纤维素氨基甲酸酯的微波合成、性质及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的枯竭和环境污染的日益恶化,研究和开发以天然高分子为原料的功能材料已成为高分子科学的前沿领域之一。纤维素是自然界最丰富的可再生资源,是未来主要的化工原料之一。目前,我国仍然采用传统、落后的黏胶法生产人造丝、玻璃纸和无纺布,生产过程中由于大量使用CS2而造成环境污染并损害人体健康。因此,开发无污染的纤维素新溶剂以及新的加工方法已成为纤维素工业发展的关键。CarbaCell工艺是指以纤维素氨基甲酸酯(CC)为原料生产纤维素纤维和膜的新工艺。与黏胶法相比,CarbaCell工艺对纤维素浆料要求低,产品易于处理、运输及储存且没有毒性。同时,该方法可以最大限度的利用原有黏胶纤维生产设备,节约了对生产设备的投资。然而,作为CarbaCell工艺生产人造丝和玻璃纸的中间体,CC的合成条件苛刻,生产过程能耗大、成本高,由此制约了CarbaCell工艺的工业化。微波合成是一类高效节能的化工新技术,具有速度快、受热体系温度均匀、无滞后效应以及热效率高的特点。本工作通过微波加热快速合成CC,并对产物的结构、性质和流变行为进行深入研究,进而通过湿法纺丝和流延成膜制备纤维素功能材料。
     本论文的主要创新有以下几点:1)首次利用微波加热法在无催化剂、无溶剂条件下快速合成CC,系统地考察了反应条件对CC合成的影响,并对产物的结构和性能进行了表征;2)以7 wt%NaOH水溶液作为溶剂,首次研究了CC/NaOH溶液的动态黏弹行为,阐明了温度、浓度、氮含量和分子量对溶液流变性能以及溶液-凝胶转变的影响;3)通过实验室小型纺丝和制膜设备制备出新型纤维素氨基甲酸酯纤维和膜,并研究了它们的结构和性能。
     本论文的主要研究内容和结论包括以下几个部分。首先,通过微波加热快速合成纤维素氨基甲酸酯(CC),系统考察了微波功率、反应时间、纤维素来源及其分子量、纤维素/尿素混合物的配料比等因素对CC合成的影响,并通过元素分析、FT-IR、NMR、XRD和TGA等对CC的结构和理化性质进行了表征。研究表明,不同聚合度和结晶度的各种纤维素原料均可通过此方法合成得到CC。低功率(170W)下,反应需要较长时间(15~20min);而高功率(425W)下,反应伴随着纤维素的碳化和交联。因此,采用微波功率为255W,单次反应时间为2~5min进行反应为最佳。随着纤维素/尿素混合物中尿素含量从9.8wt%增加到50.4wt%,所得CC的氮含量从1.255%增加到2.924%;随着反应混合物质量的增加以及间隔微波反应次数的增加,CC氮含量增加。随着氨基甲酸酯基团的引入,纤维素的氢键和晶体结构被部分破环,结晶度降低,但仍保持纤维素Ⅰ型晶体结构。微波合成CC不使用有毒溶剂、无原料损失、无催化剂、无环境污染,且能耗低,是一种高效、绿色的合成新方法。
     CC能很好地溶解在-5~5℃的610 wt%NaOH水溶液中,由此得到透明、稳定的溶液。采用ARES-RFSⅢ型流变仪研究了CC在7 wt% NaOH水溶液中的动态黏弹行为。研究表明,CC溶液的凝胶化过程与温度、CC浓度、氮含量及分子量有关。加热可导致CC溶液转变为凝胶,且其溶液-凝胶化转变为热不可逆过程。随着CC(Mη=7.78×104)浓度从3.0 wt%增加到4.3 wt%,溶液的表观凝胶化温度从36.5℃降低到31.3℃。随着CC氮含量从1.718%增加到5.878%,溶液的表观凝胶化温度由35.7℃降低到27.5℃。随着CC分子量从6.35×104增加到9.56×104,溶液的表观凝胶化温度从38.2℃下降到34.4℃。CC溶液在30℃时的凝胶化时间较短,但在15℃时溶液较为稳定、可长时间储存。体系的溶液-凝胶化转变同样可通过Winter-Chambon理论来精确确定。
     将7 wt% NaOH水溶液预冷至-7℃迅速溶解CC得到纺丝原液。以10wt% H2SO4溶液为凝固浴,由实验室小型纺丝设备成功制备出再生纤维素氨基甲酸酯纤维(RCC),并通过元素分析、光学显微镜、SEM、XRD、13C NMR以及拉力测试等对纤维的形貌、结构和性能进行表征。经过溶解、纺丝和再生过程,CC的氨基甲酸酯基团大部分被水解,其晶体结构由纤维素Ⅰ转变为纤维素Ⅱ。RCC纤维具有圆形的截面和光滑致密的表面结构。随着纺丝拉伸速率的提高,纤维的纤度降低、拉伸强度升高、断裂伸长率呈下降趋势。单丝的拉伸强度为0.8~1.3cN/dtex,断裂伸长率为20~30%。RCC纤维的取向度较低(在0.14~0.19之间),可望通过改进纺丝设备来提高纤维的取向度,由此大幅提高其强度。RCC纤维具有良好的染色性能,在纺织领域具有潜在应用。
     以10wt%H2SO4溶液为凝固浴,由CC/NaOH溶液制备出一系列再生纤维素氨基甲酸酯膜(CCF),并通过元素分析、FT-IR、SEM、XRD、TGA、DMA以及拉力测试等对膜的结构和性能进行表征。CC在溶解和再生过程中,氨基甲酸酯基团被部分水解,晶体结构由纤维素Ⅰ型转变为纤维素Ⅱ型,且结晶度降低。CCF膜具有均匀致密的结构,并具有良好的热稳定性和热力学性质。CCF膜具有优良的力学性能,其拉伸强度为60~70 MPa,伸长率在10~15%之间,并显示良好的透光性能。因此,再生纤维素氨基甲酸酯膜在食品包装和生物材料等领域有着广泛的应用前景。
     本论文为纤维素氨基甲酸酯的合成提供了新的方法和途径。同时,论文阐明了纤维素氨基甲酸酯独特的溶液-凝胶化转变行为,并由此制备出新型纤维素材料。这些研究成果将为CarbaCell工艺的工业化提供重要的信息和科学依据,具有重要的学术价值和应用前景。
Nowadays, with the decreasing of oil resources and worsening environmental pollution, research and development of the natural polymers have been one of the superior areas of polymer science. As the most abundant renewable resources on the earth, cellulose will be one of the main chemical raw materials. In our country, the viscose process is still occupied the leading position in the regenerated cellulose fiber and cellophane industries, although this process generates several environmentally hazardous byproducts, which include CS2, H2S and heavy metals. Therefore, the development of non-polluting solvent and novel process is the key to the development of cellulose industry. CarbaCell process is a novel technology to produce cellulose fibers and films. In comparison with the viscose process, CarbaCell process has the advantage of a better ecological compatibility such as the use of the innocuous urea, relatively stable of cellulose carbamates (CCs), and most of the conventional equipment of a viscose plant can be used without any problems. The starting point of this process is the transformation of cellulose with urea into CCs. There were many rigorous conditions in the conventional synthetic methods of CCs, which had major limitations for potential technical applications. Therefore, industrial CC production sites have not yet been established. The use of microwave heating as a source of heat in synthetic chemistry offers a promising alternative. It displays a number of advantages over conventional heating, such as non-contact heating, better control over the heating process, rapid heating, high rate of reactions and high product yields. In this thesis, we provided a novel method for the microwave-assisted synthesis of CCs, and the structure and properties of the CCs were studied. Moreover, cellulose functional materials were prepared by wet spinning and film casting from CCs.
