短小芽孢杆菌BSH-4抗菌蛋白的理化性质分析及初步分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步了解短小芽孢杆菌BSH-4菌株的拮抗作用机制,以黄瓜菌核病菌Sclerotinia sclerotiorum为指示菌测定了该菌株抗菌蛋白的抗菌活性,优化了发酵条件,对抗菌蛋白进行了抗菌谱测定、理化性质分析,初步研究了抗菌蛋白的分离条件,从而为进一步生防应用打下基础。
     1.为明确BSH-4菌株及其抗菌蛋白的抑菌谱,采用平板对峙法和平板打孔法分别测得此菌株及其抗菌蛋白的抗菌活性。结果表明,此菌株及其抗菌蛋白对黄瓜菌核病菌、黄瓜猝倒病菌、黄瓜蔓枯病菌、黄瓜枯萎病菌、黄瓜立枯病菌、番茄早疫病菌、辣椒疫病病菌、茄子绵疫病菌等8种常见蔬菜病原真菌均具有抑菌活性。且经多次转接后,此菌株的抑菌活性基本不变。
     2.为提高短小芽孢杆菌BSH-4产生抗菌蛋白的能力,采用单因素和正交试验设计法对BSH-4发酵培养基的组成及其发酵条件进行了优化。结果表明,此菌株的最佳发酵培养基组成为:玉米淀粉2 %,酵母浸膏2 %,CaCl2 0.4 %;最佳发酵条件为:发酵时间48 h,摇瓶转速180 r/min,培养温度37℃,初始pH值6.0,接种量6 %,装液量25 mL(50 mL三角瓶)。在此优化条件下,BSH-4经发酵产生的抗菌蛋白的浓度为16.8μg/mL。
     3.为明确短小芽孢杆菌BSH-4抗菌蛋白的理化性质,研究了温度、pH值、紫外照射、有机溶剂、金属离子及蛋白酶对其稳定性的影响,并以不同培养基为底物对该蛋白的功能进行初步判断。结果表明,该抗菌蛋白粗提液具有良好的热稳定性,100℃处理1 h后仍具有对照活性的90%左右;对酸碱较敏感,在pH值6-9时活性较高;对紫外线稳定,在紫外光下照射10 h以上时,其活性基本不受影响;对乙醚、丙酮、乙酸乙酯和氯仿不敏感,其活性基本不变,而对甲醇较敏感,其活性下降20%以上;对重金属离子敏感,浓度为10mmol/L的Ag+、Cu2+、Zn2+能够降低活性的40%左右;对蛋白酶较稳定。底物特异性试验表明该蛋白不是几丁质酶、羧甲基纤维素酶和β-1,3-葡聚糖酶。
     4.初步研究了短小芽孢杆菌BSH-4抗菌蛋白对核盘菌的抑菌机制,采用菌丝生长速率法测定了其对黄瓜菌核病菌Sclerotinia sclerotiorum菌丝生长的毒力,及其对菌丝形态、菌核形成、菌核萌发和菌体细胞膜透性的影响。结果表明,此抗菌蛋白粗提物对核盘菌菌丝生长的EC50值为10.13μg/mL,明显低于对照药剂乙霉威及腐霉利;经此抗菌蛋白处理后,菌丝形态出现黄化、畸形等现象,但尚未发现细胞质外渗;菌核形成的时间有所延长,数量有所减少,且重量略有降低;在此抗菌蛋白粗提物浓度为250μg/mL时不能完全抑制菌核萌发;对菌体细胞膜渗透势的影响不大。
     5.BSH-4菌株抗菌粗蛋白经Sephadex G-100分子筛柱层析后得两个活性洗脱峰,取活性高的组分进行浓缩,SDS-PAGE电泳检测蛋白纯度得两条电泳图带,分别将条带切下,缓冲液提取后平板打孔法检测,其中一条小分子带有抑菌活性。
The antifungal activity, fermentation medium,fermentation conditions and inhibitory mechanisms against cucumber sclerotium of antifungal protein of Bacillus pumilus strain BSH-4 was primarily studied.And for further application of this strain,the isolation and characteristic of its antifungal crude protein were also studied.
