用户名: 密码: 验证码:
植物油改性阳离子水性聚氨酯的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪以来,随着人们对环境保护意识的提高以及各种环保法规的完善,溶剂型聚氨酯中含有的有机溶剂导致的负作用越来越明显。因此,水性聚氨酯(WPU)的发展就具有非常重要的意义,其具有有机挥发物含量低,无毒无污染等优点。WPU是在聚氨酯预聚体生成的过程中,加入具有亲水性能的小分子扩链剂,在反应结束后,加入中和剂中和,成盐后加水乳化就制备出了水性聚氨酯乳液,这种方法就是一般通用的自乳化法。自乳化法的原理是将亲水基团引入到聚氨酯分子侧链或者主链上,乳化的时候不用加入乳化剂,就能使聚氨酯分散于水中,乳液粒径比较小,成膜性能优异,能长期稳定存在。另一种制备水性聚氨酯的方法是在乳化过程中加入乳化剂,采用高速搅拌的方法进行强制分散,制备的乳液粒径较大,稳定性较差,固含量可达到50%以上,外乳化法一般用的较少。
     水性聚氨酯现在广泛应用于皮革涂饰剂、木器漆、胶黏剂、涂料等行业,已经开始逐步取代溶剂型聚氨酯。在这些应用中,大多用的都是阴离子水性聚氨酯,在这方面的研究报道很多,而阳离子水性聚氨酯方面的研究较少,这主要是因为阳离子水性聚氨酯在制备过程中使预聚体季铵盐化的工艺复杂,加之成本比较高,乳化产品稳定性也比阴离子水性聚氨酯差。与阴离子水性聚氨酯相比较,阳离子水性聚氨酯有其独特的性能,应用价值较大,开发新型阳离子水性聚氨酯具有重要的研究意义。现在石油资源日益枯竭、石化产品价格不断走高,对可再生能源进行研究已经势在必行,用生物质多元醇代替石化原料来生产聚氨酯是可行的趋势,生物质多元醇主要有植物油、植物纤维素、木质素等,据报道,生物质多元醇相比于石油多元醇能耗降低达到23%左右,不可再生能源消耗降低了61%,使用lkg生物质聚氨酯能够少向大气中排放1.2kg二氧化碳。在本论文中采用的生物质多元醇中的植物油改性阳离子水性聚氨酯
     本文以聚醚(N-210)、异佛尔酮二异氰酸酯(IPDI)、开环环氧大豆油(KESO)、N-甲基二乙醇胺(MDEA)、一缩二乙二醇(DEG)为主要原料,运用三步法合成一系列开环环氧大豆油量改性的阳离子水性聚氨酯乳液。通过对乳液粒径、胶膜红外光谱、力学性能、邵氏硬度、热重分析、耐水性、耐酸碱等测试研究KESO含量对阳离子水性聚氨酯乳液及胶膜性能的影响。结果表明,当KESO的质量含量在20.4%以下时都能合成稳定的阳离子水性聚氨酯乳液;随着KESO含量的增加,乳液的粒径会变大;由于KESO中含有三个羟基,使聚氨酯分子结构变成三维网状结构,提高了胶膜的力学性能,热稳定性也得到一定程度提高。
     以异佛尔酮二异氰酸酯(IPDI)、聚己二酸1,4丁二醇酯二醇(PBA)、聚氧化丙烯二醇(N-210)、蓖麻油(C.O)、一缩二己二醇(DEG)、N-甲基二乙醇胺(MDEA)、三羟甲基丙烷(TMP)等为主要原料合成了一系列蓖麻油改性的阳离子水性聚氨酯。运用红外光谱、吸水率、热重分析、摆杆硬度、拉伸实验等测试,研究了蓖麻油的加入量对WPU乳液稳定性、耐水性、热稳定性、硬度、力学性能等性能的影响。测试结果显示,蓖麻油的加入使得聚氨酯乳液的粒径不断增大,乳液的稳定性随着蓖麻油的不断加入,会有稍微降低;蓖麻油的引入能够提高材料的力学性能,且能使胶膜在有较好的拉伸强度的前提下还有很好的断裂伸长率,当蓖麻油含量达到8.3%,胶膜的拉伸强度能达到20.1MPa,热稳定性有提高;聚氨酯胶膜的吸水率下降,聚氨酯的吸水率最多能降低至1%左右。
     用聚酯型阳离子水性聚氨酯和聚醚型阳离子水性聚氨酯加入一定比例的助剂配制成水性胶黏剂,与阴离子水性聚氨酯胶黏剂进行比较。结果显示,聚酯型胶黏剂的各项性能都优于聚醚型胶黏剂,已经非常接近阴离子水性聚氨酯,其T型剥离强度达到3.21N/mm,软化点在65℃,72小时吸水率9.8%。
Since the21st century, along with the improvement of the consciousness of people's environmental protection and various environmental laws and regulations,the negative effects caused by the organic solvent contained in the solvent-based polyurethane are becoming more and more obvious. Therefore, the development of waterborne polyurethane (WPU) which has many advantages such as non-toxic、pollution-free and low organic volatile content etc, has a very important significance. In the process of polyurethane prepolymer formation, small molecule chain extender with the performance of hydrophilic is added, at the end of the reaction, the neutralizer and salt-forming agent are added, after emulsion with water, the waterborne polyurethane emulsion is prepared. This is the generic self-emulsification method.The general principle of self-emulsification method is that the hydrophilic group is introduced into the side chain or the main chain of the polyurethane molecule, thus without adding an emulsifier, the polyurethane pre-polymer can be dispersed in water, small emulsion particle size、excellent performance of the film and long-term stability can be achieved. Another method of preparing water-borne polyurethane is to add the emulsifier in the process of emulsification, forcibly dispersed using the high-speed stirring method,making the particle size of the emulsion larger and the stability poorer. The solid content can reach more than50%, the external emulsification method is not commonly used.
