水性聚氨酯性能的影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性聚氨酯以水代替有机溶剂作为分散介质,具有安全、节能、环保等优良性能,是近年来发展较为迅猛的新型绿色环保材料。
     水性聚氨酯是由柔性的软段链和刚性的硬段链交替连接而成的嵌段共聚物。软段由大分子多元醇(聚醚或聚酯多元醇)构成,硬段由多异氰酸酯和小分子扩链剂等构成。所以,聚氨酯的软段和硬段结构对水性聚氨酯的性能有着直接或间接的影响,在聚氨酯中,只有当刚性链段的内聚能足够大,才能彼此缔合在一起形成硬段,影响刚性链段内聚能的因素有二异氰酸酯、扩链剂和交联剂的种类和用量。本文主要探讨了二异氰酸酯、交联剂和小分子扩链剂的种类对水性聚氨酯乳液粒径、红外结构、耐热、力学以及耐水等性能的影响。
     (1)二异氰酸酯种类对水性聚氨酯性能的影响
     本章分别采用异佛尔酮二异氰酸酯(IPDI)、甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI),和聚醚二元醇(N210和N220)、二羟甲基丙酸、一缩二乙二醇为主要原料合成了一系列不同多异氰酸酯结构的水性聚氨酯。通过乳液粒径、红外、DMA、力学、硬度、耐水、耐酸碱等结构和性能的测试,研究了二异氰酸酯种类的变化对水性聚氨酯在上述结构和性能上的影响。着重研究了水性聚氨酯的N-H伸缩振动吸收峰的变化与不同结构二异氰酸酯之间的关系。
     研究结果表明,芳香族异氰酸酯相对于脂肪族异氰酸酯而言,合成的聚氨酯乳液粒径大,聚氨酯胶膜的拉伸强度和硬度较高,耐水耐酸碱腐蚀性能较好;从水性聚氨酯的N-H伸缩振动吸收峰的分峰结果可以看出,不同二异氰酸酯种类对水性聚氨酯体系的氢键作用力有较明显的影响,芳香族聚氨酯体系的氢键作用力强度比脂环族的大,分子链规整的体系氢键化程度较高,空间位阻使聚氨酯结构的氢键化程度降低;DMA测试表明,芳香族异氰酸酯分子中刚性芳环的存在以及生成的氨基甲酸酯键赋予聚氨酯较强的内聚力,导致玻璃化温度提高,故硬段Tg较脂肪族异氰酸酯要高。
     (2)交联剂种类对水性聚氨酯性能的影响
     本章采用异佛尔酮二异氰酸酯、聚醚二元醇(N210和N220)、二羟甲基丙酸和一缩二乙二醇为主要原料,分别以聚醚三元醇N330、蓖麻油(C.O)、三官能度的三羟甲基丙烷(TMP)、四官能度的季戊四醇(PER)为交联剂,合成了一系列水性聚氨酯,探讨了不同种类的交联剂对水性聚氨酯乳液的粒径、乳液的稳定性,对聚氨酯胶膜的力学性能、胶膜的耐水性能、胶膜的耐热性能及玻璃化转变温度等的影响。
     研究表明,交联后的水性聚氨酯乳液平均粒径有所增大;大分子交联剂形成的聚氨酯结构分子链段较为柔软,交联改性后的聚氨酯胶膜手感较好;适当的交联有利于提高聚氨酯的力学性能、耐热性能和耐水性能,交联密度过大反而会破坏这些性能;小分子交联剂使得聚氨酯硬段Tg向高温移动,大分子交联剂阻碍了硬段的聚集作用,使硬段Tg向低温移动。
     (3)小分子扩链剂种类对水性聚氨酯性能的影响
     本章主要采用具有不同碳链长度的直链型扩链剂、不同侧甲基团数目以及具有醚氧基团的小分子扩链剂制备了一系列水性聚氨酯。通过乳液粒径、红外结构以及耐水、拉伸性能测试对水性聚氨酯的性能进行了表征。
     研究结果表明,支链的增加有利于获得分布窄、粒径小的聚氨酯乳液,随着分子链规整度的提高,乳液粒径增大,分布变宽;直碳链的扩链剂随着碳链的增长,聚氨酯结构中硬链段密度减小,微相分离程度降低,聚氨酯胶膜的力学性能下降,断裂伸长率提高;醚键的存在增加了分子链的柔顺性,使得拉伸强度减小硬度降低;带侧基的扩链剂由于硬段规整度降低,聚氨酯的拉伸强度和硬度明显降低,且使聚氨酯体系的氢键作用力减弱,因此吸水率较高,耐水性能下降。
Waterborne polyurethane uses water instead of organic solvent as dispersion medium,with the excellent performance of safety、energy conservation、environmental protection etc.,it becomes one of the new green materials which develop more and more rapidly in recent years.
