菊粉精制工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊粉以及其下游产物作为一种功能性食品添加剂已经在世界范围内得到了广泛应用。近年来,菊粉的开发利用受到国际食品界的高度重视,与其相关的研究十分活跃。而是我国在这一领域的研究与开发起步较晚,现在菊粉精制工艺相对落后,已经制约菊粉产业的发展。因此,对既能生产出高纯度菊粉又适合大规模工业化生产的精制工艺研究就显得十分重要。
     本论文研究了以菊芋粗提液为原料,依次经过加灰充炭澄清,活性炭脱色,离子树脂脱盐和喷雾干燥等几步工艺操作,最终得到95%以上纯度的高质量菊粉。在对其工艺流程的研究和对其工艺条件的优化中,得到以下结论:
     首先,确定以加灰充炭的方法澄清菊芋提取液,可以有效的除去蛋白质、果胶等大分子杂质。对其工艺条件优化结果表明,最佳工艺条件和结果为:加CaO到pH值13.4±0.1,充CO2气体到pH值为6.8±0.1,反应环境温度控制在80±2℃,测得最终蛋白质去除率为81.6%,总糖损失率3.4%(其中果糖占90%)。
     其次,采用活性炭处理作为菊芋处理液脱色的工艺方法,并通过单因素实验和正交实验确定活性炭脱色的最佳工艺条件和结果为:活性炭用量为2% (w/v),温度50±2℃,脱色时间40min,脱色率可达到85.8%。此外,在对活性炭等温吸附曲线进行拟合,结果表明所用活性炭的吸附等温模型符合Langmuir吸附等温式。
     再次,采用D290阴离子树脂进一步吸附除去菊芋提取液中的剩余色素,再用D001阳离子树脂交换除去阳离子,实验结果表明脱色率为75%,灰分去除率为61%。离子交换的静态单因素实验表明其最佳工艺条件为:阴阳离子树脂用量为2% (w/v),温度50±2℃,反应3h。
     最后,用喷雾干燥的方法分离水分,得到了白色菊粉粉末,对产品分析表明菊粉含量在95%以上。
Inulin and its downstream products as a functional food additives have been widely applied in the world, recent years, the development and utilization of inulin attaches great attention worldwide, and research associated was very active. But the research and development of this area in China started very late, the scale of industrial production was too small to meet the domestic and international market. So it is significant to both high-purity inulin production and refine art research of industrial large scale production.
     This paper studied some workmanship operations, crude extraction liquid of Jerusalem artichoke was used as raw materials which was clarified by carbon filled with ash, decolorizied by activated carbon, desalinatied by ion resin, dried by spray, and finally got high quality Inulin of more than 95 percent purity. The conclusions are drawn within the optimization of process and condition.
     First, confirmed the method of carbonation process used to clarify the exaction liquid of Inulin can remove protein,pectinand other macromolecules impurities. the result of optimization in workmanship showed that the best workmanship is to increase the ph to 13.4±0.1 by adding CaO first, and then decrease the ph to 6.8±0.1 by filling CO2 gas, in this process the reaction temperature must be controlled in 80±2℃,and the result is the removal rate of protein is 81.6%,with the 3.4% loss of total carbohydrate.
     Second, study confirmed that Activated Carbon Treatment which was used to decolored Jerusalem artichoke is effective, and identified the best decolorization workmanship by activated carbon through single-factor test and Orthogonal test, the workmanship was to decolor in 50±2℃; 2% quantity by 40min. In addition, activated carbon isothermal adsorption showed that the adsorption isotherm model meet Langmuir the adsorption isotherm formula.
     Third, D290 anion resin was used to remove the ion pigment in the Jerusalem artichoke extraction liquid by adsorption function, and D001 cation resin remove the cation by exchange function. The test showed that is a very high effective way for desalination. Static single factor test of ion exchange showed that it’s best workmanship was to react in 50±2℃; 2% quantity by 3h.
     At last, spray drying was used to isolate water, we could get delicate white powder of Inulin. Product Analysis showed that the content of Inluin was more than 95%.
引文
[1] Bates S De,Vandamme E J,Steinbuchel A (陈代杰,罗敏玉译),多糖Ⅱ—真核生物多糖北京:化学工业出版社,2004(生物高分子,第6卷)
    [2]陈铭达,刘兆普,菊芋的加工及开发利用,中国林副特产.2004(4):33~34
    [3]Grinenko,Grouhetsky. Topinambour as asource of high-molecular inulin.Abstracts for proceeding of Third International Fructan Conference,Logan,UT,1996,7:21~24
    [4]Bobrovnik L D,Grekhov A M,Groushetsky R I,et al. New computer models of the spatial structure of fructan, Abstract of Third International. Fructan Conference,Logan, Utah,USA1996, 21-24.
