疏水亲油有机无机复合乳液的制备及其在油水分离滤纸的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代汽车工业的飞速发展和政策法规对汽车尾气排放的要求越来越严格,汽车对燃油的品质要求也越来越高。燃油对发动机的正常运转起着决定性的作用,其品质的优劣直接影响到发动机的工作状态和汽车行驶性能。水是油液中最为普遍的污染物,是导致油液品质下降的主要原因,并且直接威胁到汽车元件和系统的安全运行。因此,高效的脱水技术对提高燃油品质,乃至对整个汽车行业的发展具有重要意义。在众多的油水分离技术中,聚结分离因其处理量大、造价低等优点而得到广泛应用,其分离机理是利用油水两相表面能的差异,采用具有表面疏水亲油的多孔料制成分离滤芯,可使油液顺利通过,而水滴被有效地被拦截在滤芯外面,从而实现高效脱水。植物纤维基材过滤滤纸由于存在着质地轻、成本低、体积小等优点而成为汽车发动机滤清器中最常用的分离介质。本课题旨在制备一种具有优良疏水亲油性能的水性树脂,通过有机无机复合的方法制备高效的油水分离树脂并应用于滤纸浸渍,在给予滤纸以高效的油水分离性能同时,大大提高了滤纸强度性能与使用寿命。为此,本文主要工作内容如下:
     首先,考察了聚合工艺、缓冲剂用量、乳化剂用量及配比、引发剂用量、搅拌速度等因素对苯丙乳液聚合过程稳定性的影响;研究共聚物玻璃化转变温度,功能单体AA(丙烯酸),交联单体N-MA(N-羟甲基丙烯酰胺)对浸渍乳液后滤纸强度性能的影响。结果表明,通过工艺的优化,可以制备具有优良的Ca2+、离心和机械稳定性的苯丙乳液。苯丙乳液浸渍后的滤纸具有优良的耐破度、挺度、抗张强度和抗水性等性能,乳液成膜后包裹在纤维表面以及纤维的交织点,并未堵塞纤维孔隙,保持滤纸优良的过滤性能。
     在苯丙乳液体系的基础上,制备了以苯丙共聚物为核、含氟共聚物为壳的核壳结构含氟苯丙乳液。考察了氟单体种类、核壳单体质量比例、壳单体有机氟含量和丙烯酸十八酯对制备乳液涂膜疏水亲油性的影响。结果表明,选用氟碳链链长为6的含氟单体、核壳单体比例为8:2且和壳单体有机氟含量为40.0wt%时,制备的共聚物涂膜具有较好的疏水亲油性,丙烯酸十八酯参与共聚有利于提高共聚物乳液涂膜的亲油性。
     研究乳化剂体系和交联体系对制备乳液乳胶粒形貌和乳液涂膜润湿性能的影响。发现在实验条件下,聚合型乳化剂制备的乳胶粒呈现核壳结构,而常规烷烃乳化剂制备乳液乳胶粒呈现雪人型结构,核壳结构的乳液涂膜比雪人型结构的乳液涂膜具有更优良的疏水性;分子内交联的方法有利于乳液聚合过程中形成正相的核壳结构乳胶粒,同时可以抑制共聚物涂膜处在极性条件下,非极性基团向涂膜内部迁移的趋势,从而保持氟聚合物涂膜优异的表面疏水性质。利用氟硅共聚合共迁移的特性,将有机硅单体参与共聚,进一步提高共聚物涂膜的性能。考察乳液成膜温度和涂膜后处理方法对乳液涂膜表面润湿性能的影响,发现乳液在80℃成膜,再经过165℃退火处理后涂膜具有优良的疏水性。将制备的氟硅改性苯丙乳液应用于滤纸浸渍,并研究其油水分离过程,发现油水分离精度随着滤纸疏水亲油性的提高而提高,油水分离效率最高可以达到98.5wt%。
     采用溶剂凝胶法,以TEOS(正硅酸乙酯)和MTES(甲基三乙氧基硅烷)为前躯体制备疏水SiO_2溶胶。发现SiO_2溶胶在陈化过程中,纳米SiO_2粒子由于自组装作用发生团簇,然后形成具有微米-纳米双微观结构的草莓状SiO_2粒子。通过调节SiO_2溶胶的陈化时间可控制SiO_2粒子形貌,对SiO_2粒子表面进行改性,可使SiO_2粒子形貌保持长期稳定。利用WCA(水接触角)、AFM(原子力显微镜)和SEM(扫描电镜)等测试手段来表征SiO_2粒子涂膜表面微观结构、表面粗糙度和疏水性能之间的关系。结果表明:草莓状SiO_2粒子涂膜具有超疏水/超亲油性能,这是由于疏水草莓状粒子所具有的特殊纳米-微米多微观尺度结构,使粒子涂膜的润湿行为服从Cassie润湿行为。将氟硅改性苯丙乳液与草莓状SiO_2粒子共同应用于过滤滤纸,当SiO_2粒子的质量比例达到树脂的50.0wt%时,浸渍滤纸可以达到超疏水/超亲油性能,油水分离效果最高可达99.5wt%。
     以阳离子乳化剂CTAB(十六烷基三甲基溴化铵)与非离子乳化剂OP-10(辛基酚聚氧乙烯醚)为复合乳化剂体系制备普通阳离子乳液。通过阳离子水溶性单体DMC(甲基丙烯酰氧乙基三甲基氯化铵)与增溶剂乙醇的共同作用制备无皂阳离子乳液。通过调节体系pH值控制乳液和nano-SiO_2粒子的(?)电位处于适当的范围,利用乳胶粒和nano-SiO_2粒子之间的相反电荷的静电自组装作用形成有机无机复合乳液。结果表明:普通阳离子乳液和nano-SiO_2粒子的复合体系由于两相对乳化剂的吸附竞争,造成乳胶粒表面乳化剂平衡被破坏,复合体系不稳定。无皂阳离子乳液与nano-SiO_2粒子之间则可以通过两相间静电自组装和羟基缩合作用,得到稳定的有机无机复合乳液。有机无机复合乳液成膜后,nano-SiO_2粒子能够凸显在涂膜表面,形成纳米粗糙形貌。过滤滤纸经有机无机复合乳液浸渍后,滤纸表面呈现双微观粗糙结构,赋予滤纸超疏水/超亲油性能,油水分离率可以高达99.6wt%。
With the development of automobile industry and the increasingly strict regulation for automobile exhaust, high quality fuel oil is in great demand. The quality of fuel oil is responsibly for the daily operation of the automobile and has great impact on the life span and service efficiency of the engine. Water is most common pollutant in fuel oil which could jeopardize the quality of fuel oil and bring damage to the components of the engine. Therefore, the separation of water from fuel oil is necessary. Among many oil/water separating methods, coalescence separating technology is the most widely used method for its large processing capacity and low cost. By making use of the difference of surface tension between water and fuel oil, the filter cartridge made of porous filter material with excellent hydrophobicity and oleophilicity properties allows the fuel oil to penetrate through while water droplets are held up and therefore oil/water separation can be achieved. Filter paper made of natural fiber is the most commonly used separating filter material in automobile industry for its unique advantages such as low density and low price. In this paper, we aim at the preparation of an organic-inorganic composite emulsion with excellent hydrophobic and oleophilic properties, the filter paper coated by the composite emulsion is supposed to present excellent mechanical strength and highly hydrophobic/oleophilic properties and therefore can be used as oil/water separation material. In order to achieve this goal, our studies focus on the following aspects:
     Poly-styrene-acryalte emulsion was prepared by emulsion polymerization method. Effects of polymerization process、amount of buffer agent、dosage of surfactants、dosage of initiator、stirring speed and reaction temperature on the stability of emulsion polymerization were studied. Effects of the Tg of copolymer, dosage of functional monomer AA and crosslinking monomer N-MA on the mechanical strength of filter paper were investigated. The results show that Poly-styrene-acrylate emulsion with excellent Ca~(2+), centrifugal and mechanical stability can be obtained by optimizing polymerization technique and conditions. The emulsion coated filter paper shows excellent mechanical properties such as stiffness, sheet burst strength, tensile strength and air permeability. The emulsion coated filter paper preserves porous structure and therefore maintains excellent filter efficiency of the filter paper.
