耐冷酵母Guehomyces pullulans17-1菌株乳糖酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳糖酶(β-D-半乳糖苷酶,β-D-galactoside-galactohydrolase, EC 3.2.1.23)为一种水解酶,可以将乳糖水解为葡萄糖和半乳糖,目前广泛应用于医药、食品、环保等领域。冷适应乳糖酶具有在低温下高活性的优点,应用在乳品加工和乳清引起的环境污染治理等方面,有着中温和高温乳糖酶无法达到的优越性。同时南极地区被认为是一个潜在的、重要的微生物资源库,可能是产生新型生物活性物质和先导化合物菌株的潜在种源地。我们实验室从采集自南极的海泥样品中筛选到33株酵母菌,本实验在15℃条件下,采用X-gal定性试验和ONPG定量试验从这33株酵母中筛选产乳糖酶的菌株,结果筛选到1株高产乳糖酶菌株17-1,经酵母菌常规方法和分子生物学方法鉴定,我们将其鉴定为一株普鲁兰久浩酵母(Guehomyces pullulans)。
     研究发现,G. pullulans 17-1菌株可同时产胞外和与细胞结合的(Cell-bound)乳糖酶,根据温度对菌体生长的影响,我们判定菌株17-1为一株耐冷型酵母。对耐冷酵母G. pullulans 17-1菌株产乳糖酶的培养基及培养条件进行了优化,确定了最佳培养基成分为(w/v):乳糖3.0%,酵母粉0.7%,蛋白胨0.3%,紫苏油0.02%, KH2PO4 0.28%, MgSO4·7HO20.06%, MnSO4·3HO2 0.00085%,培养基初始pH为4.5,蒸馏水配制;最佳培养条件为:15℃、170 rpm振荡培养132 h,此时耐冷酵母G. pullulans 17-1菌株乳糖酶总产量可达13.9 U/mL。对发酵罐高密度发酵产酶条件进行了初探,实验结果表明可以将该乳糖酶的总产量提高到25.3U/mL。用粗酶样品水解乳糖溶液,水解产物为葡萄糖和半乳糖,水解牛奶可产生大量还原糖。
     G. pullulans 17-1菌株胞外乳糖酶经超滤法浓缩、SephadexTM G-200凝胶过滤、CM-Sepharose F.F.阳离子交换层析得到了纯化,比活力提高2.4倍。SDS-PAGE显示其单亚基分子量约为170.0 kDa,用凝胶过滤层析法测得该纯化酶的分子量约为335.0 kDa,因此推测G. pullulans 17-1菌株乳糖酶是一个同源二聚体。对该纯化酶的酶学性质进行了研究,结果表明:其最适作用温度和pH分别为50℃和4.0,受Ag+、Hg2+的强烈抑制(8.2%,8.4%),Li+离子对它有一定激活作用,对底物ONPG的Km值和Vmax分别为3.3 mM和9.2μmol/min。一级蛋白质谱分析表明,该乳糖酶的一个肽片ALEEYKK与其它已知酵母乳糖酶序列相匹配。将纯化的乳糖酶和4.6%乳糖溶液混合,50℃下孵育4 h后,测得乳糖溶液的水解率为43.5%,实验结果表明该乳糖酶在食品工业中有潜在的应用价值。
β-galactosidase (β-D-galactoside-galactohydrolase, EC 3.2.1.23) hydrolyzes lactose to glucose and galactose. It has many applications in chemical, food industries, and entironment-protecting et al. In recent years, the enzymes from psychrophilic or psychrotolerant microorganisms have received increasing attention as they have many potential applications in food and chemical industries. A psychrotolerant yeast strain Guehomyces pullulans 17-1 was isolated from sea sediment in Antarctica. It was found that it could yield both extracellular and cell-boundβ-galactosidase.
     After optimization of the medium and cultivation conditions, it was found that the yeast strain 17-1 produced over 25.3 U/mL ofβ-galactosidase within 144 h. However, the optimal of pH and temperature for the crudeβ-galactosidase were 4.0 and 50℃, respectively. Lactose could be converted into glucose and galactose and a large amount of reducing sugar could be released from milk under catalysis of the yeast culture.
     The extracellularβ-galactosidase in the supernatant of the cell culture of the psychrotolerant yeast strain G pullulans 17-1 was purified to homogeneity with a 2.4-fold increase in specific activity as compared to the supernatant by ultrafiltration, concentration, gel filtration chromatography (SephadexTM G-200) and cation-exchange chromatography (CM-Sepharose Fast Flow cation-exchange). The molecular mass of the purified extracellularβ-galactosidase was estimated to be 335.0 kDa on the gel filtration chromatography (SephadexTM G-200). The optimal temperature and pH of the purifiedβ-galactosidase were 50℃and 4.0, respectively. Km and Vmax values of the purified P-galactosidase for o-nitrophenyl-β-D-galactopyranoside were 3.3 mM and 9.2μmol/min.43.5% lactose could be converted into glucose and galactose after 4 h at 50℃. The matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectroscopy identified a peptide ALEEYKK which was the conserved motif of the P-galactosidases from other yeasts. The results show that the enzyme may have potential applications in food industry.