     Waterborne polyurethane is a block copolymer made of the flexible soft chain segment and the rigid hard chain segment.The soft segment consists of polyether glycol or polyester polyol,the hard segment consists of the isocyanate and small molecule chain extender, et al.Thus,the structure of soft and hard segments affect the performance of waterborne polyurethane directly or indirectly.In the structure of polyurethane, the rigid chains form the hard segment by the cohesive energy.There are several factors that can affect the cohesive energy of the rigid chain segments, such as the kind and amount of diisocyanate、the chain extender and the crosslinker. This paper mainly discusses the affect of the type of diisocyanate、crosslinking agent and small molecule chain extender on the performance such as emulsion particle size、 infrared structure, hea、mechanical and water resistant of waterborne polyurethane.(1)The affect of diisocyanate type on the performance of waterborne polyurethane
     This chapter respectively used isophorone diisocyanate (IPDI). toluene diisocynate(TDI)、diphenyl methane diisocyanate (MDI)、dicyclohexylmethane diisocyanate (HMDI), and polyether glycol(N210and N220)、dimethylolpropionic acid、diethylene glycol as the main raw material for synthesising a series of water-based polyurethane.Structure and performance test of emulsion particle size、 infrared、DMA、mechanics、hardness、water resistant、acid and alkali resistant were made,the type of diisocyanate on the structure and properties of waterborne polyurethane was studied.This chapter mainly focused on the relationship between N-H stretching vibration absorption peak and the structure of diisocyanate.
     The research results showed that the aromatic isocyanate with respect to the aliphatic isocyanate,the polyurethane emulsions had a larger particle size, the polyurethane films had higher tensile strength and hardness,better water resistance and corrosion resistance;from the peak split results of the N-H telescopic vibration absorption peak, different kind of diisocyanate had an obvious effect on the hydrogen bonding of waterborne polyurethane systems, the hydrogen bonding strength of aromatic polyurethane system was stronger than that of aliphatic isocyanate, high degree of molecular chain structured system had a higher hydrogen bonding degree, stereo-hindrance effect could reduce the degree of hydrogen bonding; DMA tests showed that, polyurethane synthesised of aromatic isocyanate has a strong cohesion because of the exist of the rigid aromatic ring as well as the resulting carbamate key,resulting in the rise of the glass transition temperature, so the glass transition temperature of the hard segment was higher than polyurethane synthesised of aliphatic isocyanate.
     (2) The affect of crosslinking agent type on the performance of waterborne polyurethane
     This chapter used isophorone diisocyanate、polyether glycol(N210and N220)-. dimethylolpropionic acid、diethylene glycol as the main raw materials, then respectively added polyether triol N330、castor oil (C.O.)、 trimethylolpropane (TMP)、pentaerythritol (PER) as the crosslinking agent, synthesised a series of waterborne polyurethane.Discussed the effect of crosslinking agent type on the particle size and stability of the emusions, the mechanical properties、 the water resistance、the heat resistance and the glass transition temperature of the films.
     The study showed that the average particle diameter of the crosslinking aqueous polyurethane emulsion had increased; polyurethane structure of molecular chains formed of macromolecular crosslinking agent was relatively soft, the crosslinked polyurethane films felt good; suitable crosslinking could improve the mechanical properties、heat resistance and water resistance of polyurethane, over cross-linking could destroy these performances; small molecular cross-linking agents made the glass transition temperature of the hard segment higher,while macromolecular crosslinking agents hindered the gather of rigid chains,making the glass transition temperature of the hard segment lower.