     The waterborne polyurethane now widely used in industries such as leather finishing agent、wood lacquer、 adhesive、coating etc, has begun to replace solvent-based polyurethane gradually. In these applications, the anionic waterborne polyurethane has been widely used,many researches in this area have been reported,while the cationic waterborne polyurethane research is less.This is mainly because in the preparation process of cationic aqueous polyurethane, the process of quaternary ammonium salt of the pre-polymer is complex, in addition, the cost is quite high,the stability of the emulsion products are worse than the anionic waterborne polyurethane. Compared with anionic waterborne polyurethane,cationic waterborne polyurethane has its unique properties, and has great application value,the development of novel cationic waterborne polyurethane has important research significance. With increasing depletion of oil resources and higher prices of petrochemical products, research about renewable energy has been imperative. Production of polyurethane with biomass polyols instead of petrochemical raw materials is a viable trend.The biomass polyol mainly includes vegetable oil、plant cellulose、lignin etc,it has been reported that, compared to petroleum polyols, biomass polyol reduced energy consumption to around23%, non-renewable energy consumption was reducesd by61%, the use of lkg of biomass polyurethane let off less1.2kg of carbon dioxide emissions into the atmosphere. This paper mainly discussed the vegetable oil-modified cationic waterbrne polyurethane.
     A series of waterborne polyurethane emulsions modified by KESO were synthesized using the method of three steps, adopting polyether diols(N-210)、 isophorone diisocyanate(IPDI)、N-methyl diethanolamine (MDEA)-、 diethylene glycol(DEG) as the principal raw materials. The influence of the amount of KESO on the performance of polyurethane emulsion and film were studied by emulsion particle size、infrared spectrum、 mechanical propertie、s hardness、thermal properties、water resistance、acid and alkali resistance etc. tests. The results showed that, stable cationic waterborne polyurethane emulsion can be synthesized when the mass content of KESO belows20.4%; with the increase of the content of KESO, the emulsion particle size became larger; because the KESO contains three hydroxyl groups, the polyurethane molecular structure turned into three-dimensional net-like structure, the mechanical properties of the film were improved, and thermal stability can also be improved to some extent.