     Fluorinated poly-styrene-acrylate latex particles with core-shell structure were prepared by seeded semi-continuous emulsion polymerization. Effects of fluorine monomers with different length of fluorine-carbon chain、core-shell monomer weight ratio、fluorine monomer content and octadecyl acrylate to the wetting behavior of the copolymer film was studied. The results show that when using the fluorine monomer DFMA、the core-shell monomer weight ratio is 8:2 and the fluorine monomer content is 40.0wt% of the shell monomer, the copolymer film shows excellent hydrophobic and oleophilic properties. The copolymerization of octadecyl acrylate can enhance the oleophilicty of the copolymer film.
     Effects of surfactants to the morphology of latex particles, effects of crosslinking structure and silicon to the wetting behavior of the copolymer film were investigated. The results suggest that latex particles prepared by reactive surfactant presents a core-shell structure while latex particles prepared by regular surfactant presents a snow-man structure, the copolymer film of the core-shell structured latex particle show better water repellency. The crosslinking structure of the latex particles is in favor of a uniform core-shell structure and the copolymer film shows better water repellency due to the fact that fluorinated copolymer can be fixed on the surface of the copolymer film. The combination of silicon is in favor of the migration of the fluorine groups and siloxane itself to the air-film interface and therefore the hydrophobicity of the copolymer film is increased. Influence of the film formation temperature and post-treatment temperature to the hydrophobicity of the copolymer film were studied. The results shows when the film formation temperature is 80℃and 165℃post-treatment can further enhance the hydrophobicity of the copolymer film. The prepared emulsion was applied to the filter paper and the coated paper shows excellent hydrophobicity/oleophilicty and high oil-water separation efficiency.
     Nano SiO_2 sol solution was prepared by sol-gel method using TEOS and MTES as precursors. The result indicated that the first prepared highly dispersed SiO_2 particles turn into rasp-like particles with nano-micro-binary structure due to the self-assemble effect of the SiO_2 sol during aging process. The morphology of SiO_2 particles could keep stable by modifying the raspberry-like SiO_2 with DTMS or F8261. Effect of the morphology of SiO_2 particles to the wetting behavior of the SiO_2 film was studied by WCA, AFM and SEM. The results show that film of raspberry-like SiO_2 particles presents superhydrophibic/superoleophilic properties due to the nano-micro-binary structure of raspberry-like SiO_2 particles. The mixture of fluorinated emulsion and raspberry-like SiO_2 particles were applied to the filter paper, when the SiO_2 content reaches 50.0wt%, the filter paper shows superhydrophobic and superoleophilic properties and water separation efficiency can be as high as 99.50wt%.
     Cationic fluorinated poly-styrene-acrylate emulsion was prepared using cationic surfactant. Soap-free fluorinated poly-styrene-acrylate emulsion was prepared by using water soluble cationic monomer DMC and ethanol as co-solvent. The ? potential of the eumlsion and nano-SiO_2 particles was controlled by adjusting their pH value. Organic-organic composite particles can be obtained due to the self-assemble effect between the two systems. The results shows that composite latex particles made of cationic emulsion and nano-SiO_2 particles is unstable due to the fact that cationic surfactant on the surface of the latex particles was absorbed by nano-SiO_2 particles. While composite latex particles made of soap-free cationic emulsion and nano-SiO_2 particles is stable due to the static effect and condensation of hydrogen between the two systems. The surface of the organic-inorganic composite emulsion coating shows a nano rough structure. When the organic-inorganic emulsion was applied to the filter paper, the coated filter paper shows superdrophobic and superoleophilic properties and the water/oil separation efficiency and be as high as 99.6wt%.
引文
[1]王建忠.液压油过滤脱水的研究[J].黑龙江矿业学院学报,2000,(3):15-19
    [2] Gao J.Z., Wang X.M., Wei Y.X. et al. Synthesis and characterization of a novel fluorine-containing polymer emulsion with core/shell structure. Journal of Fluorine Chemistry, 2006, 127(2):282–286
    [3] Liang J.Y., He L., Zheng Y.S. Synthesis and Property Investigation of Three Core-Shell Fluoroacrylate Copolymer Latexes[J]. J. Appl. Polym. Sci., 2009, 112(3):1615-1621
    [4] Hirao A., Sugiyama K., Yokoyama H. Precise synthesis and surface structures of architectural and semifluorinated polymers with well-defined structures. Prog. Polym. Sci., 2007, 32(12):1393-1438
    [5] Yu Li. Conditioning Contaminant in Oil by Coalescence, 2nd IFC 1999. 9
    [6]李廷朝,程素萍.润滑油聚结脱水技术[J].液压与气动,2003, (l):41-42
    [7]杨秩,蒋翼,王媛媛,等.含油废水处理技术的研究进展[J].化学工业与工程技术,2007, 28(5):29-32
    [8]蔺爱国,刘培勇,刘刚,等.膜分离技术在油田含油污水处理中的应用研究进展[J].工业水处理,2006, 26(l):5-8
    [9] Canizares P., Martinez F., Lobato J. et al. Break-up of oil-in-water emulsions by electro chemical techniques[J]. Journal of Hazardous Materials, 2007, 145(l-2):233-240
    [10]冯和平,罗万明,等.聚结干燥技术及应用[J].化工自动化及仪表,2003(6): 119-128
    [11]张敏,袁惠新.聚结分离过程的机理、方法及应用[J].过滤与分离,2003 (3):44-46
    [12]刘亚莉,吴山东,等.用于油水分离的聚结技术及其进展[J].西南石油大学学报,2008(1): 129-133.