     (3) The affect of small molecule chain extender type on the performance of waterborne polyurethane
     In this chapter, series of WPU were synthesized using several types of chain-extender agents, such as straight-chain type chain extenders with different length of carbon chain, chain extenders with different numbers of side methyl group, and chain extenders with ether oxygen groups. Prepared WPUs were characterized through tests of particle size、infrared spectrum、thermostability、water resistance and tensile property;as for straight carbon chain of the chain extender, with the increase of carbon chain, hard segments in the polyurethane structure density decreased, the degree of micro-phase separation reduces,making the mechanical properties of the polyurethane film declined, the flexibility of the molecular chain increased; the existence of ether bond increased the flexible of molecular chains,thus decreasing the tensile strength and hardness, improving the elongation at break;the chain extender with side groups, due to the lower tacticity of hard segment,the tensile strength and hardness of the polyurethane was significantly reduced, and the hydrogen bonding of the polyurethane system was weakened, therefore water absorption increased, water resistant performance declined.
引文
[1]许戈文.水性聚氨酯材料[M].化学工业出版社,2007.
    [2]Dieterich D. Aqueous emulsions, dispersions and solutions of polyurethanes; synthesis and properties[J]. Progress in Organic Coatings,1981,9(3):281-340.
    [3]Sugano S, Chinwanitcharoen C, Kanoh S, et al. Preparation of aqueous polyurethane dispersions using aromatic diisocyanate[C]//Macromolecular symposia. WILEY-VCH Verlag,2006,239(1):51-57.
    [4]Park Y J, Monteiro M J, Es S, et al. Effect of ambient crosslinking on the mechanical properties and film morphology of PSTY-P (BA-co-AAEMA) reactive composite latexes[J]. European polymer journal,2001,37(5):965-973.
    [5]Richard J, Wong K. Interdiffusion of polymer chains and molecular dynamics in dried latex films[J]. Journal of Polymer Science Part B:Polymer Physics,1995, 33(9):1395-1407.
    [6]Zosel A, Ley G. Influence of crosslinking on structure, mechanical properties, and strength of latex films[J]. Macromolecules,1993,26(9):2222-2227.
    [7]Perche T, Auvray X, Petipas C, et al. Micellization of N-alkylpyridinium halides in formamide tensiometric and small angle neutron scattering study [J]. Langmuir, 1996,12(4):863-871.
    [8]居滋善.涂料工艺(上册)[M].化学工业出版社,2007.
    [9]康平平,宋文生,李雪娟等.水性聚氨酯的发展,分类,合成及应用[J].材料导报,2007,21(11):377-380.
    [10]Qu J, Chen H. Syntheses of High Solid Content Waterborne Polyurethane Dispersion [J] Journal of chemical industry and engineering-China-,2003,54(6): 868-871. with an aminoethylaminopropyl-substituted polydimethylsiloxane. Ⅱ. Waterborne polyurethanes[J]. Journal of applied polymer science,2001,79(2): 295-301.
    [14]Aznar A C, Pardini O R, Amalvy J I. Glossy topcoat exterior paint formulations using water-based polyurethane/acrylic hybrid binders[J]. Progress in organic coatings,2006,55(1):43-49.
    [15]李绍雄,刘益军.聚氨酯树脂及其应用[M].化学工业出版社材料科学与工程出版中心,2002.
    [16]耿耀宗,化工涂料.现代水性涂料:工艺·配方·应用[M].中国石化出版社,2003.
    [17]颜俊,涂伟萍.水性聚氨酯研究进展[J].化工进展,2001,20(7):22-24.
    [18]郑英丽,翁汉元.聚氨酯水分散液研究进展[J].化学推进剂与高分子材料,2004,2(4):1-6.
    [19]Nanda A K, Wicks D A. The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process[J]. Polymer,2006, 47(6):1805-1811.
    [20]Noble K L. Waterborne polyurethanes[J]. Progress in organic coatings,1997, 32(1):131-136.
    [21]Wen T C, Wang Y J, Cheng T T, et al. The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes[J]. Polymer,1999,40(14):3979-3988.
    [22]Yang C H, Lin S M, Wen T C. Application of statistical experimental strategies to the process optimization of waterborne polyurethane[J]. Polymer Engineering & Science,1995,35(8):722-730.
    [23]Yoou Jang J, Kuk Jhon Y, Woo Cheong I, et al. Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,196(2):135-143.
    [24]Yang C H, Liu F J, Liu Y P, et al. Hybrids of colloidal silica and waterborne polyurethane[J]. Journal of colloid and interface science,2006,302(1):123-132.