     The cationic waterborne polyurethane modified by caster oil were synthesised by caster oil(C.O.)s isophorone diisocyanate(IPDI)、 N-methyl diethanolamine (MDEA)、diethylene glycol(DEG)、polyether diols(N-210)、 poly-1,4-butylene adipate glycol(PBA) trimethylolpropane(TMP) etc. The influence of the amount of C.O on the performance of polyurethane such as emulsion stability、water resistance、 thermal properties、hardness and mechanical properties were studied by infrared spectrum、water absorption、 thermogravimetric analysis、 rocker hardness、tensile experiment etc. tests.The test results indicated that, with the addition of C.O, the polyurethane emulsion particle size became larger and stability of polyurethane emulsions were reduced; while tensile strength and thermal stability of materials were improved, and can make the films had good elongation at break on the premise of good tensile strength. When the c.o content was up to8.3%, the tensile strength of the film can reach 20.1Mpa, the thermal stability was improved. The water absorption of the polyurethane films can reduce to about1%at most.
     Using the polyester type cationic waterborne polyurethane and the polyether type cationic waterborne polyurethane,adding a certain percentage of additives,the cationic water-based adhesives can be made, then compared with anionic waterborne polyurethane adhesives.The results showed,each performance of polyester adhesives was better than that of polyether adhesives, and the performance was very close to the anionic waterborne polyurethane. The T-type peeling strength can reach up to3.21N/mm,the softening point can reach65℃, the water absorption of72hours was9.8%.
引文
[1]Zhang J, Tu W, Dai Z. Synthesis and characterization of transparent and high impact resistance polyurethane coatings based on polyester polyols and isocyanate trimers[J]. Progress in Organic Coatings,2012.
    [2]苏丽丽,石雅琳,张振江,等.聚氨酯弹性体耐热性能研究进展[J].洛阳师范学院学报,2011(11):28-31.
    [3]修玉英,王功海,罗钟瑜.丙烯酸酯改性聚氨酯研究进展[J].广州化工,2005(4):6-8.
    [4]Takahara A, Okkema A Z, Wabers H, et al. Effect of hydrophilic soft segment side chains on the surface properties and blood compatibility of segmented poly (urethaneureas)[J]. Journal of biomedical materials research,1991,25(9):1095-1118.
    [5]Wu S, Ru T, Xing G, et al. Synthesis and performance of polyurethane coated urea as slow/controlled release fertilizer [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2012,27(1):126-129.
    [6]Kim B S, Kim B K. Enhancement of hydrolytic stability and adhesion of waterborne polyurethanes[J]. Journal of applied polymer science,2005,97(5):1961-1969.
    [7]Meng Q B, Lee S I, Nah C, et al. Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings[J]. Progress in Organic Coatings, 2009,66(4):382-386.
    [8]Wang J, Van Tittelboom K, De Belie N, et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete [J]. Construction and Building Materials,2012,26(1): 532-540.
    [9]Pandiyaraj K N, Selvarajan V, Deshmukh R R, et al. Modification of surface properties of polypropylene (PP) film using DC glow discharge air plasma[J]. Applied Surface Science,2009, 255(7):3965-3971.
    [10]Valentino R, Romeo E, Misra A. Mechanical Aspects of Micropiles Made of Reinforced Polyurethane Resins[J]. Geotechnical and Geological Engineering,1-16.
    [11 Garcia-Pacios V, Costa V, Colera M, et al. Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings[J]. Progress in Organic Coatings, 2011,71(2):136-146.
    [12]Dong Y, Zhang Z, Jin Y, et al. Nitrification performance of nitrifying bacteria immobilized in waterborne polyurethane at low ammonia nitrogen concentrations [J]. Journal of Environmental Sciences,2011,23(3):366-371.
    [13]韩朝晖,王一中,余鼎声.扩链剂对水性聚氨酯乳液的影响[J].北京化工大学学报(自然科学版),2001(1):49-52.
    [14]Yen M S, Tsai P Y, Hong P D. The solution properties and membrane properties of polydimethylsiloxane waterborne polyurethane blended with the waterborne polyurethanes of various kinds of soft segments[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,279(1):1-9.