    [5]华承伟,王建华等,菊粉化学和微生物菊粉内切酶研究进展,中国食品报,2004,12,4:103~108
    [6]郑建仙,功能性低聚糖,化学工业出版社,2004:58~60
    [7]Biedrzycka E,Bielecka M.Prebiotic effectiveness of fructans of different degrees of polymerization.Trends Food Sei Technol. 2004,15:170-175.
    [8]Coudray C,Tressol JC,Gueux E,et a1.Effects of inulin—type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats.Eur J Nutr,2003,42:91-98.
    [9]Gibson G R, Bear E R, Wang X, et al. Selective stimulation of Bifidobacteria in the human colon by oligofructose and inulin .Gastroenterology,1995,108:975-982
    [10]Gibson G R, Roberfroid M B. Dietary modulation of the human colonic microbiota-introducing the concept of perbiotics. Journal of Nutrition,1995,125:1401-1412
    [11]Pedersen A ,Sandstrom B,van Amelsvoort,et a1.The efect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females.British Journal of Nutrition 1997,78:215-222
    [12]Pedersen A ,Sandstrom B,van Amelsvoort,et a1.The efect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females.British Journal of Nutrition 1997,78:215-222
    [13]Kim M, Shin H K. The water-soluble extract of chicory reduces glucose up take from the pefrused jejunum in rats. Journal of Nutrition,1996,126:2236-2242
    [14]Ohta A,Baba S ,Takizawa T ,et al .Efects of fructooligosaccharides on the absorption of magnesium in the magnesium-deficient rat model. Journal of Nutritional Science and Vitaminology, 1994,40:171-180
    [15]Remesy C ,Behr S R ,Levrat M A,et al .Fiber fermentation in the cecum and its physiological consequences.Nutrition Research,1992,12:1235-1244
    [16]Oku T ,Tokunaga R .Improvement of metabolism: efect of fructo-oligosaccharides on rat intestine. Proc.2nd Neosugar Research Conference,Tokyo,Japan.1984,53-65.
    [17]Reddy B S ,Hamid R ,Rao C V .Efect of dietary oligofructose and inulin on colonic preneoplastic aberrant crypt foci inhibition.Carcinogenesis,1997,18:1371-1374
    [18]胡学智,凌晨,武雯等.工业微生物,1998,28(1):1~6
    [19]Kita A, Matsui H, Somoto A et al. Agric.Biol. Chem. 1991 , 55 (9) : 2327~2335
    [20]Takewaki S I , Kimura A , Kubotra M et al.Biosci. Biotech. Biochem, 1993,57 (9) : 1508~1513
    [21]藤井聪,山村健一郎,富冈靖行等,精糖技术研究会志,1996,44:51~57
    [22]Krohn B M , Lindsay J A. Current Microbiology , 1991 , 22 : 133~140
    [23]Degnan B A , Macfarlane G T. Current Microbiology , 1994 , 29 : 43~47
    [24]Piller K, Daniel R M , Petach H H. Biochim.Biophys. Acta , 1996 , 1292 (1) : 197~205
    [25]Krohn B M , Lindsay J A. Current Microbiology , 1991 , 22 : 273~278
    [26]中山亨,落合美佐,中尾正宏等,应用糖质科学,1998,45 (2):185~197
    [27]中山亨,落合美佐,中尾正宏等,应用糖质科学,1998,45 (2):289~326
    [28]郑建仙,新型糖苷酶生产关键技术与典型范例,2006 ,92~93
    [29]Park Y K and Almeida M M. Production of fructooligosaccharides from sucrose by a transfructosylase from Aspergillus niger. World J. Microbiol . Biotechnol . 1991 ,7 :331- 334.
    [30]Van Balken , J A M, van Dooren , et al . Production of 1 -kestose with intact myceliumof Aspergillus phoenicis containing sucrose - 1 - fructosyltransferase . Appl . Microbiol . Biotechnol .1991,35 :216 - 221.
    [31]Hayashi S ,Matsuzaki K, Inomata Y, et al . Propertes of Aspergillus japonicusβ- fructofuranosidase immobilised on porous silica. World J. Microbiol . Biotechnol . 1993 ,9 :216 - 220.
    [32]马莺,大豆低聚糖的提取、酶改性及其应用研究,哈尔滨,东北农业大学博士论文,20001
    [33]郑建仙,新型糖苷酶生产关键技术与典型范例,2006:11~13
    [34]林晨,顾宪红,菊粉酶的研究进展及应用,当代畜禽养殖业,2004,(1):37~39.
    [35]N. A. Zherebtsov, S. A. Shelamova, and I. N. Abramova. Biosynthesis of Inulinases by Bacillus Bacteria. Applied Biochemistry and Micro biology,2002, Vol. 38, No. 6,634~638.
    [36]M. Skowronek ,J. Fiedurek, Selection of biochemical mutants of Aspergillusniger resistant to some abiotic stresses with increased inulinase production. Journal of Applied Microbiology 2003, 95:686~692.