    [13] Lloyd L., Aileen S., Mridula N. Coalescence during Emulsification[J]. Journal of Colloid and Interface Science, 2002, 253(2):409-410
    [14]刘晓成,材料表面性能对聚结油水分离的影响[D].北京,北京石油大学,2010
    [15] Tsuneki Iehikawa. Electrical demulsification of oil-in-water emulsion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007,302:581-586
    [16]李方俊,陈宇联.聚结分离滤芯TEFLON喷涂金属网阻水性能的研究[J].液压与气动,2006,2:16-18
    [17]刘亚莉,吴山东,戚俊清.聚结材料对油品脱水的影响[J].化工进展,2006,25:159-164
    [18]朱步瑶,赵振国.界面化学基础[M].北京,化学工业出版社,1996,208-258
    [19] Bain C.D., Whitesides G.M. Correlations between wettability and structure in monolayers of alkanethiols adsorbed on gold[J]. Science, 1988,240:62-63
    [20] Bain C.D., Whitesides G.M., Correlations between wettability and structure in monolayers of alkanethiols absorbed on gold[J]. J. Am. Chem. Soc., 1988,110: 3665-3666
    [21] Wenzel R.N., Resistance of Solid Surfaces to Wetting by Water[J]. Ind.Eng.Chem, 1936,28:988-994
    [22] Cassie A.B.D., Baxter S., Wettability of Porous Surfaces[J]. Trans. Faraday Soc., 1944, 40:546-551
    [23] Aussillous P., Quere D., liquid marbles[J]. Nature. 2001,411:924-927
    [24] Neinhuis C., Barthlott W., Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6):667-677
    [25] McHale G., Shirtcliffe N.J., Newton M.I. Super-hydrophobic and super-wetting surfaces: Analytical potential?[J]. Analyst, 2004, 129,284-287
    [26]江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2003,22(12):1258-1262
    [27] Gupta P., Ulman A., Fanfan S. et al. Mixed self-assembled monolayers of alkanethiolates on ultrasmooth gold do not exhibit contact-angle hysteresis[J]. J. Am. Chem. Soc., 2004, 127(1):4-5
    [28] Derjaguin B.V., Churaev N.V. Structural component of disjoining pressure[J]. J. Colloid Interface Sci.,1974, 49(2):249-255
    [29] Checco A., Guenoun P., Daillant J. Nonlinear dependence of the contact angle of nanodroplets on contact line curvature[J]. Phys. Rev. Lett., 2003, 91(18):186101
    [30] Anisimov M.A. Divergence of Tolman's length for a droplet near the critical point[J]. Phys. Rev. Lett.,2007, 98(3):035702
    [31] Gao L.C., McCarthy T.J. How Wenzel and Cassie were wrong[J]. Langmuir, 2007, 23(7):3762-3765
    [32] Extrand C.W. Contact angles and hysteresis on surfaces with chemically heterogeneous islands [J]. Langmuir, 2003, 19(9):3793-3796
    [33] Nosonovsky M. On the range of applicability of the Wenzel and Cassie equations[J]. Langmuir, 2007, 23(19):9919-9920
    [34] Avouris P., Bhushan B., Bimberg D., et al. Multiscale dissipative mechanisms and hierarchicalsurfaces:Friction, superhydrophobicity, and biomimetics[M]. New York: SpringerLink, 2008:
    [35] Bartell F.E., Shepard J.W. Surface roughness as related to hysteresis of contact angles. II. The systems paraffin–3 molar calcium chloride solution-air and paraffin-glycerol-air[J]. J. Phys. Chem., 1953, 57(4):455-458
    [36] Bhushan B., Nosonovsky M., Jung Y.C. Towards optimization of patterned superhydrophobic surfaces[J]. J. R. Soc. Interface, 2007, 4(15):643-648
    [37] Barbieri L., Wagner E., Hoffmann P. Water wetting transition parameters of perfluorinated substrates with periodically distributed Flat-Top microscale obstacles [J]. Langmuir, 2007, 23(4):1723-1734
    [38] Lafuma A., Quere D. Superhydrophobic states[J]. Nat. Mater., 2003, 2(7):457-460
    [39] Krupenkin T.N., Taylor J.A., Schneider T.M., et al. From rolling ball to complete wetting:The dynamic tuning of liquids on nanostructured surfaces[J]. Langmuir, 2004, 20(10):3824-3827
    [40] Young T. An essay on the cohesion of fluids[M]. Philos. Trans.R. Soc. London, 1805
    [41] Eustathopoulos N., Nicholas M.G., Drevet B[M]. Pergamon, Amsterdam, 1999
    [42] Miwa M., Nakajima A., Fujishima A., et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir. 2000, 16(13):5754-5760
    [43] Richard D., Clanet C., Quere D. Surface phenomena:Contact time of a bouncing drop[J]. Nature, 2002,417(6891):811-812
    [44] Israelachvili J.N., Gee M.L. Contact angles on chemically heterogeneous surfaces[J]. Langmuir, 1989, 5:288-289
    [45] O.N Tretinnikov. Wettability and Microstructure of Polymer Surfaces : Stereochemical and Conformational Aspects in Apparent and Microscopic Contact Angles[R] Drelich J, Laskowski JS, and Mittal KL, eds., VSP, Utrecht, 2000
    [46] Johnson R.E., Dettre R.H. Contact angle hysteresis. I. Study of an idealized rough surface[J]. Adv. Chem. Ser., 1964, 43:112-135
    [47] Li W., Amirfazli A. J. Microtextured superhydrophobic surfaces: A thermodynamic analysis[J]. Colloid. Interface Sci., 2006, 292:195-201
    [48] Marmur A. On the modeling of hydrophobic contact angles on rough surfaces[J]. Langmuir, 2003, 19:8343–8348
    [49] Derjaguin B.V, Churaev N.V. Modern state of the investigation of long-range surface forces[J]. J. Colloid Interface Sci., 1974, 49:249–255
    [50] Checco A.., Guenoun P., Daillant J. Nonlinear dependence of the contact angle of nanodroplets on contact line curvature[J]. J. Phys. Rev. Lett., 2003, 91:186101
    [51] MA, Anisimov, Divergence of Tolman's Length for a Droplet near the Critical Point[J]. Phys. Rev. Lett., 2007, 98:035702
    [52] A. Lafuma, QuéréD., Superhydrophobic states[J]. Nat. Mater. 2003,2:457–460
    [53] C.W. Extrand, Contact angles and hysteresis on surfaces with chemically heterogeneous islands[J]. Langmuir 2003,19:3793–3796
    [54] . Patankar N.A, Transition between superhydrophobic states on rough surfaces[J]. Langmuir 2004,20:7097–7102
    [55] Patankar N.A, Mimicking the lotus effect:influence of double roughness structures and slender pillars[J]. Langmuir 2004,20:8209–8213
    [56] Nosonovsky M., Bhushan B., Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces[J]. Microsyst. Technol. 2006, 12:231–237
    [57] Nosonovsky M., Multiscale roughness and stability of superhydrophobic biomimetic interface[J]. Langmuir 2007, 23:3157–3161
    [58] Nosonovsky M., Bhushan B. Hierarchical roughness makes superhydrophobic states stable[J]. Eng. 2007, 84:382–386
    [59] Nosonovsky M. Bhushan B. Roughness optimization for biomimetic superhydrophobic surface[J]. Microsyst. Technol. 2005, 11:535–549
    [60] Bormashenko E., Pogreb R., Whyman G. Cassie-wenzel wetting transition in vibrating drops deposited on rough surfaces:Is the dynamic cassie-wenzel wetting transition a 2D or 1D affair?[J]. Langmuir 2007, 23:6501-6503
    [61] Ishino C., Okumura K., Nucleation scenarios for wetting transition on textured surfaces: The effect of contact angle hysteresis[J]. Europhys. Lett. 2006,76:464-470
    [62] Nosonovsky M., Bhushan B. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transition[J]. Langmuir 2008, 24:1525-1533
    [63] Barbieri L., Wagner E., Hoffmann P. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles[J]. Langmuir 2007, 23:1723-1734
    [64] Bhushan B., Nosonovsky M., Jung Y.C. Towards optimization of patterned superhydrophobic surfaces[J]. J. R. Soc. Interface 2007, 4:643-648
    [65] R.E. Johnson, R.H. Dettre, Contact angle hysteresis, in Contact Angle, Wettability, and Adhesion[J]. Adv. Chem. Ser., by F.M. Fowkes (American Chemical Society, Washington, 1964, 43:112–135
    [66] ?ner D., McCarthy T.J. Ultrahydrophobic Surfaces. Effects of topography length scales on wettabilit[J]. Langmuir, 2000, 16:7777-7782
    [67] Bhushan B., Jung Y.C. Wetting study of patterned surfaces for superhydrophobicity[J]. Ultramicroscopy. 2007,107:1033–1041
    [68] Jung Y.C., Bhushan B. Wetting transition of water droplets on superhydrophobic patterned surfaces[J]. Scripta Materialia 2007,57:1057-1060
    [69] D. Quere. Non-sticking drops[J]. Rep. Prog. Phys. 2005, 68:2495-2532
    [70] Extrand C.W. Model for contact angles and hysteresis on rough and ultraphobic surfaces[J]. Langmuir, 2002, 18:7991-7999
    [71] Cheng Y.T., Rodak D.E., Angelopoulos A. Microscopic observations of condensation of water on lotus leaves[J]. Appl. Phys.Lett. 2005,87:94-112
    [72] Checco A., Guenoun P., Daillant J., Nonlinear dependence of the contact angle of nanodroplets on contact line curvature[J]. Phys. Rev. Lett. 2003, 91,186101
    [73] Johnson Jr RE, Dettre RH. Contact angle, wettability and adhesion[J]. Adv Chem Ser 1964; 43:112.