     The method of in dual culture was used to ascertain inhibiting spectrum of BSH-4 and disk diffusion method was applied to test the antifungal activity of antifungal protein of BSH-4. The result showed that BSH-4 strain and its antifungal protein had a broad inhibition spectrum. Both bacteria strain and antifungal protein had antifungal activity against Sclerotinia sclerotiorum,Pythium spp.,Mycosphaerella melonis,Fusarium oxysporum,Rhizoctonia solani,Alternaria solani,Phytophthora capsici and Phytophthora parasitica et al.After several transferred,its antifungal activity was not changed.
     In order to improve the activity of BSH-4 to producing antifungal protein, the fermentation medium and conditions of the strain were studied via single factor test and orthogonal design. The results showed that the optimal fermentation medium was composed of corn starch 2%, yeast extract 2%, CaCl2 0.4%.And the optimal fermentation condition was fermentation period of 48 hours,rotation speed of 180r/min,cultural temperature of 37℃, initial pH value of 6. 0, inoculation quantity of 6 %,and medium volume of 25mL in 50mL flask. Under such conditions, the concentration of the antifungal protein which were produced from BSH-4 was about 16.8μg/mL.
     To gain physical and chemical properties of the antifungal protein, the effects of heat, pH, UV irradiation, organic solvents, metal ions prolease were studied,and also used different medium to ascertain its species.The result showed that this crude antifungal proteins were thermal stable, about 90% of the initial activity remained after heating at 100°C for 1 h; they were stable in the pH range of 6–9; the antifungal activity was almost not be destroyed when they were under UV irradiation for 10h; they were stable to ether,acetone, ethyl acetate and chloroform,but methanol could reduce above 20% of the initial activity; Ag+、Cu2+ and Zn2+ ions at the concentration of 10mmol/L could reduced their 40% initial activity and they were not sensitive to proteinase. The result also showed this protein was not chitinase, carboxymethyl cellulase andβ-1,3– glucanase.
     To ascertain the antagonistic mechanisms of this crude antifungal protein to S. sclerotiorum,the inhibition activities on mycelium growth against S. sclerotiorum were determined by mycelium growth rate method in lab. And its effect on this pathogen’s biology characteristics, such as mycelium shape, sclerotium formation, sclerotium germination and membrane osmotic potential were also studied. The results showed that its EC50 value was 10.13μg/mL, which was significantly lower than Diethofencarb and Procymidone;After treated with this crude antifungal protein, the mycelia became etiolation and malformation, but had not yet found in the cytoplasm extravasation;This crude antifungal protein could delay the formation of sclerotium, the sclerotium numbers decreased contrasted that of the water control, and the weight reduced slightly;At the concentration of 250μg/mL of this crude antifungal protein,it could not restrain the sclerotium germination completely;It had no significant effect on the membrane osmotic potential.
     Two antagonistic peaks were obtained from the crude antifungal protein after Sephadex G-100 column chromatography. Condece the higher inhibition activity component and showed two band on SDS-PAGE. Antifungal activity was detected after distilling the divided band with Tris-HCl buffer. Clear inhibition zone was appeared on colonies of S. sclerotiorum of Low Molecular Weight protein.
引文
[1]曹小红,廖振宇,王春玲,等.Bacillus natto TK-1产脂肽的纯化、抑菌活性及其表面活性剂特性[J],中国生物工程杂志,2008,28(1):44-48.
    [2]陈华,王丽,袁成凌,等.高效液相色谱-电喷雾质谱法分离和鉴别枯草芽孢杆菌产生的脂肽类化合物[J],色谱,2008,26(3):343-347.