     The novel creations of this work are as follows. (1) We presented an efficient solvent-free and catalyst-free microwave synthesis of cellulose carbamate for the first time. The reaction conditions on the nitrogen content of CCs were investigated, and the structure and properties of CC were studied. (2) Dynamic viscoelastic properties of cellulose carbamate dissolved in NaOH aqueous solution were systematically studied for the first time. The shear storage modulus and loss modulus as a function of the angular frequency, concentration, nitrogen content, molecular weight, temperature, and time were analyzed and discussed in detail. (3) Novel regenerated CC fibers and films have been prepared from CC/NaOH aqueous solutions and the structure and properties of the materials were investigated.
     The main contents and conclusions in this thesis are divided into the following parts. Firstly, an efficient microwave synthesis of CCs was reported for the first time. The types of raw cellulose materials, the effects of the reaction conditions including the urea content in the mixture, mass of the mixture and pulsed times of microwave irradiation on the nitrogen content of CC samples were investigated in detail. Structure and properties of the CCs were characterized by elemental analysis, FT-IR, XRD, NMR and TGA. It has been found that various sources of cellulose such as cotton linter, wood pulp, bagasse pulp and reed pulp with different degree of polymerization (DP) and crystallinity (χc) were appropriately for the method. The reaction needed a long continuous time (15~20 min) at a low power level (170 W), and was accompanied with carbonization and cross-linking at a relatively high power level (425 W). Therefore,255 W was chosen as the reaction power in the work. The nitrogen content of CCs increased from 1.255 to 2.924%, when with the urea content increased from 9.8 to 50.4 wt%. With an increase of the mixture mass and the pulsed microwave energy times, the nitrogen content of the CCs increased. With the introduction of carbamate groups, the density of hydrogen bonds reduced and the crystalline structure of the native cellulose was partially destroyed. Theχc value of CC decreased, but CCs remained the cellulose I crystalline form. Because of the absence of harmful solvents, no loss of raw materials, and being pollution-free and catalyst-free, the method is a novel, efficient and green procedure.
     CCs display good solubility in 6~10 wt% NaOH solutions at the temperature from -5 to 5℃, and a transparent and stable solution could be obtained. The rheological properties and sol-gel transition behaviors of CC/NaOH solutions were investigated by using dynamic viscoelastic measurement. The results revealed that the CC solutions could be changed into gels by heating, and the sol-gel transition was a thermoirreversible process. The gelation behavior of the CC/NaOH solutions was very sensitive to the test temperature and concentration, nitrogen content and molecular weight of CCs. The apparent gelation temperature of the CC solutions decreased from 36.5 to 31.3℃with the CC concentration increased from 3.0 to 4.3 wt% and decreased from 35.7 to 27.5℃with the nitrogen content increased from 1.718 to 5.878%, and that of 3.8 wt% CC solutions decreased from 38.2 to 34.4℃with the increasing molecular weight from 6.35×104 to 9.56×104. The apparent gelation time of the CC solution was relatively short at 30℃, but the solution was stable for a long time at about 15℃. The Winter-Chambon criterion can also be applied in the CC solution system to clarify their dynamic viscoelastic behavior.
     Regenerated cellulose carbamate fibers (RCC) have been spun successfully on a small and simple homemade wet-spinning apparatus from a CC dope in 7 wt% NaOH aqueous solution. Morphology, structure and properties of RCC were characterized by elemental analysis, optical microscopy, SEM, XRD,13C NMR, and mechanical testing. The carbamate groups were hydrolyzed mostly during the dissolution, spinning and coagulation process, and the CC crystals of the fibers were completely transformed from celluloseⅠtoⅡduring the coagulation process. RCC had circular cross section and smooth dense structure. With the increasing of the spinning draw ratio, the titer of RCC fibers decreased, the tensile strength increased and the elongation at break decreased. The tensile strength and elongation at break of the monofilament was in the range of 0.8~1.3 cN/dtex and 20~30%, respectively. The results of 2D WAXD indicated that the orientation of RCC fiber was very low, which was between 0.14 and 0.19. It is expected to improve spinning equipment to increasing the orientation, and then increasing the fiber strength greatly. RCC fiber had good dyeing properties, which has potential applications in the textile fields.
