甘蔗废蜜制取高果糖浆工艺技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以甘蔗废蜜为原料制取高果糖浆,可以提高糖厂副产品的附加值。通过对甘蔗废蜜制取高果糖浆的工艺技术(预处理、酸解、分离、异构化、精制)的工艺条件进行研究,为甘蔗废蜜制取高果糖浆工业化生产提供了切实可行理论依据。本课题的主要研究内容和结果如下:
     1、通过糖厂的分析方法对某亚硫酸法糖厂的废蜜进行了主要成分分析,其中蔗糖分含量在33%-35%,还原糖含量在15%-16%,灰分含量在9%-12%,胶体含量在9%-11%。
     2、确定了废蜜预处理工艺的最佳工艺条件:废蜜与蒸馏水的稀释度为1:0.1(W/W),在用H_2SO_4将稀释的溶液的pH值调到2.5左右,添加0.8%絮凝剂后,100g废蜜处理出来的沉淀达到18.87g,OD减少率95.37%。
     3、利用酸水解废蜜中的蔗糖分,增加废蜜中果糖的含量。酸水解废蜜的最佳工艺条件是:反应温度为80℃,反应溶液的PH值2.0,反应时间为4.0h,废蜜水解率可达到92.75%。
     4、化学方法分离果糖和葡萄糖的最佳工艺条件是:果糖与Ca(OH)_2添加量的摩尔比为1:3,在0-5℃条件下反应3h,在反应液中添加2×10~(-4)%的聚丙烯酰胺絮凝剂,使得果糖转化成果糖钙沉淀出来,用30%H_3PO_4来洗涤沉淀,得到高果糖浆粗产品。
     5、对高果糖浆粗产品进行了活性炭脱色和强酸阳离子树脂静态脱盐精制。活性炭脱色工艺条件是:加入活性炭添加量3%(W/V)、脱色温度50℃、脱色时间40min。树脂脱盐的工艺条件是:树脂添加量6%(W/V),脱盐温度40℃,脱盐时间2h。经过一系列提取和精制工艺后,果糖的得率达到67.17%,果糖损失率为8.05%,最后经过减压浓缩后得到高果糖浆产品果糖纯度达到92.56%。
     6、葡萄糖在碱性条件下通过水浴加热能够转化成果糖,通过响应面表明,通过用化碱性异构化将葡萄糖转化成果糖的最佳工艺组合是:反应温度75℃,反应时间30min,溶液的pH值在11.50,葡萄糖异构化率达到28.14%。
     7、本文对碱法异构反应表观动力学进行考察,建立了表观动力学模型,求得75℃时,速率常数k=0.0574min~(-1),该异构反应在75℃时的速率方程为:V_A=-(dc_A)/dt=0.0574C_A;求得碱法异构反应的表观活化能53.74KJ/mol,指前因子k_0=2.40286×10~4s~(-1)反应速度常数与温度的关系式为:k=2.40286×10~(-4)e~(-6461.1/RT)
Sugar cane of raw materials for production of high fructose syrup, sugar by-products can increase the added value. Through the sugar cane production of high fructose syrup key technologies (pretreatment, acid solutions, separation, heterogeneous, refining) study, sugar cane waste for the production of honey industrialized production of high fructose syrup provides a theoretical basis for practical. The main topic of this research and the results are as follows:
     1. Analysis by the sugar factory, a sulfite sugar cane in the main component analysis, in which sucrose content around 33% to 35%, reducing sugar content of 15% to 16%, ash content of 9% to 12%, Colloidal content 9% to 11%.
     2. sugar cane pre-treatment of optimum conditions: sugar cane and distilled water for the dilution of 1:0.1, will be diluted by H_2SO_4 solution transferred to the PH value of about 2.5, add 0.8% flocculation Agent, 100 grams honey processing waste from the precipitation reached 18.87 g, OD reduce the rate of 95.37%.
     3. Use of acid hydrolysis waste in the sugar cane, fructose in sugar cane to increase the waste content. Waste acid hydrolysis sugar cane is the optimum conditions: the reaction temperature is 80℃, the reaction solution pH value of 2.0, the reaction time is 4.0 h, honey hydrolysis rate of waste can be reached 92.75 %.
     4. Chemical separation of fructose and glucose is the optimum conditions: fructose and Ca(OH)_2 amount of the molar ratio of 1:3, 0-5℃reaction under the conditions of three hours, the reaction of the add 2×10~(-4)% Acrylamide flocculant, making fructose sugar into the results from calcium precipitation, with 30% H_3PO_4 to wash precipitation, are the high fructose syrup crude products.
     5. For high-fructose syrup crude product was activated carbon and decoloration strong acid cation resin static desalination refined. Decolorization of activated carbon are: adding activated carbon content 3% (W/V), decolorizing temperature at 50℃, decolorizing time 40 min. Resin the desalination process is: resin amount of 6% (W/V), desalination temperature 40℃, desalination time 2 h. After a series of extraction and refining process, the fructose in the rate of 67.17 %t, fructose loss rate of 8.05 %, after the final decompression concentrated fruit by high-fructose syrup products reached 92.56 %.
     6. Under the conditions of glucose in alkaline water bath by heating sugar can be transformed into results through the response surface that, through use of alkaline isomerization results will be transformed into glucose sugar is the optimum combination of: temperature 75℃, reaction time 30 min, the solution PH value in 11.50, glucose isomerization rate reached 28.14 %.
     7. In this paper, Alkaline heterogeneous apparent reaction kinetics study, the establishment of the apparent dynamic model, obtained 75℃, the rate constant k=0.0574min~(-1), in response to the heterogeneous 75℃at the rate equation:V_A =-dc_A/dt =0.0574C_A;Alkaline isomerization reaction obtained theapparent activation energy 53.74KJ/mol, referring to the former factor k_0=2.40286×10~4s~(-1) and the reaction rate constant temperature of the relationship:k = 2.40286×10~(-4)e~(-6461.1/RT)
引文
[1]谢元.高果糖浆在饮料中的应用[J].食品工业,2002,23(2):33-34
    
