耐候性羧酸型水性聚氨酯分散液的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯涂料优异的机械性能、良好的耐磨性和附着力,使其在涂饰领域获得广泛应用。传统溶剂型聚氨酯涂料使用中存在有机溶剂挥发污染环境问题,因而促使水性聚氨酯(WPU)的发展。WPU虽具有不污染环境、安全可靠、使用方便等优点以及优异的机械性能,但高质量的聚氨酯涂层要求耐候性。因此,本文选用脂肪族聚酯、脂环族异氰酸酯、亲水性羧酸型扩链剂为主要原料,通过加成聚合反应合成耐候性羧酸型水性聚氨酯分散液。
     本文首先探讨了脂环族二异氰酸酯与亲水性羧酸型扩链剂,即异佛尔酮二异氰酸酯( IPDI )与2,2-二羟甲基丙酸(DMPA)在溶剂N-甲基吡咯烷酮(NMP)中的反应动力学。结果表明:IPDI的反应活性较低,其与DMPA反应活化能为Ea=68.7kJ/mol,反应速率常数k遵循Arrhenius方程
     以聚己二酸丁二醇酯二醇(PBA3000)、IPDI、DMPA为主要原料,按DMPA加料顺序,分别采用一步法和两步法合成-NCO封端、侧链含-COOH基团的聚氨酯预聚物,加丙酮稀释,降温至室温(25~30℃),由三乙胺(TEA)中和预聚物中-COOH基团,水中分散,再由乙二胺(EDA)进一步扩链,之后脱除丙酮,得到耐候性羧酸型水性聚氨酯分散液。分别探讨了,聚氨酯预聚物合成工艺条件、分散与扩链技术;分散液固含量相同时,离子基团含量、R值与水性聚氨酯分散液的电导率、外观、临界聚沉值之间的关系;以及分散液中粒子的微观特性和分散液胶膜的机械性能、热性能和结构特征。研究发现,一步法与两步法合成的分散液胶膜机械性能基本一致,但一步法工艺简单;聚氨酯分子中-COOH基团含量1.09~2.37%时,分散液均很稳定,电导率、分散液临界聚沉值Cc.c随-COOH基团含量的增加而增大;稳定分散液中固含量可达32.15%,透射电镜(TEM)显示分散液中粒子的粒径小于100nm;分散液胶膜的拉伸强度随聚氨酯分子中-COOH含量的增加而增大,而断裂伸长率随-COOH含量的增大而减小,在-COOH含量为2.37%时拉伸强度达29MPa、断裂伸长率达510%;X-射线衍射(XRD)表明羧酸型水性聚氨酯具有较高的结晶性,且在大分子链段中软段的结晶程度高于硬段;差示扫描(DSC)、热重(TG)表明羧酸型水性聚氨酯具有较高的热性能,热分解温度高于330℃。
Polyurethane coatings have excellent mechanical, wear-resistance and adhesive properties, and can be widely applied in the finishing field. Traditional solvent-type polyurethane coatings containing volatile organic solvents pollute the environment. So the development of waterborne polyurethane coatings (WPU) is being prompted. Although WPU possesses many advantages, such as non-pollution, safety, convenient use and excellent mechanical properties, high-quality polyurethane coatings should have weathering resistant characteristic. Therefore, weatherable carboxylic acid-type WPU dispersions were synthesized from aliphatic polyester, alicyclic isocyanate and hydrophilic carboxylic acid-type chain extender as raw materials by addition polymerization in this paper.
     The reaction kinetics between isophorone diisocyanate (IPDI: as alicyclic diisocyanate) and 2, 2-dimethylolpropionic acid (DMPA: as hydrophilic chain extender) in N-methyl-2-pyrrolidone (NMP: as a solvent) were first studied. The results showed that reaction activity of IPDI was lower, activation energy (Ea) was 68.7kJ/mol and reaction rate constant (k) followed Arrhenius equation
     Firstly, when polybutylene adipate glycol (PBA3000), IPDI and DMPA were used as main raw materials, the synthesis methods of -NCO terminated polyurethane prepolymers with -COOH groups in the side chain of polymers were classified one-step method and two-step method on the basis of feeding order of DMPA. After, prepolymers were diluted with acetone and cooled to 25~30℃, -COOH groups in the prepolymers were neutralized by triethylamine (TEA). Finally, neutralized prepolymers were dispersed in water and further extended by ethylenediamine (EDA: as auxiliary chain extender). After removing acetone, the carboxylic acid-type waterborne polyurethane dispersions were obtained. The synthetic conditions, dispersion and chain extension of polyurethane prepolymers; the relations between ion group content or R value and conductivity or appearance or critical congregating concentration (Cc.c) of WPU dispersions with the same solid content; microscopic characteristics of particles in WPU dispersions, and mechanical properties, thermal properties and structural characteristics of films made from WPU dispersions, were discussed, respectively. The experiment results showed that mechanical properties of films made from WPU dispersions synthesized by one-step method were similar to those by two-step method, but one-step method was more convenient. When–COOH group content of polyurethane molecule was from 1.09% to 2.37%, WPU dispersions were stable and their conductivities and Cc.c increased with the increasing of–COOH group content. The solid content of stable dispersion could achieve 32.15%, transmission electron microscopic (TEM) showed that the size of particles in dispersions was less than 100nm. With the increasing of -COOH group content of polyurethane molecular, tensile strength of films made from WPU dispersions increased but elongation at break declined. When–COOH group content was 2.37%, tensile strength could achieve 29MPa and elongation at break was 510%. X-ray diffraction (XRD) demonstrated that carboxylic acid-type WPU molecule had higher crystallinity and the crystallinity of soft segment in the polymer was higher than that of hard segmeng. Differential scanning calorimetry (DSC) and thermogravimetry (TG) showed that the thermal stability of carboxylic acid-type WPU was higher and thermal decomposition temperature was more than 330℃.