引文
卜建斌,云战友,邢黎明.β-半乳糖苷酶的应用及固定化.农产品加工·学刊,2006,55:4-6
    陈皓文,高爱国.中国极地微生物学调查研究进展.极地研究,2005,17
    陈洪章,李佐虎.酵母菌的高密度发酵.工业微生物,1998,28:28-31
    陈卫,张灏,丁霄霖.一种高温乳糖酶的酶学性质及对牛乳中乳糖的水解.中国乳品工业,2002,30:15-18
    池振明.现代微生物生态学.北京:科学出版社,2005.75-82
    尺相孝亮.酶应用手册.上海:上海科学技术出版社,1989
    丁倩,蒋燕灵,邵靖宇.产乳糖酶酵母Kluyveromyces fragilis株培养产酶发酵条件的优化.浙江大学学报(医学版),2001,30
    杜海英,李宁,等.黑曲霉DL116产乳糖酶发酵条件的研究.河北农业大学学报,2007,30:60-64
    杜海英.高温乳糖酶高产菌株的培育及其产酶研究:[硕士学位论文].河北石家庄:河北农业大学,2006
    段文娟,杨娇艳,李卓夫,张伟,张志芳.来源于嗜热古细菌Fyrococcus furiosus乳糖酶基因的原核表达及酶学性质分析.中国农业科技导报,2008,10:76-81
    段文娟.纤维单胞菌(Cellulomonas sp.)中性β-半乳糖苷酶新基因的克隆、表达及酶学性质分析:[硕士学位论文].北京:中国农业科学院,2008
    付金衡,许杨,孙红斌.乳酸菌产乳糖酶的培养条件研究.食品科学,2006,27:545-550
    高焕春.乳糖酶的特性及其在乳品工业中的应用.中国乳品工业,1996,24:19-12
    归莉琼,魏东芝.生物活性物质-低聚半乳糖.中国乳品工业,1998,26:9-12
    郭尧君.蛋白质电泳技术.北京:科学出版社,2001
    韩清波,王义成,刘晶,等.低乳糖液态奶水解率及褐变的研究.中国乳业,2003,6:28-29
    何梅,杨月欣,边立华,等.外源性乳糖酶对健康成人乳糖吸收和乳糖不耐受症状的影响.基础医学与临床,2000,20:96-99
    何梅.乳糖酶缺乏和乳糖不耐受.国外医学卫生学分册,1999,26:339-342
    何伟.乳糖不耐受分子机制研究进展.河南医学研究,2006,15:281-284
    胡学智.功能性低聚糖及其制造概要.工业微生物,1997,1:30-39
    黄北阳.开发低乳制品促进我国乳品产业发展.当代畜牧,2001,3:1-2
    将燕灵,朱俭,俞一萍.耐热乳糖酶的纯化及理化性质研究.中国食品学报,2005,5:43-46
    蒋爱民,李素简,王增勇.乳糖酶菌在乳制品生产中的应用.中国奶牛,1993,2:56-57
    蒋世琼,马丽.米曲霉乳糖酶的研究.冷饮与速冻食品工业,2001,7:1-2
    李达,刘兆庆,姜媛媛,曹树森.乳糖不耐受与功能性液体乳-低乳糖奶.农产品加工·学刊,2005,11:33-36
    李红飞.黑曲霉D2-26乳糖酶分离纯化及酶学性质研究:[硕士学位论文].河北石家庄:河北农业大学,2006
    李宁,李红飞,柯晓静,于宏伟,贾英民.黑曲霉D2-26高温乳糖酶的酶学性质研究.微生物学通报,2008,35:1045-1050
    李强军,全文海,许侣康.黑曲霉乳糖酶催化反应特性及水解机制的研究.无锡轻工业学院学报,1993,12:205-213
    李威,梁金钟.脆壁克鲁维酵母乳糖酶的提取与发酵优化.酿酒,2008,35
    李威.脆壁克鲁维酵母(Kluyveromyces fragilis)生产乳糖酶的研究:[硕士学位论文].哈尔滨:东北林业大学,2008
    李文.β-半乳糖苷酶在液态奶中的应用技术研究.北京:中国农业大学,2005
    李兴峰,贾英民,檀建新等.乳糖酶高产菌株筛选及酶活测定方法的研究.中国食品学报,2003.47-52
    李玉强,王昌禄,顾小波,等.β-半乳糖苷酶的研究与应用.中国食品添加剂,2001,2:30-34
    李玉强,王昌禄.新型液体乳低乳糖牛乳的开发及应用.山东食品科技,2000,4:4-6
    梁果义.来源于芽胞杆菌(Bacillus circulaus)的β-半乳糖苷酶在毕赤酵母中的高效表达:[硕士学位论文].北京:中国农业科学院,2004
    梁金钟,李威.脆壁克鲁维酵母乳糖酶的提取与发酵优化.酿酒,2008,35
    林学政,侯旭光,李光友.南极微生物低温酶的研究进展.海洋科学,2002,26
    林章凛,李爽译.沃尔夫冈,埃拉主编.工业酶制剂与应用.北京:化学工业出版社,2006
    刘建福,陈庆森,王璋.K.fragilis LFS-8611 β-D-半乳糖苷酶的分离纯化.食品科学,2005,26:46-50
    刘文玉,史应武,王杏芹,娄恺.低温β-半乳糖苷酶产生菌14-1摇瓶发酵研究.2007,35:19-22
    陆文伟,孔文涛,孙芝兰,孔健.Paenibacillus sp. K1 β-半乳糖苷酶基因的克隆及在大肠杆菌中的表达.山东大学学报(理学版),2008,43-48
    罗贵民.酶工程.北京:化学工业出版社,2003
    骆承痒.乳与乳品工业.北京:中国农业出版社,2001
    欧军,李威,梁金钟,古元懿.米曲霉生产乳糖酶发酵条件的研究.乳业科学与技术,2008:110-114
    欧阳平凯.生物化工产品.北京:化学工业出版社,1999
    秦燕,宁正祥.β-半乳糖苷酶的应用研究进展.广州食品工业科技,2001,16:38-42
    沈为群,郭杰炎.乳酸克鲁维酵母β-半乳糖苷酶的分离纯化及性质研究.生物工程学报,1993,9:344-348
    盛军.海洋金黄色隐球酵母菊粉酶发酵生产、酶的分离纯化以及基因克隆的研究:[博士学位论文].山东青岛:中国海洋大学,2008
    施特尔马赫B[德].酶的测定方法.北康:轻工业出版社,1992.195-201
    孙国庆,史玉东,付治军,康小红,胡新宇,刘卫星.乳糖酶在生产低乳糖奶中的应用研究.食品与机械,2008,24:128-130
    孙芝兰,孔文涛,孔健.Paenibacillus sp. K1乳糖酶基因bga在乳酸乳球菌中的表达.山东大学学报(理学版),2008,43
    谭树华,Hadeel A, Maklek A, Majid,高向东,等.脆壁克鲁维酵母乳糖酶提取物性质研究.药物生物技术,2000,7:153-156
    谭树华,高捷,海迪勒,等.酵母菌乳糖酶中试制备工艺研究.药物生物技术,2003,10:292-295
    谭树华,高捷,海迪勒,等.酵母菌药用乳糖酶制备新方法.中国药科大学,2004,35:86-89
    汤凤霞,葛志军,乔长晟.低乳糖乳制品的生产研究及应用.宁夏农学院学报,2000,21:79-82
    汪家政,范明.蛋白质技术手册.北京:科学出版社,2000.60-229
    王逢,袁勤生,徐康森.产乳糖酶酵母Kluyveromyces marxianus发酵条件的研究.中国医药工业杂志,2004,35:587-589
    王辉.低乳糖牛奶生产工艺参数的研究.中国乳品工业,2006,34:52-53
    王庆国,刘天明.酵母菌分类学方法研究进展.微生物学杂志,2007,27:97-98
    王融融.乳糖酶的生产应用及发展概况.杭州食品科技,2007,3:1-4
    王筱兰,魏东芝,史凌洋,等.半乳糖寡糖的生物活性.华东理工大学学报,1999,25:374-376
    王元火,姚斌,袁铁铮,等.环状芽抱杆菌乳糖酶基因在大肠杆菌中的表达及酶学性质分析.农业生物技术学报,2003,11:83-88
    王政,马文丽,郑文岭.乳糖酶基因的克隆及生物信息学分析.海南医学院学报,2009,15:104-107
    魏东芝,陈少欣,王筱兰,等.嗜热脂肪芽抱杆菌尽半乳糖昔酶的性质.微生物学通报,2001,28:18-22
    曾胤新,蔡明宏.一株产蛋白酶南极耐冷细菌的筛选及研究.生物技术,2001,11:17-20
    曾胤新,陈波.南极低温微生物研究及其应用前景.极地研究.1999,11
    曾贞元,刘明.大肠杆菌β-D-半乳糖苷酶的纯化与鉴定.微生物学通报,1987,1:10-12
    张波涛,缪锦来,李光友,崔科远.极地微生物活性物质研究进展.海洋科学,2004,28