    [2]杨海军.果葡糖浆的特性及应用[J].食品科学,2002,23(2):154-156
    
    [3]王宜庆.玉米淀粉与高果糖浆[M].北京:中国食品出版社,1987:112-114
    
    [4]张力田.淀粉糖[M].北京:中国轻工业出版社,1998:6
    
    [5]马爱进,贾英民,李会宣,孙记录.‘黑曲霉Ur-2(Aspergillus niger Ur-2) 产菊粉酶的研究[J].河北农业大学学报,2001,24(3):54-57
    
    [6]李清解,任岱,文莉菊.糖水解制备果糖新工艺研究[J].食品工业科技,1997, 1:45-46
    
    [7]白妹,孙彦,何利中.柱式离子交换法水解菊芋制备高果糖浆[J].食品科学,1999, 20(2):31-33
    
    [8]谢秋宏,相宏宇.一步酶法水解菊粉生产高果糖浆[J].吉林大学自然科学学报,1997, 2:103-105
    
    [9]魏文玲,郑志成,郑忠辉等.菊芋块茎制高果糖浆的研究[J].食品科学,1997,18 (12):35-38
    
    [10]王建华,刘艳艳,姚斌,王亚茹.一步法制备高果糖浆工程及产酶菌体营养 价值研究[J].食品与发酵工业,2000,26(2):1-4
    
    [11]杨瑞金,潘允鸿,闻方一.蔗糖转化生产纯结晶果糖的工艺研究[J].食品与发酵工 业,1996,2:34-37
    
    [12]黄立新,余业棠.酸水解蔗糖生产转化糖的研究[J].食品科学,2003,24(3):24- 26
    
    [13]张宏书,杨精千,张朝泰等.阳离子树脂水解蔗糖制取果葡糖浆.中国专利 CN1048233A,1991
    
    [14]周中凯,程觉民.酶促水解蔗糖生产果葡糖浆新工艺[J].中国甜菜糖业,1998, 5:1-4
    
    [15]周小华,赵继艳,任绍光.酵母蔗糖酶的吸附交联固定化研究[J].食品科学,1994, 1:8-10
    
    [16]彭万霖,田小光.固定化蔗糖酶水解蜂蜜蔗糖的研究[J].微生物学报,1992, 32(6):418-424
    
    [17]何志敏,吴金川.蔗糖酶促水解制取富果糖浆新工艺[J].食品与发酵工业,1996,3: 54-57
    
    [18]吴金川,何志敏,余国琼.生化反应-色谱分离藕合过程模型研究[J].北工学报, 1996,47(2):192-198
    
    [19]吴金川,何志敏,余国琼.蔗糖酶促水解液相色谱分离藕合过程[J].天津大学学报, 1995,28(2):175-180
    
    [20]李永丰,叶林发,黄越等.固定化酵母细胞生产转化糖的研究[J].工业微生物,1989, 19(1):16-19
    
    [21]李凡超,张宏.固定化面包酵母生产转化糖的反应动力学模型[J].北工学报, 1993,44(1):59-65
    
    [22]陈庆森,张晓玲,张光兴.固定化活性干酵母细胞生产转化糖的研究[J].天津商学 院学报,1994,3:11-15
    
    [23] Leticia Martinez. Fibrous cellulose support containing adhered yeast for convertingsucrose to glucose and fructose. U. S. Pat. 6,013, 491,2000
    