    [74] Decker E.L, Garoff S. Using vibrational noise to probe energy barriers producing contact angle hysteresis[J]. Langmuir; 1996, 12:2100
    [75] Volpe C.D, Maniglio D., Morra M. The determination of a stable-equilibrium contact angle on heterogeneous and rough surface[J]. Colloids Surf A Physicochem Eng Asp; 2002, 206(1-3):47-67.
    [76] Noblin X., Buguin A., Brochard-Wyart F. Vibrated sessile drops:Transition between pinned and mobile contact line oscillations[J]. Eur Phys J E. 2004, 14:395-404
    [77] Nosonovsky M., Bhushan B. Microelectronic Eng., Hierarchical roughness makes superhydrophobic states stable[J]. 2007, 84:382-386
    [78] Nosonovsky M., Bhushan B. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces[J]. Ultramicroscopy, 2007,107:969-979
    [79] Nosonovsky M., Bhushan B. Multiscale friction mechanisms and hierarchical surfaces in nano-and bio-tribology[J]. Mater. Sci. Eng. R, 2007, 58:162-193
    [80] Oner D., McCarthy T.J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability [J]. Langmuir 2000, 16(37):7777-7782
    [81] He B., Patankar N.A., Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces[J]. Langmuir 2003, 19:4999-5003
    [82] Jopp J., Grüll H., Yerushalmi-Rozen R. Wetting behavior of water droplets on hydrophobic microtextures of comparable size[J]. Langmuir 2004, 20:10015-10019
    [83] Feng L., Li S., Li H. et al. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofiber [J]. Angew.Chem.Int.Ed. 2002, 41:1221-1223
    [84] Feng L., Yang Z., Zhai J. et al. Superhydrophobicity of nanostructured carbon films in a wide range of pH value[J]. Angew. Chem.Int.Ed.2003,42:4217-4220
    [85] Feng L. ,Song Y., Zhai J. et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water[J]. Angew.Chem.Int.Ed.2003, 42:800-802
    [86] Jin M., Feng X., Feng L. Et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J]. Adv. Mater. 2005, 17:1977-1981
    [87] Lee W., Jin M.K., Yoo W.C. et al. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability[J]. Langmuir 2004, 20:7665-7669
    [88] Gu Z.Z., Uetsuka H., Takahashi K. et al. Structural color and the lotus effect[J]. Angew.Chem.Int.Ed.2003, 42:894-897
    [89] Sun M., Luo C., Xu L. et al. Artificial lotus leaf by nanocasting[J]. Langmuir 2005, 21:8978-8981
    [90] Jiang L., Zhao Y., Zhai J. A Lotus-Leaf-like Superhydrophobic Surface : A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics[J]. Angew. Chem. Int. Ed.2004, 43:4338-4341
    [91] Ma M., Mao Y., Gupta M. et al. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition[J]. Macromolecules 2005, 38:9742-9748
    [92] Zheng J., He A., Li J. et al. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying[J]. Polymer. 2006, 47:7095-7102
    [93] Ma M., Hill R.M., Lowery J.L. et al. Electrospun poly (styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity[J]. Langmuir 2005, 21:5549-5554
    [94] Singh A., Steely L., Allcock H.R. Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers[J]. Langmuir 2005, 21:11604-11607
    [95] Xie Q., Xu J., Feng L. et al. Facile Creation of a Super‐Amphiphobic Coating Surface with Bionic Microstructure[J]. Adv. Mater. 2004, 16:302-305
    [96] Xie Q., Fan G., Zhao N. et al. Facile Creation of a Bionic Super-Hydrophobic Block Copolymer Surface[J]. Adv. Mater. 2004, 16:1830-1833
    [97] Wu X., Zheng L., Wu D. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route[J]. Langmuir 2005, 21:2665-2667
    [98] Hosono E., Fujihara S., Honma I. Et al. Superhydrophobic perpendicular nanopin film by the bottom-up process[J]. J. Am. Chem. Soc. 2005, 127:13458-13459
    [99] Guo Z.G., Fang J., Hao J. et al. A novel approach to stable superhydrophobic surfaces[J]. Chem. Phys. Chem. 2006, 7:1674-1677
    [100] Qian B., Shen Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir 2005, 21:9007-9009
    [101] Zhang X., Shi F., Yu X., et al. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super-hydrophobic surface[J]. J. Am. Chem. Soc. 2004, 126(10), 3064-3065
    [102] Shirtcliffe N.J., McHale G., Newton M.I. et al. Dual-Scale Roughness Produces Unusually Water‐Repellent Surfaces[J]. Adv.Mater.2004, 16:1929-1932
    [103] Wang S., Feng L., Liu H., et al. Manipulation of surface wettability between superhydrophobicity and superhydrophilicity on copper films[J]. Chem. Phys. Chem. 2005, 6:1475-1478
    [104] Li M., Zhai J., Liu H., et al. Electrochemical deposition of conductive superhydrophobic zinc oxide thin film[J]. J. Phys. Chem. B 2003, 107:9954-9957
    [105] Zhang X.T., Sato O., Fujishima A. Water ultrarepellency induced by nanocolumnar ZnO surface[J]. Langmuir 2004, 20:6065-6067
    [106] Wu X., Shi G. Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper[J]. J. Phys. Chem. B 2006, 110:11247-11252
    [107] Li Y., Shi G., Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode[J]. J. Phys. Chem. B., 2005, 109: 23787-23793
    [108] Han J.T., Lee D.H., Ryu C.Y. et al. Fabrication of superhydrophobic surface from a supramolec hydrogen bonding[J]. J.Am.Chem.Soc.2004, 126:4796-4797
    [109] Rao A.V., Kulkarni M.M., Amalnerkar D.P. et al. Super-hydrophobic silica aerogels based on methyltrimethoxyilane precursor[J]. Non-Cryst.Solids 2003, 330:187-195
    [110] Shang H.M., Wang Y., Limmer S.J. et al. optically transparent superhydrophobic silica-based films[J]. Thin Solid Films 2005, 472:37-43
    [111]郭志光,周峰,刘维民.溶胶凝胶法制备仿生超疏水性薄膜[J].化学学报,2006,64:761-766
    [112] Zhang J.L., Li J., Han Y.C. Superhydrophobic PTFE Surfaces by Extension[J]. Macromol.Rapid Commun.2004, 25:1105-1108
    [113] Zhang J., Lu X., Huang W. et al. Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide Film[J]. Macromol.Rapid Commun. 2005, 26:477-480