    张树政.酶制剂工业.北京:科学出版社,1989
    张伟,范云六,姚斌.亮白曲霉乳糖酶基因在毕赤酵母中的高效分泌表达及酶学性质研究.微生物学报,2005,45:247-252
    郑建仙,李漩.低聚半乳糖的制备.食品与机械,1999,1:20-21
    周春艳,张秀玲,王冠蕾.酵母菌的5种鉴定方法.中国酿造,2006,8:51-52
    Hadeel A, Maklek A, Majid,谭树华,高向东,吴梧桐.药用乳糖酶酵母菌发酵条件研究.中国药科大学学报,1999,30:392-395
    Adams A, Gottschling DE, Kaiser CA, et al. Methods in Yeast Genetics:A Cold Spring Harbor Laboratory Course Manual.1998
    Adams RM, Yoast S, Mainzer SE, Moon K, Palombella AL, Estell DA, Power SD, Schmidt BF. Characterization of two cold-sensitive mutants of the a-galactosidase from Lactobacillus delbruckii subsp. bulgaricus. Biol Chem,1994,269:5666-5672
    Barnett JA, Payne RW, Yarrow D. In Yeasts:Characteristics and Identification. New York: Cambridge University Press,1983.770-798
    Becerra M, Cerdan E, Gonzalez SMI. Heterologous Kluyveromyces lactics β-galactosidase Production and Released by Saccharomyces cerevisiae Osmotic-Remedial Thennosensitive Autolytic Mutants. Biochim Biophys Acta,2001,1335:235-241
    Becerra M, Cerdan E, Gonzalez SMI. Micro-scale purification of P-galactosidase from Kluyveromyces lactis reveals that dimeric and tetrameric forms are active. Biotechnol Technol,1998,12:253-256
    Benevides CCP, Vian A, Cesar M, et al. Overproduction of Thermus sp. Strain T2 β-Galactosidase in Escherichia coli and Preparation by Using Tailor-Made Metal Chelate Supports. Appl Environ Microbio,2003,69:1967-1972
    Bentahir M, Feller G, Aittaleb M, et al. Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the Antarctic Pseudomonas sp. TACⅡ18. J Biol Chem,2000,275:11,147-153
    Bhowmik T, Marth EH. β-Galactosidase of Pediococcus species:induction, purification and partial characterization. Appl Microbiol,1990,33:317-323
    Borglun GB, Sternberg MZ. J Food Sci,1972,37:619-622
    Bradford MM. Arapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-253
    Buckland BC, Lilly MD, Dunnill P. The kinetics of cholesterol oxidase synthesis by Nocardia rhodochrous. Biotechnol Bioeng,1976,18:601-621
    Chattopadhyay MK, Jagannadham MV, Vairamani M, et al. Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus:Temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem Biophys Research Communica,1997, 239:85-90.
    Chen KC, Lee TC, Houng JY. Search method for the optimal medium for the production of lactase by Kluyveromyces fragillis. Enzy Microbiol Technol,1992,14:659-664
    Chi Z, Liu J, Zhang W. Trehalose accumulation from starch by Saccharomycopsisfibuligera. Enzy Microbiol Technol,2001,28:240-245
    Cho YJ, Shin HJ, Bucke C. Purification and biochemical properties of a galactooligosaccharide producing β-galactosidase from Bullera singularis. Biotechnol Lett,2003,25:2107-2111
    Cieslinski H, Kur J, Bialkowska A, Baran I, Makowski K, Turkiewicz M. Cloning, expression, and purification of a recombinant cold-adapted β-galactosidase from antarctic bacterium Pseudoalteromonas sp.22b. Protein Expres Purific,2005,39:27-34
    Coker JA, Brenchley JE. Protein engineering of a cold-active P-galactosidase from Arthrobacter sp. SB to increase lactose hydrolysis reveals new sites affecting low temperature activity. Extremophiles,2006,10:515-524
    Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman J, Brenchley JE. Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol,2003,185:5473-5482
    Confer DR, Logan BE. Increased bacterial uptake of macromolecular substrates with fluid shear. Appl Environ Microbiol,1976,67:3093-3100
    Coombs JM, Brenchley JE. Biochemical and phylogenetic analyses of a cold-active β-Galactosidase from the lactic acid bacterium Carnobacterium piscicola. Appl Environ Microbiol,1999,65:5443-5450