    [3]陈士云,杨宝玉,高梅影,等.一株抑制油菜核盘菌菌核形成的解淀粉芽孢杆菌[J].应用与环境生物学报,2005,11(3): 373-376.
    [4]陈召亮,朱炳煜,刘峰,等,两种季铵盐阳离子表面活性剂对番茄灰霉病菌的生物活性[J].植物保护学报,2007,34(5):539-544.
    [5]陈志谊,许志刚,陆凡,等.拮抗细菌B-916对水稻植株的抗性诱导作用[J].西南农业学报,2001,14(2): 44-48.
    [6]陈志谊.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验[J].中国生物防治,1997, 13(2): 75-78.
    [7]谌晓曦,陈卫良,李德葆,等. 357细菌及其拮抗物质对植物病原真菌的抑制[J].微生物学报,2003,30(3):67-71.
    [8]程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].西北农业大学学报,2003,25(5): 732-737.
    [9]崔林,孙振,孙福在,等.马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定[J].植物病理学报,2003,33(4):353-358.
    [10]崔云龙,姬金红,衣海青.短小芽孢杆菌D82对小麦根腐拮抗的研究[J].中国生物防治,1995,11(3):114-118.
    [11]范青,田世平,李永兴,等.枯草芽孢杆菌( B-912)对桃和油桃褐腐病的抑制效果[J].植物学报,2000,42(11):1137-1143.
    [12]方羽生,杨卫华,张洪玲,等.放线菌对4种病原真菌的拮抗作用初探[J].广东农业科学,2001(5):39-40.
    [13]高俊明,马丽娜,李欣,等.盾壳霉对核盘菌的拮抗作用研究[J].植物保护,2006,32(6):66-70.
    [14]高学文,姚仕义,等.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定[J].微生物学报,2003,43(5):647-652.
    [15]顾真荣,吴畏,高新华,等.枯草芽孢杆菌G3菌株的抗菌物质及其特性[J].植物病理学报,2004,34(2):166-172.
    [16]郭坚华,孙平华,吴云波,等.植物细菌性青枯病的生物防治机制和途径[J].中国生物学防治,1997,13(1):42- 46.
    [17]郭润芳,刘晓光,高克祥,等.拮抗木霉菌在生物防治中的应用与研究进展[J].中国生物防治,2002,18(4):180-184.
    [18]郭润芳,史宝胜,高宝嘉,等.木霉菌在生物防治中的应用与研究进展[J].河北林果研究,2001,16(9):294-298.
    [19]郭勇.现代生化技术[M].北京:科学出版社,2005:9-13.
    [20]何青芳,陈卫良,马志超,等.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究[J.中国水稻科学,2002,16(4):361-365.
    [21]何红,蔡学清,关雄,等.内生菌BS-2菌株的抗菌蛋白及其防病作用[J].植物病理学报,2003,33(4):373-378.
    [22]胡剑等.拮抗菌BS-98分泌抗菌蛋白的条件及其发酵液的特性[J].微生物学通报,1996,23(6):445-449.
    [23]黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展[J].浙江农业科学,2005, 3:213-219.
    [24]纪兆林,唐丽娟,张清霞等,地衣芽孢杆菌W10抗菌蛋白的分离纯化及其理化性质研究[J].植物病理学报,2007,37(3):260-264.
    [25]李国庆,王道本.拮抗细菌的筛选及其对油菜菌核病的防治效果[J].华中农业大学学报,1991,10(1):30-35.
    [26]李红霞,陆悦健,周明国,等,油菜菌核病菌β-微管蛋白基因与多菌灵抗药性相关突变的研究[J].中国油料作物学报,2003,25(2):56-60.
    [27]梁建根,张炳欣,陈振宇,等.促生菌CH1诱导黄瓜对猝倒病抗性的研究[J],园艺学报,2006,33(2),283-288.
    [28]廖晓兰,罗宽.油菜花上细菌的分离及其对油菜菌核菌的拮抗作用[J].湖南农业大学学报,2000,26(4):296-298.