    [15]ZHOU X, TU W, HU J. Preparation and characterization of two-component waterborne polyurethane comprised of water-soluble acrylic resin and HDI biuret[J]. Chinese Journal of Chemical Engineering,2006,14(1):99-104.
    [16]Noble K L. Waterborne polyurethanes[J]. Progress in organic coatings,1997,32(1): 131-136.
    [17]Jung D H, Kim E Y, Kang Y S, et al. High solid and high performance UV cured waterborne polyurethanes [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,370(1):58-63.
    [18]Kim E H, Lee W R, Myoung S W, et al. Characterization of waterborne polyurethane for ecofriendly functional floor plate[J]. Progress in Organic Coatings,2010,68(1):130-134.
    [19]张伟,邢凤荣,李雪.阴离子型水性聚氨酯和阳离子型水性聚氨酯的合成及分析[J].现代涂料与涂装,2012,15(5):7-10.
    [20]Sardon H, Irusta L, Fernandez-Berridi M J. Synthesis of isophorone diisocyanate (IPDI) based waterborne polyurethanes:Comparison between zirconium and tin catalysts in the polymerization process[J]. Progress in Organic Coatings,2009,66(3):291-295.
    [21]Niu Z, Zhang X, Dai J, et al. Investigation of ultraviolet curable waterborne polyurethane acrylate dispersion based on hydroxyl-terminated polybutadiene[J]. Frontiers of Chemistry in China,2007,2(2):151-155.
    [22]郭俊杰,张宏元.不同结构水性聚氨酯分散体的合成与性能研究[J1.粘接,2005,26(5):14-16.
    [23]陈建福,李晓,张卫英,等.二羟甲基丙酸对聚酯型水性聚氨酯性能的影响[J].石油化1,2008(10):100-104.
    [24]凌剑,卫晓利,邱圣军,等.亲水扩链剂对水性聚氨酯性能的影响[J].中北大学学报(自然科学版),2006(1):59-61.
    [25]南博华,郑水蓉,孙曼灵,等.扩链剂对单组分阴离子型水性聚氨酯涂料性能的影响[J].涂料工业,2006,36(6):20-23.
    [26]韩朝晖,王一中,余鼎声.扩链剂对水性聚氨酯乳液的影响[J].北京化工大学学报,2001,28(1):48-51.
    [27]胡国文.制备水性聚氨酯的物料和方法[J].咸宁学院学报,2006(3):14-17.
    [28]汪国元,黎苇,.黄勇,等.水性聚氨酯的制备与应用进展[J].江西科学,2010,28(003):307-310.
    [29]廖玉.水可分散多异氰酸酯的制备及其涂膜性能研究[D].华南理工大学,2012.
    [30]Sultan M, Bhatti H N, Zuber M, et al. Synthesis and characterization of waterborne polyurethane acrylate copolymers[J]. Korean Journal of Chemical Engineering,2013,30(2): 488-493.
    [31]潘季荣.氟硅双改性水性聚氨酯的合成与性能研究[D].华南理工大学,2012.
    [32]陈延娜,李树材.环境友好型水性聚氨酯材料[J].化工新型材料,2002(5):18-20.
    [33]黄国波,童筱莉,邬润德.无机纳米粒子原位复合聚氨酯研究[J].化工新型材料,2003,31(1):12-14.
    [34]Zhang Y, Asif A, Shi W. Highly branched polyurethane acrylates and their waterborne UV curing coating[J]. progress in Organic Coatings,2011,71(3):295-301.
    [35]Friedrich J, Mix R, Wettmarshausen S. A New Concept for Adhesion Promotion in Metal-Polymer Systems by Introduction of Covalently Bonded Spacers at the Interface[J]. Journal of Adhesion Science and Technology,2008,22(10-11):1123-1143.
    [36]Chen Y, Wang C, Lu W, et al. Study of the co-deoxy-liquefaction of biomass and vegetable oil for hydrocarbon oil production[J]. Bioresource technology,2010,101(12):4600-4607.
