sputtering. Acta Materialia,2005,53:5151-5159.
    [208]T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, Field emission from various CuOnanostructures. Applied Physics Letters,2003,83(16):3383-3385.
    [209]H. M. Yates, L. A. Brook, D. W. Sheel, I. B. Ditta, A. Steele, H.A. Foster. Thegrowth of copper oxides on glass by flame assisted chemical vapour deposition.Thin Solid Films.2008,517:517-521.
    [210]C. R.Sekhar. Preparation of copper oxide thin film by the sol-gel like dip techniqueand study of their structural and optical properties. Solar Energy Materials&SolarCells.2001,68:307-312.
    [211]K. P. Muthe, J. C. Vyas, S. N. Narang, D. K. Aswal, S. K. Gupta, D. Bhattacharya,R. Pinto, G. P. Kothiyal, S. C. Sabharwal. A study of the CuO phase formationduring thin film deposition by molecular beam epitaxy. Thin Solid Films,1998,324(1-2):37-43.
    [212]A. S. Reddy, S. Uthanna, P. S. Reddy. Properties of dc magnetron sputtered Cu2Ofilms prepared at different sputtering pressures. Applied Surface Science,2007,253(12):5287-5292.
    [213]D. Chen, G. Shen, K. Tang, Y. Qian, J. Crys. Grow. Large-scale synthesis of CuOshuttle-like crystals via a convenient hydrothermal decomposition route.2003,254(1-2):225-228.
    [214]M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K.Gupta, J. V. Yakhmi. Growth and branching of CuO nanowires by thermaloxidation of copper. Crystal Growth,2006,289(2):670-675.
    [215]L. C. Wang, N. R. de Tacconi, C. R. Chenthamarakshan, K. Rajeshwar, M. Tao.Electrodeposited copper oxide films: effect of bath pH on grain orientation andorientation-dependent interfacial behavior. Thin Solid Films,2007,515:3090-3095.
    [216]Iain A. Larmour, Steven E.J.Bell, Graham C.Saunders. Remarkably simplefabrication of superhydrophobic surfaces using electroless galvanic deposition.Angew. Chem. Int.Ed,2007,46:1710-1712.
    [217]N.J. Shirteliffe, G. McHale, M.I. Newton, G. Chabrol, C.C. Perry, Dual-scaleroughness produces unusually water-repellent surfaces. Adv. Mater,2004,16:1929-1932.
    [218]C. Yang, U. Tartaglino, B.N.J. Persson. Influence of surface roughness onsuperhydrophobicity. Phys. Rev. Lett,2006,97:116103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700