引文
[1]陈赛艳,陈蕴智.聚氨酯涂料的应用发展现状[J].化工时刊.2008,22(8):52-55.
    [2] Martin Melchiors, Michael Sonntag, Claus Kobusch, et al. Recent developments in aqueous two-component polyurethane (2K-PUR) coatings[J]. Progress in Organic Coatings.2000, 40: 99-109.
    [3] David A. Ley , Denise E. Fiori , Richird J. Quinn. Optimization of arcylic polyols for low VOC two-component water reducible polyurethane coatings using tertiary isocyanate crosslinkers[J]. Progress in Organic Coatings.1999, 35:109-116.
    [4] Masakazu Hirose, Jianhui Zhou , Katsutoshi Nagai. The structure and properties of acrylic-polyurethane hybrid emulsions [J]. Progress in Organic Coatings.2000, 38:27-34.
    [5]陈红.水性聚氨酯涂料技术进展[J].涂料工业.2006,36(3):47-51.
    [6]陈珀丽,刘经梅,张之涵,等.聚氨酯涂料技术在中国的发展[J].涂料工业,2007,37(5):49-51.
    [7]傅明源,孙酣经.聚氨酯弹性体及其应用[M].北京:化学工业出版社,2006,1-2.
    [8]丛树枫,喻露白.聚氨酯涂料[M].北京:化学工业出版社,2003,4.
    [9]中国聚氨酯工业协会涂料专业委员会.我国聚氨酯涂料发展现状[J].涂料综述,2008,5:8-12.
    [10]徐培林,张淑琴.聚氨酯材料手册[M].北京:化学工业出版社,2004,647.
    [11]刘意,张力,刘敬芹,等.聚氨酯涂料的研究进展[J].辽宁化工,2002,31(3):107-112.
    [12]涂伟萍.水性涂料[M].北京:化学工业出版社,2006,1.
    [13] Shih-Chieh Wang, Po-Cheng Chen ,Jen-Taut Yeh, et al.A new curing agent for self-curable system of aqueous-based PU dispersion[J]. Reactive & Functional Polymers.2007, 67:299-311.
    [14] Fernanda M. b. Coutinho , Marcia C. Delpech ,Thais L.Alves, et al.Degradation profiles of polyurethane and poly(urethane-urea) aqueous dispersions based on hydroxyl-terminated polybutadiene and different diisocyanates[J]. Polymer Degradation and Stability.2003, 81:19-27.
    [15] ZHOU Xinhua ,TU Weiping ,HU Jianqing.Preparation and Characterization of Two-compo-nent Waterborne Polyurathane Comprised of Water-soluble Acrylic Resin and HDI Biuret[J]. Chinese J.Chem.Eng.2006, 14:99-104.
    [16]郭俊杰,张宏元.不同结构水性聚氨酯分散体的合成与性能研究[J].粘接,2005,26(5):14-16.
    [17]张武英,修玉英.水性聚氨酯的合成及改性研究[J].广东化工,2005,3,5-7.
    [18] Denise E. Fiori. Two-component water reducible polyurethane coatings[J]. Progress in Organic Coatings.1997, 32: 65-71.
    [19]许戈文等.水性聚氨酯材料[M].北京:化学工业出版社,2007,3.
    [20]郭智臣.国内水性聚氨酯涂料发展仍需时日[J].化学推进剂与高分子材料,2008,6(2):62.
    [21]李冰.水性聚氨酯的概况及研究进展[J].涂料与应用,2005,4:11-13.
    [22]瞿金清,黄玉科,黎永津.单组分水性聚氨酯涂料的进展[J].合成材料老化与应用,2002,1:20-22.
    [23]陈红.水性聚氨酯涂料技术进展[J].涂料工业,2006,36(3):47-51.
    [24]陈丽珠,黄洪,陈焕新.水性聚氨酯的发展与应用研究进展[J].涂料技术与文摘,2008,5:13-16.
    [25]瞿金清,黎永津,陈焕钦.水性双组分聚氨酯涂料的研究进展[J].涂料工业,2002,11:34-37.