    [25]涂伟萍.水性涂料[M].化学工业出版社,2006.
    [26]Chattopadhyay D K, Raju K. Structural engineering of polyurethane coatings for high performance applications[J]. Progress in Polymer Science,2007,32(3): 352-418.
    [27]陈建福,李晓,张卫英,等.丙烯酸酯改性水性聚氨酯的研究进展[J].中国胶粘剂,2009,18(1):54-58.
    [28]Parmar R, Patel K, Parmar J. High-performance waterborne coatings based on epoxy-acrylic-graft-copolymer-modified polyurethane dispersions[J]. Polymer International,2005,54(2):488-494.
    [29]Roundhill D M. Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines[J]. Chemical reviews,1992,92(1):1-27.
    [30]Ferstandig L L, Scherrer R A. Mechanism of Isocyanate Reactions with Ethanoll[J]. Journal of the American Chemical Society,1959,81(18): 4838-4842.
    [31]Britain J W, Gemeinhardt P G. Catalysis of the isocyanate-hydroxyl reaction[J]. Journal of Applied Polymer Science,1960,4(11):207-211.
    [32]Hong Z, Qiu X, Sun J, et al. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals[J]. Polymer,2004,45(19):6699-6706.
    [33]Guan J, Song Y, Lin Y, et al. Progress in study of non-isocyanate polyurethane[J]. Industrial & Engineering Chemistry Research,2011,50(11):6517-6527.
    [34]Degrandi-Contraires E, Udagama R, Bourgeat-Lami E, et al. Mechanical Properties of Adhesive Films Obtained from PU-Acrylic Hybrid Particles[J]. Macromolecules,2011,44(8):2643-2652.
    [35]Howell D, Behrends B. A methodology for evaluating biocide release rate, surface roughness and leach layer formation in a TBT-free, self-polishing antifouling coating[J]. Biofouling,2006,22(5):303-315.
    [36]Udagama R, Degrandi-Contraires E, Creton C, et al. Synthesis of Acrylic-Polyurethane Hybrid Latexes by Miniemulsion Polymerization and Their Pressure-Sensitive Adhesive Applications [J]. Macromolecules,2011,44(8): 2632-2642.
    [37]权衡,吴丹,韩静.聚醚型聚氨酯的结构及其防水透湿特性[J].印染助剂,2012,29(9):8-11.
    [38]顾德溪.环氧改性水性聚氨酯研究[D].南京林业大学,2012.
    [39]吕海宁.聚氨酯杂化复合膜的制备与应用[D].东华大学,2012.
    [40]霍家佳,史铁钧,刘苗等.聚酯-聚醚复合型水性聚氨酯的制备与性能[J].合成橡胶工业,2013,36(1):41-45.
    [41]邓威.聚酯-聚醚混合型内交联水性聚氨酯胶粘剂研究[D].华南理工大学,2012.
    [42]赵雨花,亢茂青,王心葵.水性聚氨酯胶粘剂性能的影响因素探讨Ⅱ—结构因素的影响[J].粘接,2012,33(8):64-68.
    [43]王建田.水性形状记忆聚氨酯的合成及其在织物整理上的应用[J].化工设计通讯,2010,36(002):55-57.
    [44]彭文奇,严小妹,沈慧芳.硬段含量对水性聚氨酯软段结晶性能的影响[J].聚氨酯工业,2012,27(4):12-15.
    [45]薛攀,陈小慧,孙晓红等.硬段含量对水性聚氨酯性能的影响[J].中国胶粘剂,2012,21(12):29-32.
    [46]Krol P, Krol B. Krol P, Krol B. Wodorozcienczalne kationomery poliuretanowe syntezowane z 4,4'-diizocyjanianu difenylometanu lub diizocyjanianu izoforonu, poliestrow i N-metylo-lub N-butylodietanoloaminy analiza struktury i wybranych wlasciwosci otrzymywanych powlok[J]. Polimery,2012,57(11-12): 799-811.
    [47]Sahoo N G, Rana S, Cho J W, et al. Polymer nanocomposites based on functionalized carbon nanotubes[J]. Progress in polymer science,2010,35(7): 837-867.
    [48]Krol P, Krol B, Stagraczynski R, et al. Waterborne cationomer polyurethane coatings with improved hydrophobic properties[J]. Journal of Applied Polymer Science,2013,127(4):2508-2519.