    [29]林东,徐庆,刘忆舟,等.枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].农业生物技术学报,2001,9(1):77-80.
    [30]林福呈,李徳葆.枯草芽孢杆菌(B. subtili)S9对植物病原真菌的溶菌作用[J]. 2003, 33(2):174-177.
    [31]刘焕利,王金生,张学君,等.枯草芽孢杆菌B3抗植物病原真菌蛋白的纯化及其性质的研究[J].农业生物技术学报,1995,3(3):33-38.
    [32]刘建国.新型抗菌多肽APS的抗真菌研究[J].中国生物防治,1999,15(3):108-110.
    [33]刘进元,刘玮等.拮抗菌A014的筛选及其分泌抗菌蛋白的条件[J].植物病理学报,1991,33(2):157-161.
    [34]刘静,王军,姚建铭,等.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化[J].微生物学报,2004,44(4):511-514.
    [35]刘亮山,林茂松,鄢小宁,等.生防链霉菌JH10822的发酵培养基优化[J].植物病理学报,2006,36(3): 259-266.
    [36]刘颖,徐庆,陈章良.抗真菌肽LP-1的分离纯化及特性分析[J].微生物学报, 1999,39(5):441-447.
    [37]罗鹏,许煜泉,张霞,等.荧光假单胞杆菌M18产PCA发酵条件研究[J].上海农业学报, 2002,18(2):66-71.
    [38]马利平,乔雄梧,高芬等.B96-II对3种枯萎病的防治效果及拮抗物质初步分析[J].华北农学报,2006,21(4):99-102.
    [39]潘金菊,刘峰,慕卫等,不同生育阶段黄瓜菌核病菌对几种三唑类杀菌剂的敏感性[J].农药学学报, 2006,8 (2): 125-128.
    [40]裴炎,李先碧,彭红卫,等.抗真菌多肽APS-1的分离纯化与特性.微生物学报[J], 1999,39(4): 344-349.
    [41]彭好文,黎起秦,蒙姣荣,等.芽孢杆菌B11拮抗蛋白性质及其对西瓜枯萎病菌的作用机理[J].植物保护,2003,29(5):22-25.
    [42]乔宏萍,宗兆锋.用重寄生菌防治植物病害[J].中国生物防治,2002,18(4): 176-179.
    [43]权春善,王军华,徐洪涛,等.一株抗真菌解淀粉芽孢杆菌的分离鉴定及其发酵条件的初步研究[J].微生物学报,2006,46(1):7-12.
    [44]沈锦玉,尹文林,曹铮,等.枯草芽孢杆菌B115抗菌蛋白的分离纯化及部分性质[J].水生生物学报,2005,(6):589-684.
    [45]石志崎,周明国.油菜菌核病菌对多菌灵的抗药性监测[J].江苏农业学报, 2000,16(4):226-229.
    [46]史凤玉,朱英波,吉志新,等.枯草芽孢杆菌QDH-1-1对采后苹果青霉病的抑制效果[J].中国食品学报,2007,7(4): 80-84.
    [47]孙启利,陈夕军,童蕴慧,等.地衣芽孢杆菌W10抗菌蛋白对油菜菌核病菌的抑制作用及防病效果[J].扬州大学学报(农业与生命科学版),2007,28(3):82-86.
    [48]唐家斌,马炳田,王玲霞,等.用木霉、类木霉对水稻纹枯病进行生物防治的研究[J].中国水稻科学,2002,16(3):63-66.
    [49]田宏先,崔林,孙振,等.马铃薯环腐病菌内生拮抗细菌的分离与筛选.山西农业科学, 2001,29(2):43-45.
    [50]涂玉琴.生物农药的研究和应用进展[J].江西植保,1998,4:32-35.
    [51]王革,李梅云,段玉琪,等.木霉菌对烟草黑胫病菌的拮抗机制及其生物防治研究[J].云南大学学报,2001,23(3):222-226.