     A series of regenerated CC films (CCF) were prepared from CC/NaOH dope by using 10 wt% H2SO4 solution as the coagulation bath. The structure and properties of CCF were characterized by elemental analysis, FT-IR, SEM, XRD, TGA, DMA and mechanical test. The carbamate groups were hydrolyzed mostly during the dissolution and coagulation process. The crystals of CCF were completely transformed from celluloseⅠtoⅡduring the coagulation process, and theχc values of CCF decreased. CCF possessed homogenous structure and good thermal stability, as well as thermodynamic properties. The tensile strength and elongation at break of the CCF films were in the range of 60~70 MPa and 10~15%, respectively. Moreover, CCF films had excellent optical transmittance. Therefore, CC films have potential application in food packaging and biological materials.
     The thesis provided a new pathway for the synthesis of cellulose carbamate. Meanwhile, this work clarified a unique sol-gel transition of the cellulose carbamate solution, and the novel cellulose materials were prepared. The thesis provided some meaningful information and scientific evidence for the industrial application on the CarbaCell process. Therefore, there are great scientific significance and prospects of applications.
引文
[1]张俐娜,天然高分子科学与材料,北京:科学出版社,2007。
    [2]张俐娜,天然高分子改性材料及应用,北京:化学工业出版社,2006。
    [3]Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose:Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [4]Schurz J.'Trends in polymer science':A bright future for cellulose. Prog. Polym. Sci.1999,24,481-483.
    [5]Woodings C. Regenerated cellulose fibres. Woodhead Publishing Ltd:England, 2001.
    [6]代丽君、张玉军、姜华珺,高分子概论,北京:化学工业出版社,2006。
    [7]Fink H.-P., Weigel P., Purz H. J., Ganster J. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci.2001,26, 1473-1524.
    [8]Zugenmaier P. J. Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci.2001,26,1341-1417.
    [9]Heinze T., Libert T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci.2001,26,1689-1762.
    [10]Libert T. Cellulose solvents-remarkable history bright future. In cellulose solvents: for analysis and chemical modification, Eds:Libert T, Ileinze T, Edgar K, ACS Symposium Series, American Chemical Society:Washington, DC,2010.
    [11]冯孝中、李亚东,高分子材料,哈尔滨:哈尔滨工业大学出版社,2007。
    [12]Philipp B. Organic solvents for cellulose as a biodegradable polymer and their applicability for cellulose spinning and derivatization. J. Macromol. Sci. Pure Appl. Chem.1993,30,703-714.
    [13]Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R. D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [14]Zhang H., Wu J., Zhang J., He J. S. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose. Macromolecules.2005,38,8272-8277.
    [15]Zhou J., Zhang L. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J.2000,32,866-870.
    [16]吕昂、张俐娜,纤维素溶剂研究进展,高分子学报,2007,10,937-944。
    [17]Miyamoto I., Matsuoka Y., Matsui T., Saito M., Okajima K. Studies on structure of cuprammonium cellulose. Ⅲ. Structure of regenerated cellulose treated by cuprammonium solution. Polym. J.1996,28,276-281.
    [18]高杰、汤烈贵,纤维素科学,北京:科学工业出版社,1999。
    [19]Nishiyama K. In cellulosic man-made fibres, Proceedings of the Singapore viscose chemistry seminar, Akzo-Nobel,1997, April 22-24.
    [20]Yamane C., Mariko M., Saito M., Okajima K. Structures and mechanical properties of cellulose filament spun from cellulose/aqueous NaOH solution system. Polym. J.1996,28,1039-1047.
    [21]Johnson D. L. Cyclic amine oxides as solvents for natural and synthetic polymers. Brit. Pat 1144048,1969.
    [22]McCorsley C. C. Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent. US Patent 4246221,1981.
    [23]Firgo H., Eibl M., Eichinger D. Lyocell an ecological alternative. Lenz. Ber.1995, 75,47-50.
    [24]沈新元,先进高分子材料,北京:中国纺织出版社,2006。
    [25]Hudson S. M., Cuculo J. A. The solubility of cellulose in liquid ammonia/ ammonium thiocyanate solutions:Thermoreversible gelation and a preliminary report on fiber formation. J. Polym. Sci. Polym. Chem. Ed.1982,20,499-511.
    [26]Albrecht W., Reintjes M., Wulfhorst B. Lyocell Fibers. Chem. Fibers Int.1997, 47,289-304.
    [27]Kriiger R. Cellulosic filament yarn from the NMMO process. Lenz. Ber.1994,74, 49-52.
    [28]张俐娜、蔡杰、周金平,一种溶剂组合物及其制备方法和用途,ZL 03128386.1,2005。
    [29]张俐娜、周金平,溶解纤维素的溶剂组合物及其用途,ZL00114486.3,2003。
    [30]张俐娜、蔡杰、周金平,再生纤维素膜和丝的制备方法,ZL200310111566.3,2005。
    [31]Cai J., Zhang L., Zhou J., Li H., Chen H., Jin H. Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol. Rapid Commun.2004,25, 1558-1562.
    [32]Ruan D., Zhang L., Zhou J., Jin H., Chen H. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol. Biosci. 2004,4,1105-1112.
    [33]Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:Structure and properties. Adv. Mater.2007,19,821-825.
    [34]Hill J. W., Jaeobsen R. A. Chemical Process. US Patent 2134825,1937.
    [35]Segal L., Eggerton F. V. Some aspect of the reaction between urea and cellulose. Text. Res. J.1961,31,460-471.
    [36]Hebeish A., Waly A. I., Abou-Zeid N. Y., E1-Alfy E. A. Studies on cellulose carbamate. Text. Res. J.1978,48,468-472.
    [37]Hermanutz F., Oppermam W. Production of cellulose carbamate from cellulose. DE 19635707C1,1996.