    [37]郭文杰,傅和青,司徒粤,等.环氧大豆油改性水性聚氨酯胶粘剂[J].包装工程,2008,29(8):1-3.
    [38]姜丽峰,李媛媛,戴红旗.阴离子水性聚氨酯的制备及其在表面施胶中的应用[J].造纸化学品,2010(4):29-33.
    [39]Orgiles-Calpena E, Aran-Ais F, Torro-Palau A M, et al. Influence of the chemical structure of urethane-based thickeners on the properties of waterborne polyurethane adhesives[J]. The Journal of Adhesion,2009,85(10):665-689.
    [40]吕维忠,涂伟萍,陈焕钦.阳离子水性聚氨酯的研究进展[J].皮革化工,2003,20(2):10-14.
    [41]Chen L J. Effect of cationic monomer on properties of fluorinated acrylate latex[J]. Chinese Chemical Letters,2012,23(6):736-740.
    [42]曾俊,王武生,阮德礼,等.阳离子水乳型聚氨酯皮革涂饰剂的研究[J].中国皮革,1999,28(17):8-9.
    [43]宋海香,罗运军,罗巨涛,等.羟基硅油共聚改性阳离子水性聚氨酯的合成和性能[J].郑州轻工业学院学报,2006(3):6-10.
    [44]杨蓓蓓,杨建军,吴庆云,等.阳离子型水性聚氨酯的概述与研究进展[J].中国皮革,2012(17):54-57.
    [45]李莉,刘好,李智华,等.阳离子水性聚氨酯综述[J].中国胶粘剂,2007(11):45-48.
    [46]刘景芳,李树材.封闭型水性聚氨酯的研究进展[J].涂料工业,2003(10):36-39.
    [47]Hung W C, Shau M D, Kao H C, et al. The synthesis of cationic polyurethanes to study the effect of amines and structures on their DNA transfection potential[J]. Journal of Controlled Release,2009,133(1):68-76.
    [48]李莉,刘好,饶喜梅,等.阳离子水性聚氨酯乳液的合成方法及条件探讨[J].中国涂料,2007(6):28-31.
    [49]赵雨花,亢茂青,冯月兰,等.阳离子型水性聚氨酯乳液的合成及表征[J].聚氨酯工业,2005(2):11-15.
    [50]Zhang H, Pan H, Zhang Q, et al. Studies on the particle morphology of waterborne cationic
    polyurethane/polyacrylate microemulsions[J]. Journal of Macromolecular Science, Part A:Pure
    and Applied Chemistry,2006,43(11):1793-1800.
    [51]陆金昌,李仙会,欧朝霞,等.阳离子水性聚氨酯乳液的合成及性能[J].高分子材料科学与
    工程,2012(3):1-4.
    [52]许燕侠,侯青顺,张剑秋,等.阳离子水性聚氨酯研究进展[J].上海涂料,2003,41(5):
    8-11.
    [53]Xin H, Shen Y, Li X. Novel cationic polyurethane-fluorinated acrylic hybrid latexes: Synthesis, characterization and properties[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,384(1):205-211.
    [54]赵雨花,亢茂青,王心葵.水性聚氨酯胶粘剂性能的影响因素探讨I——工艺因素的影响[J].粘接,2012(7):75-77.
    [55]杨丑伟,王香梅,张晶,等.阳离子水性聚氨酯/聚丙烯酸酯乳液的制备与性能研究[J].化学推进剂与高分子材料,2012(2):69-72.
    [56]张红,陈大俊.阳离子型水性聚氨酯/丙烯酸酯复合乳液的制备[J].涂料工业,2006,36(5):13-16.
    [57]Zhai F, Sun A, Yuan D, et al. Epoxy resin effect on anisotropic Nd-Fe-B rubber-bonded magnets performance[J]. Journal of Alloys and Compounds,2011,509(3):687-690.
    [58]周海峰,饶喜梅,瞿启云,等.环氧树脂改性阳离子型水性聚氨酯的合成[J].粘接,2006(6):4-6.