    [49]Nigar M, Chvalun S N, Blackwell J. Modeling the structure of the hard domains in HMDI-based polyurethane elastomers[J]. Acta polymerica,1998,49(1): 27-34.
    [50]Noble, K. L. (1997). Waterborne polyurethanes. Progress in organic coatings, 32(1),131-136.
    [51]Chattopadhyay D K, Sreedhar B, Raju K V S N. Effect of chain extender on phase mixing and coating properties of polyurethane ureas [J]. Industrial & engineering chemistry research,2005,44(6):1772-1779.
    [52]Madbouly S A, Otaigbe J U, Nanda A K, et al. Rheological behavior of aqueous polyurethane dispersions:Effects of solid content, degree of neutralization, chain extension, and temperature [J]. Macromolecules,2005,38(9):4014-4023.
    [53]Barikani M, Valipour Ebrahimi M, Seyed Mohaghegh S M. Preparation and characterization of aqueous polyurethane dispersions containing ionic centers[J]. Journal of applied polymer science,2007,104(6):3931-3937.
    [54]Lee D K, Tsai H B, Tsai R S. Aqueous polyurethane dispersions derived from polycarbonatediols and Di (4-isocyanatocyclohexyl) methane [J]. Polymer Engineering & Science,2006,46(5):588-593.
    [55]Sugano S, Chinwanitcharoen C, Kanoh S, et al. Preparation of aqueous polyurethane dispersions using aromatic diisocyanate[C]//Macromolecular symposia. WILEY-VCH Verlag,2006,239(1):51-57.
    [56]李绍雄,刘益军.聚氨酯胶粘剂[M].化学工业出版社,1998.
    [57]秦飞,李碧,李其峰,等.植物油基多元醇的合成研究[J].精细化工,2008,25(11):1140-1144.
    [58]胡飞燕.水性聚氨酯涂膜耐水性影响因素研究[J].广东化工,2007,34(11):34-36.
    [59]李学良,孙炜.蓖麻油改性的水性聚氨酯涂料的制备及其防蚀性能[J].广东化工,2010,37(5):3-5.
    [60]陈建福.中和度对聚酯型阴离子水性聚氨酯性能的影响[J].广州化学,2011,36(4):21-25.
    [61]吕菲菲,杨花娟,汤嘉陵.扩链方式对水性聚氨酯结构与性能的影响[J].聚氨酯工业,2012,27(5):19-22.
    [62]韩朝晖,王一中,余鼎声.扩链剂对水性聚氨酯乳液的影响[J].北京化工大学学报,2001,28(1):48-51.
    [1]Barikani M, Valipour Ebrahimi M, Seyed Mohaghegh S M. Preparation and characterization of aqueous polyurethane dispersions containing ionic centers[J]. Journal of applied polymer science,2007,104(6):3931-3937.
    [2]Lee D K, Tsai H B, Tsai R S. Aqueous polyurethane dispersions derived from polycarbonatediols and Di (4-isocyanatocyclohexyl) methane[J]. Polymer Engineering & Science,2006,46(5):588-593.
    [3]Sugano S, Chinwanitcharoen C, Kanoh S, et al. Preparation of aqueous polyurethane dispersions using aromatic diisocyanate[C]//Macromolecular symposia. WILEY-VCH Verlag,2006,239(1):51-57.
    [4]王翠,吴佑实,吴莉莉.MDI型水性聚氨酯乳液的合成及性能研究[J].涂料工业,2009,39(2):4-8.
    [5]刘都宝,纪学顺,张文荣,等.MDI基水性聚氨酯胶粘剂的合成与性能研究[J]. Textile Auxiliaries,2008,25(10):3-10.
    [6]张威.MDI型阳离子水性聚氨酯的合成及改性研究[D].安徽大学,2012.
    [7]陈维涛.水性聚氨酯体系的性能研究与应用[D].天津科技大学,2005.
    [8]Kim B K, Seo J W, Jeong H M. Morphology and properties of waterborne polyurethane/clay nanocomposites[J]. European Polymer Journal,2003,39(1): 85-91.
    [9]徐恒志.硬段含量和类型对水性聚氨酯性能的影响[D].安徽大学,2012.