    Dalmia BK, Zivke LN. Characterization of a β-galactosidase fusion protein containing the starch-binding domain of Aspergillus glucoamylase. Enzy Micorb Technol,1994,16:18-23
    Daniela TB, Stoilova I, Gargova S, Vijayalakshmi MA. An efficient two step purification and molecular characterization of β-galactosidases from Aspergillus oryzaez. J Mol Recognit, 2006,19:299-304
    Dikson RC, Dickson LR, Markin JS. Purification and properties of inducible β-galactosidase isolated from the yeast Kluyveromyces lactis. J Bacteriol,1979,1:51-61
    Ding Q, Jiang YL, Shao JY. The selection of optimal medium and condition for the production of lactase by yeast Kluyvermyces fragilis. Zhe Jiang Univ (Medical Sci),2001,130:49-51
    Domingues L, Onnelam L, Teixeira JA, et al. Construction of a flocculent brewer's yeast strain secneting Aspergillus niger β-galactosedase. Appl Microbiol Biotechnol,2000,54:97-103
    Ekelof E. Bakteriologische studien wahrend der schw edischen Sudpolar-Expedition. Wiss Ergeb Schwed Sud polar-Exped,1908,120:1901-1903
    Feket E, Karaffa L, Sandor E, Seiboth B, Biro S, Szentirmai A, Kubicek CP. Regulation of formation of the intercellular β-galactosidase activity of Aspergillus nidulans. Arch Microbiol, 2002,179:7-14
    Fell JW, Scorzetti G. Reassignment of the basidiomycetous yeasts Trichosporon pullulans to Guehomyces pullulans gen. nov., comb. nov. and Hyalodendron lignicola to Trichosporon lignicola comb. nov. Int Syst Evol Microbiol,2004,54:995-998
    Fernandes S, Geueke B, Delgado O, Coleman J, Hatti-Kaul R. beta-Galactosidase from a cold-adapted bacterium:purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol,2002,58:313-21
    Fiedurek J, Gromada A, Jamroz JJ. Effect of medium components and metabolic inhibitors on P-galactosidase production and secretion by Penicillium notatum. Basic Microbiol,1996,36: 27-32
    Fiedurek J, Szczodrak J. Selection of strain, culture conditions and extraction procedures for optimum production of β-galactosidase from Kluyveromyces fragillis. Acta Microbiol Polonica,1994,43:57-65
    Fong NJC, Burgess ML, Barrow KD, et al. Carotenoid accumulation in the psychrotrophic bacterium Arthorbacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol,2001,56:750-756
    Furlan SA, Schneder ALS, et al. Optimization of pH temperature and inoculum ratio for the production of β-D-galactosidase by Kluyveromyces marxianus using lactose-free medium. Acta Biotechnol,2001,21:57-64
    Furlan SA, Schneider ALS, Merkle R, Carvalho JMF, Jonas R. Formulation of a lactose-free, low-cost culture medium for the production of β-D-galactosidase by Kluyveromyces marxianus. Biotechnol Lett,2000,22:589-593
    Gabriela C, Mauricio AT, Octavio TR, et al. Production of β-galactosidase by Kluyveromyces marxianus under oscillating dissolved oxygen tension. Proc Biochem,2005,40:773-778
    George V, Diwan AM. Simultaneous staining of proteins during polyacrylamide gel electrophoresis in acidic gels by countermigration of Coomassie brilliant blue R-250. Anal Biochem,1993,132:481-483
    Gong F, Sheng J, Chi ZM, Li J. Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J Ind Microbiol Biotechnol,2007,34:179-185
    Gutell RR, Fox GE. Compilation of large subunit RNA sequences prsented in a structural format. Nucleic Acid Res,1988,16:175-269
    Haider T, Husain Q. Immobilization of P-galactosidase from Aspergillus oryzae via immunoaffinity support. Biochem Eng J,2009,43:307-314
    Harada M, Inoharag M, Nakao M, et al. Divalent metal ion requirements of a thermostable multimetal β-Galactosidase from Saccharopoly spora rectivirgula. J Biol Chem,1994,269: 22021-22026
    Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol,1997,7:637-644
    Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Franc JM, Ois, Baise E, Feller G, Gerday C. Cold-Adapted β-Galactosidase from the Antarctic Psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol,2001,67:1529-1535
    Hsu CA, Yu RC, Chou CC. Production of β-galactosidase by Bifidobacteria as influenced by various culture conditions. Int J Food Microbiol,2005,104:197-206
    Hsu RC, Yu SL, Lee CC, Chou CA. Cultural condition affecting the growth and production of P-galactosidase by Bifidobacterium longum CCRC15708 in a jar fermenter. Int J Food Microbiol,2007,116:186-189
    Huber RE, Gupta MN, Khare SK. The active site and mechanism of the β-galactosidase from Escherichia coli. Int Biochem,1994,26:309-318
    Hung MN, Lee BH. Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Appl Microbiol Biotechnol, 2002,58:439-445
    Ibrahim SA, Osulluvan DJ. Use of chemical mutagenesis for the isolation of food grade β-galactosidase overproducing mutants of Bifidobacteria, Lactobacilli and Streptococcus Thermophilus. J Dairy Sci,2000,83:923-930
    Itoh T, Suzuki M, Adachi S. Production and characterization of β-galactosidase from lactose-fermenting yeasts. Agric Biol Chem,1982,46:899-904
    Jacobson RH, Zhang X, DuBose RF, et al. Three-dimensional structure of P-galactosidase from E. coli. Nature,1994,369:761-766
    Jimenez M, Gonzalez AE, Martinez MJ, Martinez AT, Dale BE. Screening of yeasts isolated from decayed wood for lignocellulose-degrading enzyme activities. Mycol Res,1992,95: 1299-1302
    Karasova LP, Strnad H, Spiwok V, et al. The cloning, purification and characterisation of a cold-active β-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C222. Enzy Microb Technol,2003,33:836-846
    Kim CS, Ji ES, Oh DK. A new kinetic model of recombinant β-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions. Biochem Biophys Research Communic,2004,316:738-743
    Kim JW, Rajagopal SN. Isolation and characterization of beta-galactosidase from Lactobacillus crispatus. Folia Microbiol,2000,45:29-34
    Kobori H, et al. Heat labile alkaline phosphatase from antarctic bacteria:rapid 5'end labeling of nucleic acids. Proc Natl Acad Sci USA,1984,81:6691-6695
    Konsoula Z, Liakopoulou KM. Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresou Technol,2007,98:150-157
    Kosugi A, Murashima K, Doi RH. Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation. J Bacteriol,2002,184:6859-6865
    Kreger MJW. The yeasts-a taxonomic study. Nederland:Elsevier,1998
    Ku MA, Hang YD. Production of yeast lactase from sauerkraut brine. Biotechnol Lett,1992,14: 925-928
    Kurtzman CP, Fell JW. The yeasts:a taxonomic study,4th revised and enlarged edition. Amsterdam:Elsevier Sci Publishers,2000.1-525
    Larcher G, Cimon B, Symoens F, Tronchin G, Chabasse D,Bouchara JP. A 33 kDa serine proteinase from Scedosporium apiospermum. J Biochem,1996,315:119-126
    Li XL, Robbins JW, Taylor KB. The production of recombinant beta-galactosidase in Escherichia coli in yeast extract enriched medium. J Indu Microbiol Biotechnol,1990,5:85-93
    Lite L, Zhang M, Jiang ZQ, Tang L, Cong QQ. Characterisation of a thermostable family 42 β-galactosidase from Thermotoga maritima. Food Chem,2009,112:844-850
    Loveland CJ, Sheridan PP, Gutshall KR, Brenchley JE. Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov. Arch Microbiol,1999,171:355-363
    Loveland J. Characterization of Psychrotrophic Microorganisms Producing β-Galactosidase Activities. Appl Environ Microbiol,1993,60:12-18