    [114] Lu X., Zhang C., Han Y. Low-Density Polyethylene Superhydrophobic Surface by Control of Its Crystallization Behavior[J]. Macromol.Rapid Commun.2004, 25:1606-1610
    [115]张亚南,夏帆,王女,等.大面积超疏水性纳米结构碳膜的制备与表征[J].高等学校化学学报,2007,28:568-570
    [116] Feng L., Zhang Z.Y., etc. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water[J]. Angew. Chem. 2004(116): 2046–2048
    [117] Chen Q. M., Wang Q.J., Cui Z. et al. Stable highly hydrophobic and oleophilic meshes for oil-water separation[J]. Appl Surf Sci 2007, 253 (23), 9054-9060
    [118] Wang S.T, Song Y.L., Jiang L. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids[J]. Nanotechnology 2007 (18):015103 (5pp)
    [119] Pan Q.M., Wang M., Wang, H.B. Separating small amount of water and hydrophobic solvents bynovel superhydrophobic copper meshes[J]. Appl Surf Sci 2008, 254 (18), 6002-6006
    [120] Qin F.T., Yu Z.J., Fang X.H et al. A novel composite coating mesh film for oil-water separation[J]. Frontiers of Chemical Engineering in China 2009, 3(1):112-118
    [121] Yang H., Pi P.H., Cai Z.Q. et al. Facile preparation of super-hydrophobic and super-oleophilic silica film on stainless steel mesh via sol–gel process[J]. Applied Surface Science 2010, 13(256), 4095-4102
    [122] La DD, Nguyen TA, Lee S., et al. A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays[J]. Applied Surface Science, (2011), doi :10.1016/j.apsusc.2011.01.078
    [123] Wang C.X., Yao T.J., Wu J. et al. Facile Approach in Fabricating Superhydrophobic and Superoleophilic Surface for Water and Oil Mixture Separation[J]. Applied materials and interface, 2009, 1(11), 2613-2617
    [124] Lee C.H., Baik S. Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity[J]. Carbon 2010, 48 (8), 2192-2197
    [125] Lee C.H., Johnson N., Drelich J. et al. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration[J]. Carbon,2011,49:669 -676
    [126]张继琳,韩艳春.超疏水-超亲油单分子层表面的制备[C].高分子化学报告年会,2005
    [127] Zhang J.L., Huang W.H., Han Y.C. A composite polymer film with both superhydrophobicity and superoleophilicity[J]. Macromol Rapid Comm 2006, 27 (10), 804-808
    [128] Ma M.L., Mao Y., et al. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition[J]. Macromolecules 2005(38): 9742-9748
    [129] Rutledge G.C.; Ma M.L. Gupta M. et al. Decorated electrospun fibers exhibiting superhydrophobicity[J].Adv Mater 2007, 19 (2), 255-259
    [130] Tu C.W., Tsai C.H., Wang C.F., et al. Fabrication of Superhydrophobic and Superoleophilic Polystyrene Surfaces by a Facile One-Step Method[J]. Macromol. Rapid Commun. 2007, 28, 2262–2266
    [131] Xue, C.H., Jia, S.T., Zhang, J. et al. Preparation of superhydrophobic surfaces on cotton textiles. Sci Technol Adv Mat[J]. 2008, 9(3):035008
    [132] Park W.H., Il Yoon Y., Moon H.S. et al. Superhydrophobicity of PHBV fibrous surface with bead-on-string structure [J]. J Colloid. Interf. Sci. 2008, 320 (1), 91-95
    [133] Lu Q.H., Wang S.H., Li M. Filter Paper with Selective Absorption and Separation of Liquids that Differ in Surface Tension. Appl. Mater. Inter. 2010, 2 (3), 677-683
    [134]储跃.中国车用滤清器产业现状与发展需要关注的问题,内燃机与配件,2011,11,44-48
    [1]邵岚,张卓.汽车工业滤纸[J].西南造纸,1993:22(3):38-40
    [2]刘海涛.过滤机理在内燃机工业滤纸生产中的应用[J].浙江造纸,2003(2):14-17
    [3]蒋荣祺,冯长龄.漫谈特种纸的分类和发展[C]. 2005年涂布加工纸、特种纸技术交流会论文资料集.天津,2005:1-5
    [4]赵美英,纪玉珍.浸渍树脂在汽车滤纸生产中的应用(一)[J].天津造纸,1996(1):20
    [5]薛东.环保增强型发动机滤纸浸渍树脂研制成功[J].化工环保,2003,23(6):370
    [6]任继春,石淑兰,毕友泰,等.聚合物汽车滤纸用聚醋酸乙烯酯乳液的改型研究[J].造纸化学品,2000, 12(1):29-35
    [7]黄小华,周雪松,郑炽嵩,等.滤清器滤纸浸渍用苯丙乳液耐水性的研究[J].中国造纸,2004,23(7):20-23
    [8]李华,胡健,周雪松,等.聚合物乳液在发动机滤纸浸渍剂中的应用研究[J].造纸科学与技术,20103,22(6):68-70
    [9] McManus N.T., Kim J.D., Penlidis A. Observations on styrene-hydroxyethyl acrylate and styrene-hydroxyethyl acrylate-ethyl acrylate polymerizations[J]. PolymerBulletin, 1998(41): 661-668
    [10]吕建,刘文波,于钢,等.苯丙乳液中硅烷偶联剂对浸渍滤纸性能的影响[J].中国造纸,2007(1):7-10
    [11]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京,化学工业出版社,1997
    [12]王璟,周雪松,郑炽嵩,等.乳胶粒子的形态结构对浸渍滤纸性能的影响[J].中国造纸,2006,25(12):24-27第三章参考文献
    [1] Hutchings L.R., Narrianen A.P. Thompson R.L. et al. Modifying and managing the surface propertiesof polymers[J]. Polym. Int., 2008, 57(2):163-170
    [2] Van Ravenstein, L., Ming W., van de Grampel R.D. et al. Low surface energy polymeric films from novel fluorinated blocked isocyanates[J]. Macromolecules, 2004, 37(2):408-413
    [3] Ha J.W., Park I.J., Lee S.B. Hydrophobicity and Sliding Behavior of Liquid Droplets on the Fluorinated Latex Films[J]. Macromolecules, 2005, 38(3):736-744
    [4] Morita M., Ogisu H., Kubo M. Surface properties of perfluoroalkylethyl acrylate/n‐alkyl acrylate copolymers[J]. J Appl Polym Sci, 1999, 73:1741-1749
    [5] Linemann R.F., Malner T.E., Brandsch R et al. Latex Blends of Fluorinated and Fluorine-Free Acrylates: Emulsion Polymerization and Tapping Mode Atomic Force Microscopy of Film Formatiom[J]. Macromolecules, 1999, 32:1715-1721
    [6] Lonostro P., Choi S., Ku S. et al. Fluorinated Microemulsion: A study of the phase behavior and structure[J]. J. Phys. Chem B, 1999, 103:5347-5352
    [7] Ha J.W, Park I.J, Lee S.B. Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films[J]. Macromolecules, 2002, 35:6811-6818
    [8] Landfester K., Antonietti M. Convenient synthesis of fluorinated latexes and core-shell structures by miniemulsion polymerization[J]. Prog Polym Sci, 2002, 27:689-757
    [9] Barthélémy P., Tomao V., Selb J. et al. Fluorocarbon-Hydrocarbon Nonionic Surfactants Mixtures A Study of Their Miscibility[J]. Langmuir, 2002, 18:2557-2563
    [10] Dreher W.R, Urban M.W. Release and formation of surface-localized ionic clusters (SLICs) into phospholipid rafts from colloidal solutions during coalescence[J]. Langmuir, 2004, 20:10455-10463.