    [59]陈佳,沈一丁,费贵强,等.环氧改性阳离子水性聚氨酯的制备及对纸张的表面处理[J].功能材料,2012(24):3420-3424.
    [60]Wang H, Shen Y, Fei G, et al. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane[J]. Journal of colloid and interface science,2008,324(1):36-41.
    [61]叶锦刚,朱伟,张杰,等.硅烷偶联剂改性阳离子水性聚氨酯的研究[J].涂料工业,2011,41(002):25-28.
    [62]刘桂霞,孙多先,洪广言.阳离子聚氨酯/Ce02纳米复合材料的制备[J].应用化学,2003,20(3):266-268.
    [63]Amrollahi M, Sadeghi G. Evaluation of adhesion strength, flammability, and degradation of HBCD-containing polyurethane adhesives[J]. Journal of Applied Polymer Science,2008, 110(6):3538-3543.
    [64]Zhang F A, Yu C L. Application of a silicone-modified acrylic emulsion in two-component waterborne polyurethane coatings[J]. Journal of Coatings Technology and Research,2007,4(3): 289-294.
    [65]何叶丽.纺织品起毛起球成因及防止措施[J].印染,2004(21):51.
    [66]施剑,毛志平,潘强,等.涤棉针织物抗起毛起球整理[J].印染助剂,2006(6):27-30.
    [67]陈建平,施伟利,李庆文,等.反应性阳离子水性聚氨酯对羊绒针织物抗起毛起球整理[J]. 毛纺科技,2012(4):31-34.
    [68]Orgiles-Calpena E, Aran-Ais F, Torro-Palau A M, et al. Addition of Urethane-Based Thickener to Waterborne Polyurethane Adhesives Having Different NCO/OH Ratios and Ionic Groups Contents[J]. Journal of Adhesion Science and Technology,2009,23(15):1953-1972.
    [69]Perez-Liminana M A, Aran-Ais F, Torro-Palau A M, et al. Structure and properties of waterborne polyurethane adhesives obtained by different methods[J]. Journal of adhesion science and technology,2006,20(6):519-536.
    [70]杜郢,顿全秀,周春利,等.硅烷改性水性聚氨酯表面施胶剂的制备与性能研究[J].化工新型材料,2011,39(5):130-133.
    [1]Lee Y R, Raghu A V, Jeong H M, et al. Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method[J]. Macromolecular Chemistry and Physics,2009,210(15):1247-1254.
    [2]Du H, Zhao Y, Li Q, et al. Synthesis and characterization of waterborne polyurethane adhesive from MDI and HDI[J]. Journal of Applied Polymer Science,2008,110(3):1396-1402.
    [3]Garcia-Pacios V, Costa V, Colera M, et al. Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings [J]. Progress in Organic Coatings, 2011,71(2):136-146.
    [4]陈建福,李晓,张卫英,等.水性聚氨酯的合成与改性研究[J].化工科技,2009,17(1):56-59
    [5]张逢君,麦碧云,莫羡忠,等.阴离子型水性聚氨酯的研究现状[J].广西师范学院学报(自然科学版),2007,24(2):102-106
    [6]吕维忠,涂伟萍,陈焕钦.单组分阴离子水性聚氨酯[J].高分子通报,2001(06):60-65
    [7]张威,王焕,许戈文.改性阳离子水性聚氨酯研究进展[J].涂料技术与文摘,2011(12):18-20
    [8]Lu Y, Larock R C. Soybean oil-based, aqueous cationic polyurethane dispersions:Synthesis and properties[J]. Progress in Organic Coatings,2010,69(1):31-37.
    [9]Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods [J]. Progress in energy and combustion science,2005,31(5):466-487.
    [10]Lu Y, Larock R C. Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties [J]. Progress in Organic Coatings,2010,69(1):31-37.