    [38]Ekman V., Eklundetal V. Regenerated cellulose fibers from cellulose carbamate solutions. Lenz. Ber.1984,3,38-40.
    [39]Ekman K., Huttunen J., Turunen O. Menetelma alkaliliukoisen selluloosayhdisteen valmistamiseksi. Finnish Pat.61033,1982.
    [40]Huttunen J. I., Turunen O. T., Mandell L., Eklund V., Ekman K. Alkaliliukoisen selluloosajohdannaisen valmistusmenetelma. Finnish Pat.62318,1984.
    [41]Barbara D. Preparation of cellulose carbamate:Its properties and applications. Polimery,1990,7,233-236.
    [42]Turunen O., Mandell L., Eklund V., Ekman K. Procedure for producing soluble cellulose derivatives. US Patent 4486585,1984.
    [43]Henryk S., Alojzy U. Method regenerating cellulose carbamate fibers and foils as well as other cellulose carbamate products. Polish Patent, PL296210,1992.
    [44]Henryk S., Alojzy U. Method regenerating cellulose carbamate fibers and foils as well as other cellulose carbamate products. Polish Patent, PL296252,1992.
    [45]Henryk S., Pawel S. Method of obtaining cellulose carbamate. Polish Patent, PL310288,1995.
    [46]Wemer M., Hary S. Manufacture of cellulose carbamate. DE 4407906,1995.
    [47]Keunecke G, Arnold A., Butzke S. Process for the production of cellulose carbamate. US Patent 5378827,1995.
    [48]Cook P. M., Simm, R. A. UV curable cellulose esters. US Patent 5981738,1999.
    [49]Franks N. E., Varga J. K. Process for making shapeable cellulose and shaped cellulose products. US Patent 4196282,1980.
    [50]Machell J. S., Sand I. D. Method of manufacture of cellulose ester film. US Patent 5219510,1993.
    [51]Voges M., Brck M., Fink H.-P., Gensrich J. In proceedings of the Akzo-Nobel cellulosic man-made fibre seminar, Stenungsund,2000.
    [52]Ghr F., Hermanutz F.新型纤维素氨基甲酸酯纤维及其染色性能,国际纺织导报,2002,2,58-62。
    [53]李青山、何春菊、王庆瑞,纤维素纤维向高性能、多功能方向发展,人造纤维,2002,32,19-21。
    [54]丛军英、王庆瑞,纤维素的氨基甲酸酯化的研究,东华大学学报(自然科学励),2004,30,113-115。
    [55]Urbanowski A. Cellulose carbamate:A new raw material for the manufacture of cellulose fibers. Chem. Fibers Int.1996,46,260-262.
    [56]Segal L., Eggerton F. V. Some aspects of the reaction between urea and cellulose. Text. Res.1961,31,459-461.
    [57]Nelson R., Oliver O. W. Study of cellulose structure and its relation to reactivity. J. Appl. Polym. Sci.1971,36,305-320.
    [58]Okano T., Sarko A. Mercerization of cellulose. Ⅱ. Alkali-cellulose intermediates and a possible mercerization mechanism. J. Appl. Polym. Sci.1985,30,325-329.
    [59]Iller E., Stupinska H., Starostka P. Properties of cellulose derivatives produced from radiation--Modified cellulose pulps. Radiat. Phys. Chem.2007,76, 1189-1194.
    [60]Yamashiki T. Characterzation of celulose treated by the steam explosion method (Part 1):Influence of cellulose resources on changes in morphology, degree of polymerization, solubility and solid struaure. Brit. Polym. J.1991,22,73-83.
    [61]熊墨桂、陈家楠,用氨气爆破法使纤维素活化的研究,广州化学,1992,2,47-52。
    [62]王献玲、方桂珍、胡春平,超声波活化处理对微晶纤维素结构和氧化反应性 能的影响,高等学校化学学报,2007,28,565-567。
    [63]唐爱民、梁文芷,超声波活化处理提高纤维素选择性氧化反应性能的影响,声学技术,2000,19,121-124。
    [64]Huttunen J., Turunen O., Mandell L., Eklund V., Ekman K. Method of producing alkali-soluble cellulose derivative, US Patent 4404369,1983.
    [65]R·坎普弗、R·沃尔夫、J·希里格,连续生产氨基甲酸酯纤维素的方法,CN02128230.7,2003。
    [66]殷延开、陈玉放、戴现波,纤维素的溶解及活化过程,纤维素群学与技术,2004,12,54-63。
    [67]Romankerich O. V., Irklei V. M., Lyashoke L. A. Moleculer-weight distribution of cellulose after ripening. Fibre Chem.2000,2,100-104.
    [68]Kancide K.O., Kajina, K. Paramacodynamic properties of sodium cellalese sulfate. Polymer.1984,16,259-265.
    [69]陈一、包永忠、翁志学等,纤维素的酸活化,纤维素群学与技术,2007,15,27-31。
    [70]王渊龙,氨基甲酸酯法绿色纤维素纤维的研究,天津工业大学硕士毕业论文,2001。
    [71]Reddmann C. E., Riesenfeld F. C., la Viola F. S. Formation of biuret from urea. Ind Eng. Chem.1958,50,633-636.
    [72]Nozawa Y., Higashide F. Partially carbamate reaction of cellulose with urea. J. Appl. Polym. Sci.1981,26,2103-2107.
    [73]Nada A. M. A., Hassan M. L. Thermal behavior of cellulose and some cellulose derivatives. Polym. Dregrad. Slabil.2000,67,111-115.
    [74]Valta K., Sivonen E. Method for manufacturing cellulose carbamate. WO 2003064476,2003.
    [75]Nada A. M. A., Kamel S., El-Sakhawy M. Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym. Degrad. Stabil.2000,70,347-355.
    [76]Loth F., Schjaaf E., Weigel P., Fink H.-P. Method for the production of cellulose carbamate moulded bodies. US Patent 0234229,2005.