    [37]Cazetta, M.L, Martins, P.M.M, Monti, R, Contiero, J. Yacon (Polymniasanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var.bulgaricus. Journal of Food Engineering,2005(2): 301~305.
    [38]Zhang, Linghua, Zhao, Changxin, Ohta, Wangjing Yoshiyuki, Wang,Yunji. Inhibition of glucose on an exoinulinase from Kluyveromyces marxianus expressed in Pichia pastoris. Process Biochemistry, v 40, n 5, April, 2005: 1541~1545.
    [39]郑建仙,新型糖苷酶生产关键技术与典型范例,2006:22~23
    [40]王建华,徐长警,菊粉果糖的研究与开发,中国甜菜糖业.2004(4):10~14.
    [41]郑建仙,功能性低聚糖,化学工业出版社,2004:94~97
    [42]钱斯日古楞,耿金峰等,菊芋块茎多酚氧化酶特性及抑制因素的研究,中成药2007(9):1363~1365
    [43]刘书文等,菊芋多酚氧化酶性质的研究,中国农学通报,1998,14(6):11~13.
    [44]Wei Lingyun, Wang Jianhua, Zheng Xiaodong, Teng Da, Yang Yalin, Cai Chenggang,Feng Tianhua,ZhengFan.Studies on the extracting technical conditions of inulin from Jerusalem artichoke tubers,J ournal of Food Engineering,2006-04-07,HOE4466,accepted( SCI,IF 1.21)
    [45]M. Moodley等人(苏毅译),南非精炼糖厂碳酸法工艺改革试验,广西轻工业.2003(3):35~38
    [46]王启为,季明,工业化生产菊芋提取液中杂质去除的方法研究,宁夏工程技术,2003(2):122~123
    [47]严慧如,黄绍华,余迎利,菊糖的提取及纯化,天然产物研究与开发,2001(1):65~69
    [48]郑建仙,功能性低聚糖,化学工业出社,2004:83~84
    [49]沈参秋等,糖品色素的除去及在生产中的变化,广东省制糖学会论文集,1980年
    [50]霍汉镇,谭必明,活性炭—高效的糖液脱色剂,广西轻工业,2003(3):16~19
    [51]赖凤英,林庆生.活性炭对糖浆脱色效能的研究,中国甜菜糖业.1999(5):2~9
    [52]白鹏主编,制药工程导论(第3章吸附与离子交换)化学工业出版社,2003:47~82
    [53]林秋华译,活性炭净化,建筑工业出版社,1980
    [54]北京大学,化工基础实验,北京大学出版社,2004
    [55]胡英,离子交换树脂在食品工业中的应用,食品研究与开发,2002(2):74~76
    [56]钱庭宝等,吸附树脂及其应用,1990,562~587
    [57]康勇,王志,朱宏吉,工业纯水制备技术、设备及应用.化学工业出版社,2006
    [58]天津大学物理化学教研室,物理化学,高等教育出版社,1992
    [59]宾学之,有关树脂脱色几个问题的探讨,中国甜菜糖业,1981.2.
    [60]赖凤英,陈焕章,林福兰,离子交换树脂对糖浆脱色效能的评价,中国甜菜糖业,2000(6):12~14
    [61]王启为,胡奇林,季陵,离子交换法脱除菊芋提取液中的色素,宁夏工程技术,2003(1)45~49
    [62]陈小虎,李成斌,菊芋干燥工艺技术及设备选型,食品与机械,2005(4):58~60
    [63]赵征,周曙明.四种功能性低聚糖的性质及HPLC检测,中国食品添加剂,2000(1):66~71
    [64]董群,郑丽伊,方积年,改良的苯酚-硫酸法测定多糖和寡糖含量的研究,中国药学杂志,1996,31(9):550.
    [65]李丹,苯酚—硫酸法测定食品总糖方法的应用和改进,中国卫生检验杂志,2003(4):506
    [66]高俊凤,植物生理学实验指导,高等教育出版社,2006
    [67]中华人民共和国国家标准:GB/T5009.7~9-2003,食品卫生检验方法理化部分(一),中国标准出版社,2004
    [68]徐杰伟,温少磊,蔡早育,考马斯亮蓝法测定微量蛋白的条件探讨,江西医学检验,2003(4):353~354
    [69]李娟等,应用考马斯亮蓝测定总蛋白含量,中国生物制品学杂志.2000(2):118~120
    [70]康平,偶氮氯膦-mA光度法测定水中钙,理化检验(化) ,1985,21(5):285
    [71]刘淑萍,杨立霞,光度分析法选择性测定微量钙,现代科学仪器2002(1):54~56
    [72]杨云,田润涛,苗明三,孟江,大枣渣多糖活性炭脱色工艺研究,大枣渣多糖活性炭脱色工艺研究,2004(1):35~36
    [73]GB/T 5009.4—1985,食品中灰分的测定方法

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700