    [11] Landfester K., Rothe R., Antonietti M. Convenient synthesis of fluorinated latexes and core-shell structures by miniemulsion polymerization[J]. Macromolecules, 2002, 35(5), 1658-1662
    [12] Cheng S.Y., Chen Y.J., Chen Z.G. Core-Shell Latex Containing Fluorinated Polymer Rich in Shell[J]. J. Appl. Polym. Sci., 2001, 85(6):1147–1153
    [13] Liang J.Y., He L. Zheng Y.S. Synthesis and Property Investigation of Three Core-Shell Fluoroacrylate Copolymer Latexes[J]. J. Appl. Polym. Sci., 2009, 112(3):1615-1621
    [14] Xu G.L., Deng L.L, Wen X.F. Synthesis and Characterization of Fluorine-containing Poly-styrene-acrylate Latex with Core-shell Structure Using a reactive surfactant[J]. Journal ofCoatings Technology and Research, DOI:10.1007/s11998-010-9308-8
    [15] Schmidt D.L., DeKoven B.M., Coburn C.E. et al. Characterization of a new family of nonwettable, nonstick surfaces[J]. Langmuir. 1996 (12):518–529
    [16] Schmidt D.L., Brady R.F., Lam K. et al.. Contact angle hysteresis, adhesion, and marine biofouling[J]. Langmuir, 2004,20:2830-2836
    [17] Wang J., Mao G., Ober C.K. Self-Organizing Materials with Low Surface Energy: The Synthesis and Solid-State Properties of Semifluorinated Side-Chain Ionenes[J]. Macromolecules, 1997(30):1906-14
    [18] Chen Y.J., Zhang C.C., Wang Y.F. Study of self-crosslinking acrylate latex containing fluorine[J]. Journal of Applied Polymer Science, 2003.90:3609-16
    [19] Cui X.J, Zhong S.L, Wang H.Y. Emulsifier-free core-shell polyacrylate latex nanoparticles containing fluorine and silicon in shell[J]. Polymer, 2007.48:7241-8
    [20] Cheng X.L, Chen Z.X., Shi T.S. Synthesis and characterization of core-shell LIPN-fluorine-containing polyacrylate latex[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2007, 292:119-24
    [21] Hikita M., Tanaka K., Nakamura T. et al. Aggregation states and surface wettability in films ofpoly(styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization[J]. Langmuir, 2004, 20(13):5304-5310
    [22] Shemper B.S., Mathias L.J. Syntheses and characterization of statistical and block fluorinated copolymers with linear and star-like architectures via ATRP [J]. Eur. Polym. J., 2004, 40(4):651-665
    [23] Hirao A., Sugiyama K., Yokoyama H. Precise synthesis and surface structures of architectural and semifluorinated polymers with well-defined structures [J]. Prog. Polym. Sci., 2007, 32(12):1393-1438
    [24] Park I.J., Lee S.B., Choi C.K. et al. Surface properties and structure of poly (perfluoroalkylethyl methacrylate) [J]. J Colloid Interface Sci, 1996, 181(1):284-288
    [25] Mawson S., Johnston K.P., Combes J.R. et al. Formation of Poly (l, l, 2, 2,-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions [J]. Macromolecules, 1995, 28:3182-3191
    [26] Linemann R., Malner R., Bar G. et al. Polym Prepri (American Chemical Society,Division of Polymer Chemistry) [J]. 2003,44(2):2342-2349
    [27] Wang T., Qi S.G., Ren B.Y. Preparation and surface characteristics of low-temperature curing fluorinated cathodic electrodeposition coating[J]. Prog. Org. Coat., 2007, 60:132-139
    [28] Shafrin E.G., Zisman W.A. Constitutive relations in the wetting of low energy surface and the theory of the retraction method of preparing mololayers [J]. J. Phys. Chem., 1960, 64(5):519-524
    [29] Liang J.Y, Ling H, Zheng Y.S. Synthesis and property investigation of Three Core-Shell Fluoroacrylate Copolymer Latexes[J]. Journal of Applied Polymer Science, 2009, 112(3):1615-1621
    [30] Girifalco L.A., Good R.J. A theory for the estimation of surface and interfacial energies. I. derivation and application to interfacial tension[J]. J Phys Chem, 1957, 61:904-909
    [31] Bernett M.K., Zisman W.A. Wetting properties of acrylate and methacrylic polymers containing fluorinated side chains[J]. J Phys Chem, 1962, 66(6), 1207-1208
    [32] Atsushi H. Fluoroalkylsilane Monolayers Formed by Chemical Vapor Surface Modification on Hydroxylated Oxide Surfaces[J]. Langmuir, 1999, 15:7600-7604
    [33] Wang J.G., Ober C.K. Self-organizing materials with low surface energy: The synthesis and solid-state properties of semifluorinated side-chain ionenes[J]. Macromolecules, 1997,30(24): 7560-7567
    [34] Cui X.J, Zhong S.L., Wang H.Y. Synthesis and characterization of emulsifier-free core–shell fluorine-containing polyacrylate latex[J]. Colloids and Surfaces A: Physicochemical and Engineering. Aspects, 2007,303 (3):173–178
    [35] Schmidt D.L., Brady R.F., Lam K. et al. Contact angle hysteresis, adhesion, and marine biofouling[J]. Langmuir, 2004, 20(7):2830-2836
    [36] Sundberg D.C., Durant YG. Latex Particle Morphology-Fundamental Aspects: A Review[J]. Polymer Reaction Engineering, 2003, 11(3), 379-432
    [37] Chen Y.C. Dimonie V.L., Shaffer O.L. et al. Development of morphology in latex particles: The interplay between thermodynamic and kinetic parameters[J]. Polymer International, 1993, 30(2), 185-194
    [38] Kim S.H., Son W.K., Kim Y.J. et al. Synthesis of polystyrene/poly (butyl acrylate) core-shell latex and its surface morphology[J]. Journal of Applied Polymer Science. 2003, 88:595-601
    [39] Cao T.Y., Xu YS., Wang YJ. et al. Effects of monomer feed methods in emulsion polymerizations andhydrophilicity of monomers on morphology of latex particles and their minimum film formation temperatures[J]. Polymer International.1993, 32(2):153-158
    [40] Wang T., Shi S., Yang F. et al. Poly(methyl methacrylate)/polystyrene composite latex particles with a novel core/shell morphology[J]. Material. Science, 2010, 45(12):3392-3395
    [41] [52] Durant Y.G., Sundberg D.C. Effects of Cross-Linking on the Morphology of Structured Latex Particles. 1. Theoretical Considerations[J]. Macromolecules 1996, 29(26):8466-8472
    [42] Landfester K,, Boeffel C,, Lambla M. et al. Characterization of interfaces in core-shell polymers by advanced solid-state NMR method[J]. Macromolecules, 1996, 29:5972
    [43] Ha J.W., Park I.J, Lee S.B. et al. Preparation and Characterization of Core-Shell Particles Containing Perfluoroalkyl Acrylate in the Shell[J]. Macromolecules, 2002, 35:6811-6818
    [44]秦总根,涂伟萍,夏正斌.室温自交联含氟乳液聚合反应的稳定性研究[J].高校化学工程学报,2004, 18(6):782-787
    [45] Guyot A., Tauer K. Reactive surfactants in emulsion polymerization [J]. Advances in Polymer Science, 1994, (111):44-65
    [46] Schmidt D.L., DeKoven B.M., Coburn C.E. et al. Characterization of a new family of nonwettable, nonstick surfaces [J]. Langmuir 1996, 12:518–529
    [47] Schmidt D.L., Brady R.F., Lam K. et al. Contact angle hysteresis, adhesion, and marine biofouling [J]. Langmuir 2004, 20 (7):2830-2836