    [77]Pinnow M., Fink H.-P., Fanter C., Kunze J. Characterization of highly porous materials from cellulose carbamate. Macromol. Symp.2008,262,129-139.
    [78]Laszkiewicz B., Domasik B. Thermal properties of cellulose carbamate. J. Therm. Anal.1989,35,2235-2242.
    [79]Eklund V., Ekman K., Turunen O., Huttunen J., Selin J. F., Fors J. Method of producing cellulose carbamate. US Patent 4567255,1985.
    [80]Loth F. Method for producing cellulose carbamate. US Patent 0107602,2005.
    [81]Loth F., Schaaf E., Fink H.-P., Kunze J., Gensrich J. Method for the production of cellulose carbamate in an inert organic reaction medium. AZ 10253672.4,2002.
    [82]Loth F., Flink H.-P., Welgel P. Method for the production of cellulose carbamate by means of reactive extrusion. US Patent 0215778,2005.
    [83]刘雁红、赵铮、刘常金、郑焕兰、杨婷,纤维素氨基甲酸酯的合成研究进展,纤维素科学与技术,2009,17,59-66。
    [84]哈丽丹·买买提、努尔买买提、吾满江·艾力,纤维素氨基甲酸酯的合成,高分子材料科学与工程,2005,21,102-104。
    [85]程博闻、任元林、汪渊龙等,纤维素氨基甲酸酯的合成及表征,纺织学报,2007,28,1-4。
    [86]Shen X., Sugiel N., Duan Q., Kitajyo Y, Satoh T., Kakuchi T. Synthesis and characterization of cellulose carbamates having a-amino acid moieties. Polym. Bull.2005,55,317-322.
    [87]Mccormick C. L., Cailais P. A. Derivatization of cellulose in lithium chloride and N, N-dimethylacetamide solutions. Polymer 1987,28,2317-2323.
    [88]Mormann W., Michel U. Improved synthesis of cellulose carbamates without by-products. Carbohydr. Polym.2002,50,201-208.
    [89]Keunecke G. Production of cellulose carbamate with improved solubility properties. US Patent 5831076,1998.
    [90]Keunecke G., Struszczyk H., Mikolajczyk W., Starostka Pawel., Urbanowski A. Method for modified manufacture of cellulose carbamate. US Patent 5906926, 1999.
    [91]Keunecke G. Method for modified manufacture of cellulose carbamate. US Patent 6242595,2001.
    [92]Mamat H., Mamat N., Aili W. Synthesis of cellulose carbamate. Polym. Mater. Sci. Eng.2005,21,102-104.
    [93]Chen G., Li B., Huang Y. Study of the synthesis of cellulose carbamates. Fine Chem.2000,17,356-357.
    [94]Chen G., Huang Y. Deconvolution method for determination of the nitrogen content in cellulose carbamates. Chin. Chem. Lett.2001,12,365-368.
    [95]吾满江·艾利、哈丽丹·买买提、董听、努尔买买提,尿素嵌入法制备纤维素氨基甲酸酯新工艺,ZL 200510070551.6,2007。
    [96]丛军英、梅勇、何春菊、陈雪英、王庆瑞,纤维素氨基甲酸酯的制备及其热性能,齐华大学学报(自然科学版),2004,5,102-105。
    [97]R·凯姆普夫、R·沃尔夫,生产纤维素氨基甲酸酯的两级反应,ZL 01817501.5,2004。
    [98]Vo L. T. T., Siroka B., Manian A. P., Bechtold T. Functionalisation of cellulosic substrates by a facile solventless method of introducing carbamate groups. Carbohydr. Polym.2010,82,1191-1197.
    [99]Turner M. B., Spear S. K., Holbrey J. D., Daly D. T., Rogers R. D. Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromolecules 2005,6,2497-2502.
    [100]胡杰、邵媛、邓宇,离子液体中纤维素氨基甲酸酯的合成,皮革化工,2007,3,31-35。
    [101]Ekman K., Eklund V., Fors J., Huttunen J. I., Selin J. F., Turunen O. T. Cellulose-structure, modification and hydrolysis. Young R. A., Rowell R. M., Eds, John Wiley & Sons, New York, USA 1986, pp 131-148.
    [102]Turunen O., Huttunen J., Ekman K., Eklund V., Mandell L. Procedure for treating cellulose derivative fibres. US Patent 4583984,1986.
    [103]Turunen O., Meinander K., Selin J.-F., Fors J., Eklund V., Mandell L. Non-woven fiber product. WO/1988/005090,1988.
    [104]尹翠玉、许群、沈新元,利用超临界二氧化碳制备纤维素氨基甲酸酯的方法,ZL 200510030727.5,2005。
    [105]Yin C., Li J., Xu Q., Peng Q., Liu Y, Shen X. Chemical modification of cotton cellulose in supercritical carbon dioxide:Synthesis and characterization of cellulose carbamate. Carbohydr. Polym.2007,67,147-154.
    [106]Yin C., Shen X. Synthesis of cellulose carbamate by supercritical CO2-assisted impregnation:Structure and rheological properties. Eur. Polym. J.2007,43, 2111-2116.
    [107]Kakuchi T., Miura Y, Takahashi K., Idogawa K., Kaga H., Sasaki A. Synthesis of cellulose carbamate using supercritical fluid. Kobunshi Ronbunshu 2001,58, 502-506.
    [108]丛军英、洪健、王庆瑞,纤维素氨基甲酸酯纤维的生产,人造纤维,2003,175,26-28。
    [109]哈丽丹·买买提、吾满江·艾力,纤维素氨基甲酸酯溶液的制备及稳定性研究,合成纤维,2007,5,12-14。
    [110]哈丽丹·买买提、吾满江·艾力,纤维素氨基甲酸酯溶液制备工艺研究,纤维素科学与技术,2008,29,5-8。
    [111]Schleicher H., Borrmeister B., Lang H. Method of preparing a cellulose carbamate solution. US Patent 6590095,2003.