    [11]许戈文,徐恒志.植物油改性水性聚氨酯的研究[J].涂料技术与文摘,2011(05):8-14
    [12]郭文杰,傅和青,司徒粤,等.环氧大豆油改性水性聚氨酯胶粘剂[J].包装工程,2008,29(8):1-3
    [13]马细柳,王声媛,李佩环,等.酮亚胺对水性聚氨酯性能的改进[J].涂料工业,2006,36(6):1-4.
    [1]Yen M S, Tsai H C, Hong P D. The physical properties of aqueous cationic-nonionic polyurethane with poly (ethylene glycol methyl ether) side chain and its blend with aqueous cationic polyurethane[J]. Journal of applied polymer science,2006,100(4):2963-2974.
    [2]Sarker S R, Aoshima Y, Hokama R, et al. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity[J]. International Journal of Nanomedicine, 2013,8:1361-1375.
    [3]徐廷旺.甲酯化桐油改性水性聚氨酯乳液的制备及性能研究[D].吉首大学,2012.
    [4]刘斌,王武生,曾俊.新型阳离子水性聚氨酯的合成与表征[J].涂料工业,2012,42(10):29-32.
    [5]陈佳,沈一丁,费贵强,等.环氧改性阳离子水性聚氨酯的制备及对纸张的表面处理[J].功能材料,2012(24):3420-3424.
    [6]方舟,周萌,仲建峰,等.改性阳离子水性聚氨酯的合成与性能研究[J].石油化工技术与经济,2012(1):57-61.
    [7]周应萍,崔锦峰,杨保平,等.植物油醇解制备聚氨酯水分散体[J].涂料工业,2005,35(7):12-15.
    [8]于寒冰,王新灵.植物油基聚酯酰胺多元醇的合成及其在水性聚氨酯中的应用[J].上海涂料,2007(3):24-28.
    [9]赵永丽,丁秀云,崔元臣.一种新型阳离子蓖麻油加脂剂的合成及性能[J].皮革化工,2005(4):11-13.
    [10]郭超,赵殊,王婧,等.蓖麻油交联改性阳离子型聚氨酯乳液[J].中国胶粘剂,2011,20(3):1-3.
    [11]Yeadon D A, Markezich A R, Goldblatt L A. The preparation and properties of some urethane foams from castor oil and elaidinized castor oil[J]. Journal of the American Oil Chemists Society,1959,36(11):541-545.
    [1]叶青萱.软包装用聚氨酯胶黏剂发展近况[J].化学推进剂与高分子材料,2011,9(001):21-30.
    [2]孔宪志,孙东洲,孙禹.高强度飞机座舱软联接用聚氨酯胶黏剂的研制[J].化学与黏合,2011(5):29-30.
    [3]Li X, Zhang S, Qiu D. The aging behavior of polyurethane adhesive in medium[J], Journal of Wuhan University of Technology-Mater. Sci. Ed.,2009,24(6):892-895.
    [4]李镇江,梁玮,张林.新型含羟基的聚氨酯丙烯酸酯/环氧丙烯酸酯胶黏剂的研制[J].化学与黏合,2012(5):9-12.
    [5]Desai S D, Emanuel A L, Sinha V K. Polyester polyol-based polyurethane adhesive; effect of treatment on rubber surface[J]. Journal of polymer research,2003,10(3):141-149.
    [6]Perez-Liminana M A, Aran-Ais F, Torr6-Palau A M, et al. Structure and properties of waterborne polyurethane adhesives obtained by different methods[J]. Journal of adhesion science and technology,2006,20(6):519-536.
    [7]邓威,黄洪,傅和青.改性水性聚氨酯胶黏剂研究进展[J].化工进展,2011,30(6):1341-1346.
    [8]Schreiber H P, Qin R, Sengupta A. The effectiveness of silane adhesion promoters in the performance of polyurethane adhesives[J]. The Journal of Adhesion,1998,68(1-2):31-44.
    [9]叶青萱.磺酸盐型水性聚氨酯胶黏剂[J].化学推进剂与高分子材料,2013(1):1-9.
    [10]Rahman M M, Kim H D. Characterization of waterborne polyurethane adhesives containing different soft segments[J]. Journal of adhesion science and technology,2007,21(1):81-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700