    [48] Qu A.L, Wen X.F, Pi P.H. et al. Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants. J. Colloid. Interf. Sci. 2008, 317(1):62-69
    [1] Hozumi A., Sugimura H., Ushiyama K. et al. Fluoroalkylsilane monolayers formed by chemical vapor surface modification on hydroxylated oxide surfaces[J]. Langmuir, 1999, 15:7600-7604
    [2] Nishino T., Meguro M., Nakamae K. et al. The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15(13):4321-4323
    [3] Kijlstra J., Reihs K., Klamt A. Roughness and topology of ultra-hydrophobic surfaces[J]. Colloids andSurface A, 2002, 206:521-529
    [4] Nosonovsky M., Bhushan B. Hierarchical roughness makes superhydrophobic states stable [J]. Microelectronic Eng., 2007, 84:382–386
    [5] Nosonovsky M., Bhushan B. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces[J]. Ultramicroscopy, 2007,107:969–979
    [6] Nosonovsky M., Bhushan B. Multiscale friction mechanisms and hierarchical surfaces in nano-and bio-tribology[J]. Mater. Sci. Eng.: R, 2007, 58:162–193
    [7] Daund W.A., Xin J.H., Tao X., Superhydrophobic Silica Nanocomposite Coating by a Low-Temperature Process[J]. J. Am. Ceram. Soc., 2004, 87(9):1782-1784
    [8] Pilotek S., Schmidth H.K. Wettability of Microstructured Hydrophobic Sol-Gel Coatings J. Sol-Gel Sci[J]. Technol., 2003, 26:789-792
    [9] Tadanaga K., Kitamuro K., Matsuda A. et al. Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method[J]. J. Sol?Gel Sci. Technol. 2003, 26(1?3):705?708
    [10] Li M., Zhai J., Liu H. et al. Electrochemical deposition of conductive superhydrophobic zinc oxide thin films[J]. J. Phys. Chem. B., 2003, 107:9954-9957
    [11] Murase H., Nanishi K., Kogure H. et al. Interactions between heterogeneous surfaces of polymers and water[J]. J. App. Polym. Sci., 1994, 54:2051-2062
    [12]冯琳,立书宏,宋延林,等.具有超疏水性表面的聚合物纳米纤维束及其制法[P].CN 01120628.4,2004-07-18
    [13]刘斌,阮维青,范寅,等.中国专利利用软模板和紫外光固化技术制备表面超疏水材料的方法[P]. CN 200610011418.8,2006-03-03
    [14] Soeno T.; Inokuchi K.; Shiratori S. Ultra-water-repellent surface: fabrication of complicated structure Of SiO_2 nanoparticles by electrostatic self-assembled films[J]. Appl Surf Sci 2004, 237 (1-4):543-547
    [15] Han J.T., Zheng Y., Cho J.H. et al. Stable superhydrophobic organic-inorganic hybrid films by electrostatic self-assembly[J]. J Phys Chem B 2005, 109 (44):20773-20778
    [16] Jisr R.M., Rmaile H.H., Schlenoff J.B. Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes[J]. Angew Chem Int Edit 2005, 44 (5):782-785
    [17]梁松苗,王笃金,徐坚,等.仿生超疏水性表面的研究进展[J].化学进展, 2004, 16(6): 1023-1029
    [18] Nakajima A., Abe K., Hashimoto K. et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir, 2000, 16:5754
    [19] Chen S. L., Dong P., Yang G. H. et al. Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate[J]. Ind. Eng. Chem. Res., 1996, 35(12):4487-4493
    [20] Colin A.F., Patricia P.A. A Kinetic Analysis of the Initial Stages of the Sol-Gel Reactions of Methyltriethoxysilane (MTES) and a Mixed MTES/Tetraethoxysilane System by High-Resolution High-Resolution 29Si NMR Spectroscopy[J]. J. Phys. Chem. B, 1997, 101(46):9504-9509
    [21] Liu R.L., Xu Y., Wu D. Comparative study on the hydrolysis kinetics of substituted ethoxysilanes by liquid-state 29Si NMR[J]. J. Non-Cryst. Solids, 2004, 343(1-3):61-70
    [22] Xu Y., Liu R. L., Wu D. Ammonia-catalyzed hydrolysis kinetics of mixture of tetraethoxysilane with methyltriethoxysilane by 29Si NMR[J]. J. Non-Cryst. Solids, 2005, 351(30-32):2403-2413
    [23] Brus J. Solid-state NMR study of phase separation and order of water molecules and silanol groups in polysiloxane networks[J]. J. Sol–Gel Sci. Technol. 2002, 25:17-28
    [24] Matsoukas T., Gulari E. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetraethylorthosilicate[J]. J. Colloid Interf. Sci., 1988, 124(1):252-261
    [25] Matsoukas T., Gulari E. Monomer-addition growth with a slow initiation step:A growth model for silica particles from alkoxides[J]. J. Colloid Interf. Sci., 1989, 132(1):13-21
    [26] Green D.L., Lin J.S., Lam Y.F. et al. Size, volume fraction, and nucleation of Stober silica nanoparticles[J]. J. Colloid Interf. Sci., 2003, 266(2):346-358
    [27]林健.催化剂对正硅酸乙酯水解-聚合机理的影响[J].无机材料学报,1997,12(3): 363-369
    [28]曲爱兰,文秀芳,皮丕辉,等.复合SiO_2粒子涂膜表面结构及超疏水性能[J].无机化学学报,2007,10:1711-1716
    [29] Jouko P, Mikael J, Sami A, et al. Topographical parameters for specifying a three-dimensional surface[J]. Langmuir 2004, 20 (22):9428-9431
    [30] Nosonovsky M., Bhushan B. Roughness optimization for biomimetic superhydrophobic surfaces[J]. Microsyst Technol 2005, 11 (7):535-549
    [31] Kulinich S.A., Farzaneh M. Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers[J]. Surf Sci 2004, 573 (3):379-390
    [32] Bhagat S.D., Kim Y.H., Moon M.J. et al. A cost-effective and fast synthesis of nanoporous SiO_2 aerogel powders using water-glass via ambient pressure drying route[J]. Solid State Sci 2007, 9(7):628-635
    [1] Bourgeat-Lami E. Encyclopedia of Nanoscience and Nanotechnology[M]. 2004(8):305–332
    [2] Qu A.L., Wen X. F., Pi P.H., et al. Preparation of hybrid film with superhydrophobic surfaces based on irregularly structure by emulsion polymerization[J]. Appl Surf Sci, 2007, 253(24):9430-9434
    [3] Vollath D., Szabo D.V., Synthesis and properties of nanocomposites[J]. Adv Eng Mater 2004, 6 (3):117-127
    [4] Castelvetro V., De Vita C., Nanostructured hybrid materials from aqueous polymer dispersions[J]. Adv. Colloid. Interfac., 2004, 108-09:167-185
    [5] Kang S., Hong S.I., Choe C.R., et al. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process[J]. Polymer 2001, 42 (3):879-887
    [6]李玉平,卢君,刘付胜聪,等.ζ电位在纳米二氧化硅-纯丙乳液体系稳定性研究中的应用[J].湖南大学学报(自然科学版).2004.2(31):16-20
    [7] Butterworth M.D, Corradi R., Johal J., et al. Zeta potential measurements on conducting polymer-inorganic oxide nanocomposite particles[J]. Journal of colloid and interface science, 1995, 174:510-517
    [8] Han M.G., Armes S.P., Synthesis of poly(3,4-ethylenedioxythiophene)/silica colloidal nanocomposites[J]. Langmuir 2003, 19:4523-4526
    [9] Percy M.J., Michailidou V., Armes S.P., et al. Synthesis of vinyl polymer-silica colloidal nanocomposites via aqueous dispersion polymerization[J]. Langmuir, 2003, 19 (6):2072-2079
    [10] Amalvy J.I, Percy M.J, Armes S.P, et al. Characterization of the nanomorphology of polymer-silica colloidal nanocomposites using electron spectroscopy imaging[J]. Langmuir, 2005, 21 (4) :1175-1179