    [112]秦显营、杨常玲、王鹏、吕永根、余木火,尿素增溶纤维素氨基甲酸酯的可纺性研究,合成纤维工业,2007,30,37-42。
    [113]哈丽丹·买买提、吾满江·艾力,纤维素氨基甲酸酯溶液的流变性能,纺织学报,2009,30,1-4。
    [114]哈丽丹·买买提、吾满江·艾力、马莉、古丽米热·吐尔地,纤维素氨基甲酸酯溶液黏度与其结构及组成的关系,纺织学报,2009,30,19-23。
    [115]尹翠玉、张建丽、沈新元,纤维素氨基加速安置溶液的流变性能,合成纤维工业,2005,28,28-30。
    [116]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. Comprehensive Cellulose Chemistry, Vol 2:Functionalization of Cellulose, Wiley-VCH: Weinheim,1998, pp.161-164.
    [117]哈丽丹·买买提、吾满江·艾力、马莉、宋平,纤维素氨基甲酸酯纤维的制备方法,CN 100516326C,2009。
    [118]庄旭品、任元林、程博闻、丁长坤,氨基甲酸酯法纺制环境友好型抗菌纤维素纤维的研究,产业用纺织品,2007,11,7-10。
    [119]程博闻、任元林、康卫民,氨基甲酸酯法纺制阻燃纤维素纤维,纺织学报,2007,4,19-21。
    [120]程博闻,环境友好型阻燃纤维素纤维的阻燃性能及机理研究,天津工业大学学报,2005,1,1-3。
    [121]戴树珊、黄卡玛、金钦汉,微波化学,北京:科学出版社,1999。
    [122]Gedye R., Smith F., Westaway K., Ali H., Baldisera L., Leberge L., Rousell J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett.1986, 27,279.
    [123]Antonio D. L. H., Angel D. O., Andres M. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev.2005,34, 164-178.
    [124]Kuhnert N. Microwave-assisted reactions in organic synthesis—Are there any nonthermal microwave effects? Angew. Chem. Int. Ed.2002,41,1863-1866.
    [125]Turner M. D., Laurence R. L., Conner W. C., Yngvesson K. S. Microwave radiation's influence on sorption and competitive sorption in zeolites. Aiche J. 2000,46,758-768.
    [126]Gabriel C., Gabriel S., Grant E. H., Halstead B. S. J., Mingos D. M. P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev.1998,27, 213-224.
    [127]Conner W. C., Tompsett G A. How could and do microwaves influence chemistry at interfaces?J. Phys. Chem. B.2008,112,2110-2118.
    [128]Strauss C. R. Microwave-assisted reactions in organic synthesis-Are there any nonthermal microwave Effects? Response to the Highlight by N. Kuhnert. Angew. Chem. Int. Ed. 2002,41,3589-3591.
    [129]Gedye R. N., Wei J. B. Rate enhancement of organic reactions by microwaves at atmospheric pressure. Can. J. Chem.1998,76,525-532.
    [130]孙晓娟、苏跃增、金凤明,微波化学非热效应初探,江苏石油化学工学院学报,2000,12,42-45。
    [131]薛英本、洪伯铿、杨旭辉等,微波特性及其影响因素的研究,黑龙江商学院学报(自然科学版),2000,16,38-42。
    [132]Cuccurullo G, Berard I. P. G., Carfa G. R. IR temperature measurement in microwave heating. Infrared Phys. Tech.2002,43,145-150.
    [133]袁海军、张钧、黄广连,微波加热与远红外加热均匀性实验研究,国防科技大学学报,1998,3,106-109。
    [134]Stenzel C., Brinkmann M., Muller J., Schertlen R., Venot Y., Wiesbeck W. A. J. Microwave power electromagn. Energy.2001,36,155.
    [135]Kappe C. O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed.2004,43,6250-6284.
    [136]Kappe C. O., Larhed M. All the rave in microwaves. Angew. Chem. Int. Ed. 2005,44,7666-7669.
    [137]Kappe C. O., Stadler A. Microwaves in organic and medicinal chemistry. Wiley-VCH:Weinheim, Germany,2005.
    [138]Ludlow P C., Chase A. Microwave-induced pyrolysis of plastic wastes. Ind. Eng. Chem. Res.2001,40,4749-4756.
    [139]Wiesbrock F., Hoogenboom R., Schubert U. S. Microwave-assisted polymer synthesis:State-of-the-art and future perspectives. Macromol. Rapid Commun. 2004,25,1739-1764.
    [140]Hou A., Wang X., Wu L. Effect of microwave irradiation on the physical properties and morphological structures of cotton cellulose. Carbohydr. Polym. 2008,74,934-937.
    [141]Moharram A. M. A., Mahmoud O. M. X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose Ⅱ during mercerization. J. Appl. Polym. Sci.2007,105,2978-2983.
    [142]Moharram A. M. A., Mahmoud O. M. FTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J. Appl. Polym. Sci.2008,107,30-36.
    [143]Dogan H., Hilmioglu N. D. Dissolution of cellulose with NMMO by microwave heating. Carbohydr. Polym.2009,75,90-94.
    [144]Semsarilar M., Perrier S. Solubilization and functionalization of cellulose assisted by microwave irradiation. Aust. J. Chem.2009,62,223-226.
    [145]Satge C., Verneuil B., Branland P., Granet R., Krausz P., Rozier J., Petit C. Rapid homogeneous esterification of cellulose induced by microwave irradiation. Carbohydr. Polym.2002,49,373-376.
    [146]Satge C., Granet R., Verneuil B., Branland P., Krausz P. Synthesis and properties of biodegradable plastic films obtained by microwave-assisted cellulose acylation in homogeneous phase. C. R. Chimie 2004,7,135-142.
    [147]Crepy L., Chaveriat L., Banoub J., Martin P., Joly N. Synthesis of cellulose fatty esters as plastics-influence of the degree of substitution and the fatty chain length on mechanical properties. Chem.Sus. Chem.2009,2,165-170.