    Lu LL, Xiao M, Xu XD, Li ZY, Li YM. A novel β-galactosidase capable of glycosyl transfer from Enterobacter agglomerans B1. Biochem and Biophys Research Communic,2007,356:78-84
    Lucilia D, Lima N, Teixeira JA. Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor. Proc Biochem,2005,40:1151-1154
    Majid H.A, Tan SH, Gao XD, Wu WT. Fermentation studies on yeast producing high level of lactase. J Chin Pharmaceut Univ,1999,30:392-395
    Martini VA, Rosini G, Martini A. Killer sensitivity patterns as a tool for the fingerprinting of strains within the yeast species Kluyveromyces lactis and K.marxianus. Biotechnol Technol, 1988,2:293-296
    Martins DBG, Souza CG, Simoes DA, Morais MA. The P-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr Microbiol,2002,44: 379-382
    Medicharla V, Jagannadham MK. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol,2001,173:418-424
    Moracc M, La VA, Pulitzer JF, et al. Exp ression of the thermostable β-galactosidase gene from the archaebacterium Sulfolobus solfataricus in. Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous expression. J Bacteriol,1992, 174:873-882
    Morita RY. Psychrophilic bacteria. Bacteriol Rev,1975,39:144-167
    Motoshima H, Ohtsu N, Goto K, Tsukasaki F, Matsuzawa H. Thermostable β-galactosidase from an extreme thermophile, Thermus sp. A4:Enzyme purification and characterization, and gene cloning and sequencing. Biosci Biotechnol Biochem,1998,62:1539-1545
    Nagashima H. Characterization and habitats of bacteria and yeasts isolated from Lake Vanda in Antarctica. Proc NIPR Symp Polar Biol,1990,3:190-200
    Nagy Z, Kiss T, Szentirmai A, Biro S. β-Galactosidase of Penicillium chrysogenum:production, purification, and characterization of the enzyme. Protein Expr Purif,2001,21:24-29
    Nakagawa T, Fujimoto Y, Ikahata R. Purification and molecular characterization of cold-active β-galactosidase from Arhtrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol, 2006,72:720-725
    Nakagawa T, Fujimoto Y. Isolation and characterization of psychrophile producing cold-active β-galactosidase. Lett Appl Microbiol,2003,37:154-157
    Nakagawa T.. Ryoko I, Masataka U, Tatsuro M, Katsumi T, Noboru T. Cold-active acid β-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Research,2006,161:75-79
    Nakagawa T, Ryoko I. Overexpression and functional analysis of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Protein Expres Purifica,2007,54:295-299
    Nakkharat P, Haltrich D. Purification and characterisation of an intracellular enzyme with β-glucosidase and β-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. J Biotechnol,2006,123:304-313
    Nguyen TH, Splechtna B, Steinbock M, Kneifel W, Lettner HP, Kulbe KD, Haltrich D. Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri. Agric Food Chem,2006,54:4989-4998
    Nguyena TH, Splechtna B, Yamabhai M, Haltrich D, Peterbauer C. Cloning and expression of the β-galactosidase genes from Lactobacillus reuteri in Escherichia coli. J Biotechnol,2007,129: 581-591
    Nicholas P. Beta-Galactosidase Activity in psychrotrophic Microorganisms and their Potential use in Food Industry. Czech Food Sci,2002,20:43-47
    Nichols DS, Nichols PD, McMeekin TA. Polyunsaturated fatty acid in Antarctic bacteria. Anta Sci, 1993,5:149-160
    Ogushi S, Yoshimoto T,. Tsuru D. Purification and comparison of two types of β-galactosidases from Aspergillus oryzae. J Ferment Technol,1980,58:115-122
    Olivier P, Herve L, Hote L, et al. Sequence of the Kluyveromyces Lactis β-Galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. Gene,1992,118: 55-63