    [11] Schmid A., Fujii S., Armes S.P., Polystyrene-silica nanocomposite particles via alcoholic dispersion polymerization using a cationic azo initiator[J]. Langmuir,2006,22(11):4923-4927
    [12] Schmid A., Fujii S., Armes S.P., et al. Polystyrene-silica colloidal nanocomposite particles prepared by alcoholic dispersion polymerization[J].Chem Mater, 2007, 19 (10):2435-2445
    [13] Tiarks F., Landfester K., Antonietti M., Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization[J]. Langmuir, 2001,17 (19):5775-5780
    [14] Zhang Y.H, Chen H., Zou Q.C., Fabrication and characterization of raspberry-like PSt/SiO_2 composite microspheres via miniemulsion polymerization[J]. Colloid Polym Sci, 2009, 287(10):1221-1227
    [15] Zhang J.A., Liu N.N., Wang M.Z., et al. Preparation and Characterization of Polymer/Silica Nanocomposites via Double In Situ Miniemulsion Polymerization[J]. J Polym. Sci. Pol. Chem, 2010, 48(14):3128-3134
    [16] Zhang J.A., Yang J.J., Wu Q.Y., et al. SiO_2/Polymer Hybrid Hollow Microspheres via Double in Situ Miniemulsion Polymerization[J]. Macromolecules 2010, 4 (3):1188-1190
    [17] Barthet C., Hickey A..J., Cairns D.B. et al. Synthesis of novel polymer-silica colloidal nanocomposites via free-radical polymerization of vinyl monomers[J]. Adv Mater, 1999, 11 (5):408-410
    [18] Percy M.J., Barthet C., Lobb J.C. et al. Synthesis and characterization of vinyl polymer-silica colloidal nanocomposites[J]. Langmuir, 2000, 16 (17):6913-6920
    [19] Amalvy J.I., Percy M.J., Armes S.P., et al. Characterization of vinyl polymer/silica colloidal nanocomposites using solid state NMR spectroscopy:Probing the interaction between the inorganic and organic phases on the molecular level[J]. Langmuir, 2001, 17 (16):4770-4778
    [20] Percy M.J., Armes S.P., Synthesis and characterization of novel film-forming vinyl polymer/silica colloidal nanocomposites[J]. Langmuir, 2002, 18:4562-4565
    [21] Percy M.J., Amalvy J.I., Randall D.P. et al. Synthesis of vinyl polymer-silica colloidal nanocomposites prepared using commercial alcoholic silica sols[J]. Langmuir, 2004, 20(6):2184-2190
    [22] Dupin D., Schmid A., Balmer J.A., et al. Efficient synthesis of poly(2-vinylpyridine)-silica colloidal nanocomposite particles using a cationic azo initiator[J]. Langmuir, 2007, 23(23):11812-11818
    [23] Schmid A., Tonnar J., Armes S.P. A new highly efficient route to polymer-silica colloidal nanocomposite particles[J]. Adv Mater, 2008, 20(17):3331-3336
    [24] Schmid A., Tonnar J., Armes S.P., et al. Synthesis and Characterization of Film-Forming Colloidal Nanocomposite Particles Prepared via Surfactant-Free Aqueous Emulsion Copolymerization[J]. Macromolecules, 2009, 42 (11):3721-3728
    [25]陈敏,游波,周树学,等.草莓型SiO_2/PMMA复合微球的制备[J].高等学校化学学报,2005, 7:1352-1355
    [26] Chen M., Wu L.M., Zhou S.X., et al. Synthesis of raspberry-like PMMA/SiO_2 nanocomposite particles via a surfactant-free method[J]. Macromolecules, 2004, 37 (25):9613-9619
    [27] Chen M, Zhou S X, You B, et al. A novel preparation method of raspberry-like PMMA/SiO_2 hybrid microspheres[J]. Macromolecules, 2005, 38 (15):6411-6417
    [28] Zhang Y.H., Zou Q.C., Shu X.W. et al. Preparation of raspberry-like polymer/silica nanocomposite microspheres via emulsifier-free polymerization in water/acetone media[J]. J Colloid Interf Sci, 2009, 336(2):544-550
    [29] Wen N.G., Tang Q.Q., Chen M, et al. Synthesis of PVAc/SiO_2 latices stabilized by silica nanoparticles[J]. J Colloid. Interf. Sci, 2008, 320 (1):152-158
    [30] You B., Wen N.G., Cao Y.C. et al. Preparation and properties of poly[styrene-co-(butyl acrylate)-co-(acrylic acid)]/silica nanocomposite latex prepared using an acidic silica sol[J]. Polym Int, 2009, 58 (5):519-529
    [31] Wu X.F., Tian Y.J., Cui Y.B. et al. Raspberry-like silica hollow spheres: Hierarchical structures by dual latex-surfactant templating route[J]. J Phys Chem C, 2007, 111 (27): 9704-9708
    [32] Du X., Liu X.M., Chen H.M. et al. Facile Fabrication of Raspberry-like Composite Nanoparticles and Their Application as Building Blocks for Constructing Superhydrophilic Coatings[J]. J. Phys. Chem. C, 2009, 113 (21):9063-9070
    [33] Yang J.X., Hu D.D., Fang. Y., et al. Novel method for preparation of structural microspheres poly(N-isopropylacrylamide-co-acrylic acid)/SiO_2[J]. Chem Mater, 2006, 18 (20):902-4907
    [34] Pi M.W., Yang T.T., Yuan J.J. et al. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell[J]. Colloid Surface B, 2010, 78 (2):193-199
    [35] Fususawa K., Nagashima K., Anzai C. Synthetic process to control the total size and componentdistribution of multilayer magnetic composite particles[J].1994, 272:1104-1110
    [36] Fususawa K., Nagashima K., Anzai C. PreParation of composite Particles with ultilayers by heteroeoagulation and eneapsulation Polymerization[J]. Kobunshi ronbunshu. 1993, 50:337-342
    [37] Caruso F, Caruso R.A, Mohwald H, et al. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science, 1998, 282(5391):1111-1114
    [38] Caruso F. Mohwald H. Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids[J]. Langmuir, 1999, 15 (23):8276-8281
    [39] Caruso F. Hollow capsule processing through colloidal templating and self-assembly[J]. Chem-Eur J, 2000, 6 (3):413-419
    [40] Caruso R.A., Susha.A., Caruso F. Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres[J]. Chem Mater, 2001, 13 (2):400-409
    [41]秦总根,涂伟萍,夏正斌.室温自交联含氟乳液聚合反应的稳定性研究[J].高校化学工程学报,2004,6:782-787
    [42]胡志勇,程原,李蕾,等.偶氮二异丁脒盐酸盐的合成新方法[J].化工进展,2007,12:1790-1794
    [43] Ha J.W., Park I. J., Lee S. B., Hydrophobicity and sliding behavior of liquid droplets on the fluorinated latex films[J]. Macromolecules, 2005.38:736-44
    [44] Chen S I, Sheu Y L, Lee C T et al. Morphology of perfluoroalkyacrylate/stearyl methacrylate polymers and their effect on water/oil repellency[J]. J. Appl. Polym. Sci. 1997, 63:903-909.
    [45] Cui X.C., Zhong S.L., Gao Y. et al. Preparation and characterization of emulsifier-free core–shell interpenetrating polymer network-fluorinated polyacrylate latex particles[J]. Colloid Surface A, 2008, 324:14-21
    [46] Liu Z, Xiao H. Soap-free emulsion copolymerisation of styrene with cationic monomer:effect of ethanol as a cosolvent[J]. Polymer, 2000, 41:7029-7038
    [47] Ganachaud F, Mouterde G, Delair T. et al. Preparation and characterization of cationic polystyrene latex particles of different aminated surface charges[J]. Polym. Adv.Technol 1995, 6:480-488
    [48]杨婷婷,徐莹莹,李鹏辉,等.细乳液聚合制备阳离子型含氟烷基丙烯酸酯共聚物乳液[J].高分子学报,2009, 4:309-316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700