    [52]王雅平等.枯草芽孢杆菌A014菌株防治小麦赤霉病的初步研究[J].生物防治通报,1998(2):54-57.
    [53]魏春妹,张春明,陶树玉,等.番茄青枯病生防制剂的研制与应用[J].上海农业学报, 2000,16(增刊),69-72.
    [54]文成敬,牛应泽,王迎春,等.与油菜菌核菌在土壤中存活有关的木霉及其生物防治潜在能力[J].四川农业大学学报,2001,19(6):133-136.
    [55]谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白X98III的纯化与性质[J].微生物学报,1998,38(1):13-19.
    [56]谢关林,李斌,郝晓娟,等.利用芽孢杆菌在温室环境中控制番茄青枯病[J].植物病理学报,2006,36(1):80-85.
    [57]许正宏,陶文沂.短小芽苞杆菌WL-11木聚糖酶A的纯化、鉴定及其底物降解方式[J].生物工程学报,2005,21(3):407-413.
    [58]杨合同,唐文华,M Ryder.木霉菌与植物病害的生物防治[J].山东科学,1999,12(4):7-15.
    [59]杨敬辉,孙庭东,朱桂梅,等.枯草芽孢杆菌K12摇瓶发酵条件的确定和抗菌谱测定[J].上海农业科技,2006,1:27.
    [60]杨水英,张学昆,李加纳,等.土壤拮抗细菌对油菜菌核病菌的抑制作用研究[J].中国农学通报,2003,19(1):13-15.
    [61]杨依军,王勇,杨秀荣,等.拮抗木霉菌在生物防治中的作用[J].天津农业科学, 2000, 6(3): 29-33.
    [62]杨佐忠.枯草芽抱杆菌PRS5抗生作用的初步研究[J].西南林学院学报, 1992, 12(2):167-173.
    [63]姚乌兰,王云山,韩继刚,等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆[J].遗传学报[J],2004,31(9):878-887.
    [64]姚元枝.木霉菌防治油菜菌核病和辣椒白绢病的研究[J].怀化师专学报,1997, 16(6):67-69.
    [65]叶淑红,张福琪,张苓花,王运吉.菊粉酶酶源菌株的筛选及其发酵条件[J].大连轻工业学院学报,2001,20(1):33-36.
    [66]游春平,肖爱萍,李湘明,等.稻瘟病菌拮抗微生物的筛选与鉴定[J].江西农业大学学报,2001,23(4):520-522.
    [67]余桂容,张敏,叶华智.小麦赤霉病的生物防治研究Ⅰ.拮抗芽孢杆菌的分离、筛选、鉴定和防病效果.四川农业大学学报,1998,16(3):314-318.
    [68]翟茹环,尚玉珂,刘峰,等.枯草芽孢杆菌G8抗菌蛋白的理化性质和抑菌作用.植物保护学报,2007,34(6):592-596.
    [69]张夕林,孙雪梅,张谷丰,等.油菜菌核病抗药性监测与综合治理技术的研究[J].农药科学与管理,2003,24(6):18-22.
    [70]张学君,刘焕利,潘小玫,等.小麦纹枯病生防菌株B_3产生抗菌物质条件的研究[J].南京农业大学学报,1995,18(1):26- 30.
    [71]张震,张炳欣,喻景权.黄瓜土传病害拮抗菌分离鉴定及其生物活性测定[J].浙江农业学报.2004,16(3):151-155.
    [72]赵国其,林福呈,陈卫良,等.绿色木霉对西瓜枯萎病苗期的控制作用[J].浙江农业学报,1998,10(4):206-209.
    [73]赵秀香,赵柏霞,马镝,等.枯草芽孢杆菌SN-02抑菌物质的分离纯化及结构鉴定[J].植物保护学报,2008,35(4):322-326.
    [74]朱建兰.黄瓜菌核病发病因素的研究[J].甘肃农业大学学报,2001,36(2):172- 175.