    [26]王文杰,卢秀萍.新型内乳化剂合成阴离子水性聚氨酯的研究进展[J].山西化工,2005,25(4):20-24.
    [27]吕维忠,涂伟萍,陈焕钦.单组分阴离子水性聚氨酯[J].高分子通报,2001,6:60-65.
    [28]吕维忠,涂伟萍,陈焕钦.阳离子水性聚氨酯的研究进展[J].皮革化工,2003,20(2):10-14.
    [29]康平平,宋文生,李雪娟,等.水性聚氨酯的发展、分类、合成及应用[J].材料导报,2007,11(21):377-380.
    [30]华捷.聚氨酯涂料发展之我见[J].涂料,1999,7:5-8.
    [31]汤薇.水性聚氨酯涂料的制备与应用[J].化工纵横,2000,3:15-17.
    [32]凌秀琴.水性聚氨酯的开发应用前景[J].广西化纤通讯,1999,2:22-27.
    [33] R.D.Oleshuk, A.Chow.Transport of iron halides through polyurethane ether-type membranes[J]. Talanta.1995, 42:957-965.
    [34]寿崇琦,娄嵩.水性聚氨酯的研究综述[J].中国建筑防水,2007,10:14-17.
    [35]吴雄虎,丁绍兰.水性聚氨酯皮革涂饰剂的研究进展[J].中国皮革,2004,33(15):24-27.
    [36] Guise G B, Jackson M B (Inventors). Commonwweath Sxientific and hdustrial Research Organization, A ssignee Bbcked Polyisocyanate Composition for the Treatm ent ofkeratinousM-aterials [p], US: 3898197, 1975.
    [37] Lienert H J, Schuster H,Schafer K etal(Inventors).Bayer Company,Assignee Stabilizde A qu- eous Solution of a Bisuphite B bcked Polyisocyanate [p],US: 3984365.1976.
    [38] Dieterich D (Inventors). Bayer Company, Assignee Polyurethane Polyelectrolytes and Prepar-ing Same[p], US: 3756992, 1973.
    [39] C.赫普伯恩.聚氨酯弹性体[M].烃加工出版社,1987,51-52.
    [40]方禹声,朱吕民.聚氨酯泡沫塑料[M].化学工业出版社,1987,12.
    [41]刘玉海.异氰酸酯[M].化学工业出版社,2004,1.
    [42]马德强,宋锦宏,丁建生.有机异氰酸酯的生产及市场消费状况[J].化工进展,2007,26(5):743-749.
    [43]刘益军.聚氨酯原料及助剂手册[M].北京:化学工业出版社,2005,17-20.
    [44]王立军,辛中印,张帆等.水性聚氨酯技术进展[J].皮革科学与工程,2005,15(2):33-38.
    [45]丁昌春.稳定水性聚氨酯分散液的合成研究[J].胶体与聚合物,2005,23(1):9-14.
    [46]陆雪良,曾小君,陈船妹.聚酯型阳离子水性聚氨酯乳液的合成研究[J].化学世界,2005,4:199-209.
    [47] Duan. Aqueous polyurethane dispersions adhesive compositions wirh improved heat resistance [p], US: 5608000, 1997.
    [48] Duan. Aqueous anionic poly(urethane/urea)dispersions[p]. US: 3703158, 1997.
    [49] Duan. Aqueous non-gelling, anionic polyurethane dispersions and process for their man- ufacture[p]. US: 5610232, 1997.
    [50]肖梦辉,严冰,张名凯,等.阴离子型水性聚氨酯的合成与性能[J].聚氨酯工业,2004,19(1):37-39.
    [51]赵雨花,亢茂青,王心葵.软缎含离子基团的阴离子型水性聚氨酯胶黏剂的研究[J].中国胶黏剂,2006,15(5):1-4.
    [52]郑英丽,翁汉元.聚氨酯水分散液研究进展[J].化学推进剂与高分子材料,2004,2(4):1-6.
    [53]李俊贤.聚氨酯工业手册[M].化学工业出版社,1999:8.
    [54]石元昌,吴佑实,朱志谦,等.FTIR法研究IPDI/DMPA的聚合反应动力学[J].精细石油化工,2002,5:38-40.
    [55]胡津昕,孙先多.水性聚氨酯电脑率与聚沉值的研究[J].聚氨酯工业,2002,17(3):21-24.
    [56]康平平.乙二胺基乙磺酸钠的合成及其在水性聚氨酯-脲中的应用[D].河南洛阳,河南科技大学,2009,33~36
    [57]刘剑洪,任祥忠.阴离子水性聚氨酯分散液胶束粒径及形态的研究[J].高等学校化学学报,2000,21(5):797-800.
    [58]孔志元,何庆迪,殷武等.脂肪族聚氨酯水分散性树脂的合成研究[J].涂料工业,2007,37(6):1-12.
    [59]周善康,许一婷,庄志强.软段PEG含量对水性聚氨酯涂膜结晶性的影响[J].厦门大学学报(自然科学版),2000,39(3):348-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700