    [148]Gourson C., Benhaddou R., Granet R., Krausz P., Saulnier L., Thibault J.-F. Preparation of biodegradable plastic in microwave oven and solvent-free conditions. C. R. Acad. Sci., Ser. lic:Chim.1999,2,75-78.
    [149]Xu F., Jiang J., Sun R., She D., Peng B., Sun J., Kennedy J. F. Rapid esterification of wheat straw hemicelluloses induced by microwave irradiation. Carbohydr. Polym.2008,73,612-620.
    [150]Possidonio S., Fidale L. C., Seoud O. A. E. Microwave-assisted derivatization of cellulose in an ionic liquid:An efficient, expedient synthesis of simple and mixed carboxylic esters. J. Polym. Sci. Part A:Polym. Chem.2009,48, 134-143.
    [151]Li J., Zhang L., Peng F., Bian J., Yuan T., Xu F., Sun R. Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 2009,14,3551-3566.
    [152]Gospodinova N., Grelard A., Jeannin M., Chitanu G. C., Carpov A., Thiery V., Besson T. Efficient solvent-free microwave phosphorylation of microcrystalline cellulose. Green Chem.2002,4,220-222.
    [153]Brickman W. J. Verfahren zur herstellung von propf-copolymeren. DE 2204442, 1972.
    [154]Matahwa H., Ramiah V., Jarrett W. L., McLeary J. B., Sanderson R. D. Microwave assisted graft copolymerization of N-Isopropyl acrylamide and methyl acrylate on cellulose:Solid state NMR analysis and CaCO3 crystallization. Macromol. Symp.2007,255,50-56.
    [155]Lin C., Zhan H., Liu M., Fu S., Huang L. Rapid homogeneous preparation of cellulose graft copolymer in BMIMCL under microwave irradiation. J. Appl. Polym. Sci.2010,118,399-404.
    [156]Feng H., Li J.A., Wang L.J. Preparation of biodegradable flax shive cellulose-based superabsorbent polymer under microwave irradiation. Bioresources 2010,5,1484-1495.
    [157]Wan Z., Xiong Z., Ren H., Huang Y., Liu H., Xiong H., Wu Y., Han J. Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr. Polym.2011,83,264-269.
    [158]Orozco A., Ahmad M., Rooney D., Walker G. Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Proc. Saf. Environm. Prot.2007,85,446-449.
    [159]Zhang Z., Zhao Z. K. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr. Res.2009,344,2069-2072.
    [160]Ha S. H., Mai N. L., An G., Koo Y. M. Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresource Technol.2011,102,1214-1219.
    [161]Wu Y, Fu Z., Yin D., Xu Q., Liu F., Lu C., Mao L. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem.2010,12,696-700.
    [162]Miura M., Kaga H., Yoshida T., Ando K. Microwave pyrolysis of cellulosic materials for the production of anhydrosugars.J. Wood Sci.2001,47,502-506.
    [163]Sarotti A. M., Spanevello R. A., Suarez A. G. An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach. Green Chem.2007,9,1137-1140.
    [164]Zhu S., Wu Y., Yu Z., Liao J., Zhang Y. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem.2005,40,3082-3086.
    [165]Zhu S., Wu Y, Yu Z., Zhang X., Li H., Gao M. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technol.2006,97, 1964-1968.
    [166]Ma H., Liu W., Chen X., Wu Y, Yu Z. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technol.2009,100, 1279-1284.
    [167]Wu S., Wang C., Gao Y., Zhang S., Ma D., Zhao Z. Production of 5-hydroxymethyifurfural from cellulose catalyzed by lewis acid under microwave irradiation in ionic liquid. Chin. J. Catal.2010,31,1157-1161.
    [168]Zhang Z., Zhao Z. K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresource Technol. 2010,101,1111-1114.
    [169]Lewandowicz G., Fornal J., Walkowski A., Maczynski M., Urbaniak G, Szymansk G. Starch esters obtained by microwave radiation-Structure and functionality. Ind. Crops Prod.2000,11,249-257.
    [170]Maneesriraj P., Phetkoa S., Narkrugsa W., Kasetsart J. Starch phosphate production by microwave technique. Kasetsart J. (Nat. Sci.) 1998,32,234-241.
    [171]Sikora M., Tomasik P., Pielichowski K. Chemical starch modification in the field of microwave. Ⅲ Reaction of potato starch with carboxyamides and carboxylic esters Pol. J. Nutr.Sci.1997,6,25-30.
    [172]Xing G, Zhang S., Ju B., Yang J. Microwave-assisted synthesis of starch maleate by dry method. Starch/Starke 2006,58,464-467.
    [173]Cizova A., Srokova I., Sasinkova V., Malovikova A., Ebringerova A. Carboxymethyl starch octenylsuccinate:Microwave- and ultrasound-assisted synthesis and properties. Starch/Starke 2008,60,389-397.
    [174]Horchani H., Chaabouni M., Gargouri Y, Sayari A. Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: Optimization by response surface methodology. Carbohydr. Polym.2010,79, 466-474.
    [175]张永华,微波干燥法生产高取代度阳离子淀粉,CN 1227847,1998。
    [176]罗雁彬、郑小霞、陈泽芳、郑长义,丙烯酸与淀粉微波固相接枝共聚反应研究,化学研究与应用,1999,6,687-690。
    [177]郑小霞、罗雁彬、陈泽芳、郑长义,丙烯酸丁酯与玉米淀粉的微波辐射接枝共聚合,石油化工,2000,29,19-22。
    [178]黄明德、陈美珠,研究丙烯腈与淀粉在微波加热时的接枝共聚反应,化学世界,1999,40,34-37。
    [179]Singh V., Maurya S. Microwave synthesis, characterization, and zinc uptake studies of starch-graft-poly (ethylacrylate). Int. J. Biol. Macromol.2010,47, 348-355.