    [24]高振鹏,岳田利,袁亚宏,王云阳.果糖生产技术和应用研究进展[J].西北农林 科技大学校报(自然科学版),2003,10(31):189-190
    
    [25]尤新.淀粉糖品生产与应用手册[M].北京:中国轻工业出版社,1997:191-192
    
    [26]张树政.酶制剂工业(下册)[M].北京:科学出版社,1998:92
    
    [27]朱国萍,程阳,宫春红,徐冲.葡萄糖异构酶的生物工程研究进展[J].生物化学与 生物物理进展,2000,27(2):127-131
    
    [28] Kevin C. SPENCER, Riverside, Christine E. Boisrobert et al. Method of producinghigh fructose corn syrup from glucose using noble gases. U. S. Pat. 5, 593,868,1997
    
    [29] NonnanE.Lloyd, Richord L.Antrim. Method for maintaining immobilized glucose isomerase activity during continuous isomerization of glucose to fructose. U. S. Pat. 5, 177, 005,1993
    
    [30]终毅,史立新,李惟等.葡萄糖异构酶的双层固定化及其在高果糖浆工业化生产中 的应用[J].吉林大学自然科学学报,2000,2:107-108
    
    [31]贺家明,袁建国.用嗜热放线菌生产固定化葡萄糖异构酶的方法及其在高果糖浆 中的应用.中国专利CN 85100412A,1985
    
    [32]温其标,朱力洪.关于葡萄糖异构化中DE值下降原因的探讨[J].淀粉与淀粉糖, 2006,3:18-20
    
    [33]张力田.果糖产品的发展[J].食品与发酵工业,1998,24(1):51-55
    
    [34] Larry WPeckous,Decatur,Ⅲ.Integrated process for producing crystalline fructose and a high-fructose liquid pHase sweetener.U.S.Pat.5,656,094,1997
    
    [35]何开样,兰细萍,郭茂才等.结晶法制二代果葡糖浆工艺技术的研究[J].食品与发 酵工业,1993,5:15-18
    
    [36]何开样,肖卫平,郭茂才等.结晶法制二代高果糖浆.中国专利CN1063903A,1991
    
    [37]刘佐才,侯平然.果糖与葡萄糖的分离[J].北京理工大学学报,2001,21(6): 782-785
    
    [38]孔维,王立平,周慧等.固定化硼酸分离果糖.中国专利CN 1088262A,1993
    
    [39]葛玉斌,孙文田,王树岩等.大孔硼酸基聚苯乙烯树脂分离果葡糖的研究[J].高等 学校化学学报,1998,19(10):1689-1692
    
    [40]伶毅,史立新,李惟等.果葡糖分离络和载体性能研究[J].高等学校化学学报,2000, 21(5):82
    
    [41]陈维钧,许斯欣等.甘蔗制糖原理与技术(第四分册).蔗糖结晶与成糖[M],中国轻 工业出版社,2001.
    
    [42]王律均,潘允鸿,徐祖健.糖品分析[M].北京:科学出版社,1985:41-45
    
    [43]王律均,潘允鸿,徐祖健.糖品分析[M].北京:科学出版社,1985:58-70
    
    [44]王律均,潘允鸿,徐祖健.糖品分析[M].北京:科学出版社,1985:113
    
    [45]王律均,潘允鸿,徐祖健.糖品分析[M].北京:科学出版社,1985:114[46]Rendeman Carbohydrates工n Solution ACS Washington DC 1983 23
    
    [47]柴元武.间苯二酚分光光度法测定果葡糖浆中的果糖[J].河南城建高等专科学校 校报,2001,10(1):54-56
    
    [48] Miller G L et al. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal.Chem., 1959, 31 (3):426-428
    
    [49]黄海等.低聚木糖的脱色工艺[J].无锡轻工大学学报,2002,21(2):126-129
    
    [50]王律均,潘允鸿,徐祖健.糖品分析[M].北京:科学出版社,1985:118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700