    [75]Akhtar M S, Siddiqui Z A. Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: effective agents for the control ofroot-rot disease complex of chickpea (Cicer arietinum L.)[J],Gen Plant Pathol,2008, 74:53-60.
    [76]Assis S. M. P., Silveira E. B., Mariano L. R., et al. Summa phytopathlogica. 1998, 24:216-220.
    [77]Baker C.J., Stavely J.R., Mock N. Biocontrol of bean rust by Bacillus subtilis under field conditions [J]. Plant disease, 1985, 69:770-772.
    [78]Baker K. F. Evolving concepts of biological control of plant pathogens[J]. Annual Review of Phytopathology, 1987, 25:67-85.
    [79]Bennett A., Leifert C., Whipps J.. Effect of combined treatment of Pasteurisation and Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum in soil[J]. European Journal of Plant Pathology, 2006, 113, 197–209.
    [80]Blakeman J.P., Fokkema N.J.. Potential for biological control of plant disease on the phyllosphere [J]. Phytopathol. 1982,20:167-192
    [81]Chanway C. P.. Introduction of tree roots with plant growth promoting soil bacteria:An emerging technology for reforestation[J]. Forest Science, 1997, 43(1):99-112.
    [82]Cook R. J..Making greater use of introduced microorganisms for biological control of plant pathogens[J]. Ann. Rev. Phytopathol. 1993, 31: 53–80
    [83]Cubeta M. A.. Interaction between Bacillus sutilis and fungi associated with soybean seeds [J]. Plant Disease, 1985, 69: 506-509.
    [84]Davies J. Diseases of oilseed rape in scarisbrick D.H., Daniels R.W. (Eds.). Oilseed Rape, 1986, 195–236.
    [85]Framing E, Edwina, Ann D M..Fungicidal control of Sclerotinia sclerotiorum on cucumber [J]. Annals of Applied Biology, 1984,104: 56-57.
    [86]Fulton R W. Practices and precautions in the use of cross-protection for plant virus disease control [J]. Annu Rev Phytopathol, 1999,24(1): 67-81.
    [87]Handelsman J., Stabb E. V.. Biocontrol of soil-borne plant pathogens [J].The plant cell, 1996, 8, 1855-1869.
    [88]Howie W.J., Suslow T.V. Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens.Molec[J]. Plant-Microbe Interact, 1991, 4:393–399.
    [89]Huang, H.C., Kokko E.G., Yankee L.J., et al. Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotiorum[J]. Canadian Journal of Microbiology, 1993, 39:227-233.
    [90]Jack R W, Tagg J R, Ray B. Bacteriocin of Gram-positive bacteria. Microbiological Reviews.1995, 59(2): 171-200
    [91]Liu L, Kloepper J W, Tuzun S.Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria [J]. Phytopathology, 1995, 85: 695-698.
    [92]Mackeen C. D., et al. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis[J]. Phytopathology, 1986, 76:136-139.
    [93]Mari M, Guizzardi M, Pratella G C. Biological control of gray mold in pears by antagonistic bacteria[J]. Biological Control, 1996, 7(1): 30-37.
    [94]Mercier J., Reeleder R. D.. Interactions between Sclerotinia sclerotiorum and fungi on the phyllosphere of lettuce[J]. Canadian Journal of Botany, 1987, 65:1633–1637.
    [95]Michael A., Torsch V., Brvce C. Bacteriocin from Bacillus megaterium ATCC 19213: comparativestudies with megacin A-216[J]. Bacteriology, 1983, 155(2):866-871.
    [96]Milner J. L., Silo-Suh L. A. Lec J. C. et al. Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbial, 1996, 62:3061-3065.
    [97]Mustafa Y. Canbolat,Serdar Bilen,et al. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora[J]. Biology and Fertility of Soils. 2006,42:350-357.