    [10]Wen T C, Luo S S, Yang C H. Ionic conductivity of polymer electrolytes derived from various diisocyanate-based waterborne polyurethanes[J]. Polymer,2000, 41(18):6755-6764.
    [11]Wen T C, Wu M S, Yang C H. Spectroscopic investigations of poly (oxypropylene) glycol-based waterborne polyurethane doped with lithium perchlorate[J]. Macromolecules,1999,32(8):2712-2720.
    [12]Padmanabha Iyer N, GNANARAJAN T P, RADHAKRISHNAN G. Mechanical and thermal properties of networks prepared from reactive poly (urethane-imide) s and blocked polyurethane prepolymer[J]. Macromolecular chemistry and physics,2002,203(4):712-717.
    [13]Cao X, Chang P R, Huneault M A. Preparation and properties of plasticized starch modified with poly (ε-caprolactone) based waterborne polyurethane[J]. Carbohydrate Polymers,2008,71(1):119-125.
    [14]王利军,辛中印,张帆等.水性聚氨酯技术进展[J].皮革科学与工程,2005,15(2):33-39.
    [15]袁月兰,钟达飞.不同结构的水性聚氨酯的合成及其性能研究[J].中国胶粘剂,2008,17(4):18—20.
    [16]Elabd Y A, Sloan J M, Barbari T A. Diffusion of acetonitrile in conformational isomers of an H< sub> 12 MDI polyurethane[J]. Polymer,2000,41(6): 2203-2212.
    [17]王雁冰,黄志雄,张联盟.DMA在高分子材料研究中的应用[J].国外建材科技,2004,25(2):25-27.
    [18]李绍雄,刘益军.聚氨酯树脂及其应用[M].化学工业出版社材料科学与工程出版中心,2002.
    [19]易玉华,陈万滨.聚氨酯弹性体耐酸碱性能的影响因素[J].弹性体,2010,10(6):16.
    [20]李汉清,赵雨花.聚氨酯弹性体手册[J].2001.
    [21]张殿荣,化工,辛振祥.现代橡胶配方设计[M].化学工业出版社,2001.
    [22]陈正钧,杜玲仪.耐蚀非金属材料及应用[M].化学工业出版社,1985.
    [1]司小燕,郑水蓉,刘喜宗,等.水性聚氨酯的合成与改性[J].中国胶粘剂,2007,16(10):6-9.
    [2]Noble K L. Waterborne polyurethanes[J]. Progress in organic coatings,1997, 32(1):131-136.
    [3]曾涛,罗洁.水性聚氨酯的改性及应用[J].化工时刊,2011,7:017.
    [4]杨冬亚,张鹏,邱凤仙,等.内交联水性聚氨酯脲的制备及性能表征[J].化工进展,2008,27(2):270-273.
    [5]Asif A, Hu L, Shi W. Synthesis, rheological, and thermal properties of waterborne hyperbranched polyurethane acrylate dispersions for UV curable coatings[J]. Colloid and Polymer Science,2009,287(9):1041-1049.
    [6]Lee M H, Choi H Y, Jeong K Y, et al. High performance UV cured polyurethane dispersion[J]. Polymer Degradation and Stability,2007,92(9):1677-1681.
    [7]Chattopadhyay D K, Mishra A K, Sreedhar B, et al. Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings [J]. Polymer degradation and stability,2006,91(8):1837-1849.
    [8]Coutinho F, Delpech M C, Alves T L, et al. Degradation profiles of cast films of polyurethane and poly (urethane-urea) aqueous dispersions based on hydroxy-terminated polybutadiene and different diisocyanates[J]. Polymer degradation and stability,2003,81(1):19-27.
    [9]瞿金清,陈焕钦.蓖麻油水性聚氨酯树脂的合成与性能的研究[J].林产化学与工业,2004,24(3):78-82.
    [1]郝广杰,张邦华,宋谋道,等.扩链剂对水性聚氨酯树脂性能的影响[J].高分子材料科学与工程,2000,16(2):148-154.
    [2]陈延娜,李树材.软段种类及相对分子质量对阴离子水性聚氨酯性能的影响[J].涂料工业,2004,3(7):1-4.
    [3]谢富春,张玉清,朱长春,等.扩链剂对聚醚聚氨酯弹性体性能的影响[J].粘接,2006,27(3):3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700