    Onishi N, Tanaka T. Purification and properties of a novel thermostable galacto-oligosaccharide-producing β-galactosidase from Sterigmatomyces elviae CBS8119. Appl Environ Microbiol, 1995,61:4026-4030
    Park Y, Dele M, Santi T, et al. Production and characterization of β-Galactosidase from Aspergillus oyrzae. J Food Sci,1979,44:100-103
    Rajoka MI, Khan S, Shahid R. Kinetics and regulation studies of the production of β-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol Biotechnol, 2003,41:315-320
    Rech R, Cassini CF, Secchi A, Ayub MAZ. Utilization of protein-hydrolyzed cheese whey for production of β-galactosidase by Kluyveromyces marxianus. J Indu Microbiol Biotechnol, 1999,23:91-96
    Rodriguez AP, Leiro RF, Cerdan ME, Siso MIG, Fernandez MB. Kluyveromyces Lactis P-galactosidase crystallization using full-factorial experimental design. J Mole Cata B Enzy, 2008,52:178-182
    Romanos MA, Clare JJ, Beesley KM, et al. Recombinant Bordetella pertusis pertactin (P69) from the yeast Pichia pastoris:high-level production and Immunological properties. Vaccine,1991, 9:901-906
    Romero MC, Hammer E, Cazau MC, Arambarri AM. Selection of autochthonous yeast strains able to degrade biphenyl. World J Microbiol Biotechnol,2001,17:591-594
    Ronnmark J, Kampf C, Asplund A, et al. Affibody β-galactosidase immunoconjugates produced as soluble fusion proteins in the Escherichia coli cytosol. J Immunol Meth,2003,281:149-160
    Sakai Y, Nakagawa T, Shimase M, Kato N. Regulation and physiological role of the DAS1 gene encoding dihydroxyacetone synthase in the methylotrophic yeast Candida boidinii. J Bacteriol,1998,180:5885-5890
    Sanchez S, Demian A. Metxbolig. Regulation of fermentation process. Enzy Microbiol Technol, 2002,30:895-906
    Seval D, Goksungur Y. Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electron J Biotechnol,2008,11
    Shaikh SA, Khire JM, Khan MI. Characterization of a thermostable extracellular β-galactosidase from a thermophilic fungus Rhizomucor sp. Biochem Biophy Acta,1999,1472:314-322
    Shaikh SA, Khire JM, Khan MI. Production of β-galactosidase from thermophilic fungus Rhizomucor sp. J Ind Microbiol Biotechnol,1997,19:239-245
    Sharp R, Fishbain S, Macfarlane GT. Effect of short-chain carbohydrates on human intestinal Bifidobacteria and Escherichia coli in vitro. J Med Microbiol,2001,50:152:160
    Sheridan PP, Brenchley JE. Characterization of a salt-tolerant family 42 β-galactosidase from a psychrophilic antarctic Planococcus isolate. Appl Environ Microbiol,2000,66:2438-2444
    Shipkowski S, Brenchley JE. Bioinfonnatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 β-galactosidases are arabinogalactan type Ioligomer hydrolases. Appl Environ Microbiol,2006,72:7730-7738
    Ska'lova'T, Dohna'lek J, Spiwok VJ. Cold-active β-Galactosidase from Arthrobacter sp. C2-2 Forms Compact 660 kDa Hexamers:Crystal Structure at 1.9 A°. Resol Mol Biol,2005,353: 282-294
    Slavikova E, Kosikova B, Mikulasova M. Biotransformation of waste lignin products by the soil-inhabiting yeast Trichosporon pullulans. Microbiol,2002,48:200-203
    Solias TSR, Guzman JJ, Leos SC, Ruiz GL, Guerrero CAE, Serrano RGM, Gribay GM. Determination of the secondary structure of Kluyveromyces lactis β-galactosidase by circular dichroism and its structure-activity relationship as a function of the pH. J Agri Food Chem, 2005,53:10200-10204
    Sorensen HP, Porsgaard TK, Kahn RA, Stougaard P, Mortensen KK, Johnsen MG. Secreted β-galactosidase from a Flavobacterium sp.isolated from a low-temperature environment. Appl Microbiol Biotechnol,2006,70:548-557