    [98]Parag S ,Saudagar ,Rekha et al. Optimization of nutritional requirements and feeding strategies for clavulanic acid production by streptomycesclavuli gerus [J].Bioresource Technology ,2006 ,98 (10) :2010~2017.
    [99]Pusey P. L., Wilson C. L.. Postharvest biological control of stone fruit brown rot by Bacillus subtilis[J]. Plant Disease, 1984, 68: 753-756.
    [100]Quan-Fu Wang, Yan-Hua Hou, Zhong Xu, et al. Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276[J]. Biochemical Engineering Journal, 2008, 38:362–368.
    [101]Radhika T., Kiran K. D., Ravi C. P., et al. Purification and characterization of an alkaline keratinase from Streptomyces sp[J]. Bioresource Technology, 2008, 99:1596-1602.
    [102]Rivka C., Efrat H., Marina N.. Purification and identification of a novel leucine aminopeptidase from Bacillus[J]. Thuringiensis israelensis, 2007, 55: 413-419.
    [103]Sharma R C, Sharma S L. Evaluation and economics of fungicidal spray against Sclerotinia rot of cauliflower seed crop [J]. Seed Research, 1984,12(2):95~97.
    [104]Shimosaka M., Nogawa M., Wang X. Y., et a1.Production of two chitosanases from chitosanassimilating actium Acinetobaeter sp. Strain CHB101[J]. Applied and enviomental Microbiology, 1995, 61(2): 438- 442.
    [105]Shoda M, Asaka O, Kurosa K. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14 [J]. Appl Environ Microbiol. 1997, 62: 4081– 4085.
    [106]Stabb, E.,Jacobson V.C., Handelsman L. M. Zwittermycin A-producing strain of Bacillus cereus from diverse soils[J]. Applied and Envrironmental Microbiology,1994,60:4404-4412.
    [107]Tagg J. R. Bacteriocins of gram-positive bacteria[J]. Bacteriological Reviews, 1976, 40(3):722-756.
    [108]Turkington T. K., Morrall R. A. A. Use of petal infestation to forecast sclerotinia stem rot of canola: the in?uence of inoculum variation over the ?owering period and canopy density[J]. Phytopathology, 1993, 83:682-689.
    [109]Uecker F. A., Ayers W. A., Adams P.B. A new hyphomycete on sclerotia of Sclerotinia sclerotiorum [J]. Mycotaxon, 1978, 7: 275-282.
    [110]Venette J. Sclerotinia spore formation, transport and infection[M]. 1998.
    [111]Walker R,Powell A A, Seddon B. Bacillus isolates from the spermosphere of peas and dwarf french beans with antifungal activity against Botrytis cinerea and Pythium species [J]. Appl. Microbiol, 1998, 84(5): 791– 801.
    [112]Weller D. M. Biological control of soil-borne plant pathogens in the rhizosphere with bacteria [J]. Phytopatho1ogy, 1988, 26:397-407.
    [113]Whipps J. M., Gerlagh M. Biology of Coniothyium minitan and its potential for use in disease biocontrol[J]. Mycology Research,1992, 96: 897-907.
    [114]Wilson C.L Wisniiewski M.E.. Biological control of postharrest disease of fruits and regetables:an emerging technology.annu Rev[J] .Phytopathol. 1989, 274:25-41.
    [115]Xing-Ai Gao, Wan-Taek Ju, Woo-Jin Jung, et al. Purification and characterization of chitosanase from Bacillus cereus D-11[J]. Carbohydrate Polymers, 2008, 72: 513-520.
    [116]Yarden O, Katan T. Mutations leading to substitution at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea [J]. Phytopathology, 1993,83:1478~1483.
    [117]Zhang S S,Waseem Raza, Yang X M,et al. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer[J]. Biology and Fertility of Soils,2008, 44(8):1073-1080.
    [118]Zhou T., Reeleder R. D. Application of Epicoccum purpurascens spores to control white mould of snap bean[J]. Plant Disease, 1989, 73: 639- 642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700