    Spiro RG. Analysis of sugars found in glycoproteins. Meth Enzymol,1966,8:3-26
    Sugita T, Takashima M, Kodama M, Tsuboi R, Nishikawa A. Description of a new yeast species Malassezia japonica, and its detection in patients with atopic dermatitis and healthy subjects. Clin Microbiol,2003,41:4695-9
    Taeichimi A. Production and Properties of Galactosidases from Corticium rolfsii. Appl Microbiol, 1969,18:1036-1040
    Takenishi S, Watanabe Y, Miwa T, Kobayashi R. Purification and some properties of β-galactosidase from Penicillium multicolor. Agric Biol Chem,1983,47:2533-2540
    Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Mole Biol Evol,2007,24:1596-9
    Tao H, Marion G P, Hermie J M, et al. Colonic Fermentation May Play a Role in Lactose Intolerance in Humans. American Society for Nutrition J,2006,136:58-63
    Tarum B, Elmer HM. β-Galactosidase of Pediococcus species:induction, purification and partial characterization. Appl Microbiol,1990,33:317-323
    Tello S, Salvador R, Judith J, Nez-Guzmaan C, Sarabia-Leos. Determination of the Secondary Structure of Kluyveromyces lactis β-Galactosidase by Circular Dichroism and Its Structure-Activity Relationship as a Function of the pH. Agric Food Chem,2005,53: 10200-10204
    Trimbu E. Characterization of a Psychrotrophic Arthrobacter Gene and Its Cold-Active (3-Galactosidase. Appl Environ Microbiol,1994,6.0:4544-4552
    Tsigos I, Velonia K, Smonou I, et al. Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophlie Monraella sp. TAE123. Euro J Biochem, 1998,254:356-362
    Turkiewicz M, Kur J, Bialkowska A, et al. Antarctic marine bacterium Pseudoalteromonas sp.22b as a source of cold-adapted β-galactosidase. Biomol Eng,2003,20:317
    Tzorztis G, Goulas AK, Gee JM, et al. A Novel Galacto-oligosaccharide Mixture Increases the Bifidobacterial Population Number in a Continuous in Vitro Fermentation System and in the Proximal Colonic Contents of Pigs In Vivo. American Society Nutritional Sci,2005,135: 1726-1731
    Ulrich JT, Mcfeters GA, Temp AKL. Induction and characterization of β-galactosidase in an extreme thermophile. J Biol Chem,1972,110:691-698
    Umasankar U, Aiinadurai G, Chellapandian M, Krishnan MRV. Xanthan production-effect of agitation. Bioproc Eng,1996,15:35-37
    Van CWHM, Eimermann M, Van den Broek LAM, et al. Purification and characterisation of a β-galactosidase from Aspergillus aculeatus with activity towards (modified) exopolysaccharides from Lactococcus lactis subsp. cremoris B39 and B891. Carbohydrate Research,2000,329:75-85
    Vasiljevic T, Jelen P. Production of P-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innovat Food Sci Emerging Technol,2001,2: 75-85
    Vian A, Carrascosa AV, Garcia JL. Structure of the β-galactosidase gene from Thermus sp. strain T2:expression in E.coli and purification in a single step of an active fusion protein. Appl Environ Microbiol,1998,6:2187-2191
    Vincent WF. Microbial ecosystem of Antarctica. UK:Cambridge University Press,1988
    Wanarska M, Kur J, Pladzyk R, et al. Thermostable Pyrococcus woesei β-D-galactosidase:high level expression, purification and biochemical properties. Acta Biochim Polon,2005,52: 781-787
    Wijnands MVW, Schoterman HC, Bruijntjes JP, et al. Effect of dietary galacto-oligosaccharides on azoxymethane-induced aberrant crypt foci and colorectal cancer in Fischer 344 rats. Carcinogenesis,2001,22:127-132
    Zhang ML, Liu WQ, Xiong H, Chen WH, Xiao F, Jian SQ. Studies on the optimization for lactase production by Kluyveromyces lactis. Food Sci,2006,27:428-431

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700