    [180]Singh V., Tiwari A. Microwave-accelerated methylation of starch. Carbohydr. Res.2008,343,151-154.
    [181]Yu H., Chen S., Suree P., Nuansri R., Wang K. Effect of microwave irradiation on acid-catalyzed hydrolysis of starch. J. Org Chem.1996,61,9608-9609.
    [182]Khan A. R., Robinson R. J., Johnson J. A. Starch hydrolysis by acid and microwave energy. J. Food Sci.1980,45,1449.
    [183]Muzimbaranda C., Tomasik P., Harare Z. Microwaves in physical and chemical modifications of starch. Starch/Stdrke 1994,46,469-474.
    [184]Penistoon Q. P., Johnson E. L. Process for activating chitin by microwave treatment and improved activated chitin product. Patent 4159932,1979.
    [185]Sahu A., Goswami P., Bora U. Microwave mediated rapid synthesis of chitosan. J. Mater. Sci. Mater. Med.2009,20,171-175.
    [186]Sagheer F. A. A., Al-Sughayer M. A., Muslim S., Elsabee M. Z. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym.2009,77,410-419.
    [187]Roy I., Mondal K., Gupta M. N. Accelerating enzymatic hydrolysis of chitin by microwave pretreatment. Biotechnol. Prog.2003,19,1648-1653.
    [188]Xing R., Liu S., Yu H., Guo Z., Wang P., Li C., Li Z., Li P. Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydr. Res.2005,340,2150-2153.
    [189]Liu L., Li Y., Li Y, Fang Y Rapid N-phthaloylation of chitosan by microwave irradiation. Carbohydr. Polym.2004,57,97-100.
    [190]Singh V., Tripathi D. N., Tiwari A., Sanghi R. Microwave promoted synthesis of chitosan-graft-poly (acrylonitrile). J. Appl. Polym. Sci.2005,95,820-825.
    [191]Singh V., Tiwari A., Tripathi D. N., Sanghi, R. Microwave enhanced synthesis of chitosan- graft-polyacrylamide. Polymer 2006,47,254-260.
    [192]Liu L., Li Y, Fang Y, Chen L. Microwave-assisted graft copolymerization of [epsilon]-caprolactone onto chitosan via the phthaloyl protection method. Carbohydr. Polym.2005,60,351-356.
    [193]Koroskenyi B., McCarthy S. P. Microwave-assisted solvent-free or aqueous-based synthesis of biodegradable polymers. J. Polym. Environ.2002, 10,93-104.
    [194]Kawasaki A., Yamaguchi H., Kato T., Nishama M. Production of protein-polysaccharide complex compound. JP 05339300,1993.
    [195]Yoshida T., Tsubaki S., Teramoto Y., Azuma J. Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology. Bioresource Technol. 2010,101,7820-7826.
    [196]Song J., Li D., Liu C. Response surface analysis of microwave-assisted extraction of polysaccharides from cultured cordyceps militaris. J. Chem. Technol. Biotechnol.2009,84,1669-1673.
    [197]Wang J., Zhang J., Wang X., Zhao B., Wu Y., Yao J. A comparison study on microwave-assisted extraction of artemisia sphaerocephala polysaccharides with conventional method:Molecule structure and antioxidant activities evaluation. Int. J. Biol. Macromol.2009,45,483-492.
    [198]Cheng X., Liu C. Enhanced biogas production from herbal-extraction process residues by microwave-assisted alkaline pretreatment. J. Chem. Technol. Biotechnol.2010,85,127-131.
    [199]http://whlg.cei.gov.cn/doc/hyc47/2011030401351.pdf
    [1]Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose:Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [2]Schurz J.'Trends in polymer science':A bright future for cellulose. Prog. Polym. Sci.1999,24,481-483.
    [3]Fink H.-P., Weigel P., Purz H. J., Ganster J. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci.2001,26, 1473-1524.
    [4]Schlufter K., Schmauder H.-P., Dorn S., Heinze T. Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol. Rapid Commun.2006,27,1670-1676.
    [5]Pohl M., Schaller J., Meister F., Heinze T. Selectively dendronized cellulose: Synthesis and characterization. Macromol. Rapid Commun.2008,29,142-148.
    [6]Pohl M., Heinze T. Novel biopolymer structures synthesized by dendronization of 6-deoxy-6-aminopropargyl cellulose. Macromol. Rapid Commun.2008,29, 1739-1745.
    [7]Zugenmaier P. J. Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci.2001,26,1341-1417.
    [8]Philipp B. Organic solvents for cellulose as a biodegradable polymer and their applicability for cellulose spinning and derivatization. J. Macromol. Sci. Pure Appl. Chem.1993,30,703-714.
    [9]Heinze T., Libert T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci.2001,26,1689-1762.
    [10]Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R. D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [11]Zhang H., Wu J., Zhang J., He J. S. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005,38,8272-8277.
    [12]Zhou J., Zhang L. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J.2000,32,866-870.
    [13]Cai J., Zhang L., Zhou J., Li H., Chen H., Jin H. Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol. Rapid Commun.2004,25, 1558-1562.
    [14]Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:Structure and properties. Adv. Mater.2007,19,821-825.
    [15]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. Comprehensive cellulose chemistry, Vol 2:Functionalization of cellulose, Wiley-VCH, Weinheim 1998, pp.161-164.
    [16]Nozawa Y., Higashide F. Partially carbamate reaction of cellulose with urea. J. Appl. Polym. Sci.1981,26,2103-2107.
    [17]Ekman K., Eklund V., Fors J. Huttunen J. I., Selin J. F., Turunen O. T. Cellulose-Structure, Modification and Hydrolysis, R. A. Young, R. M. Rowell, Eds., John Wiley & Sons, New York, USA,1986, pp.131-148.
    [18]Keunecke G. Production of cellulose carbamate with improved solubility properties. DE 4417140,1998.
    [19]Nada A. M. A., Hassan M. L. Thermal behavior of cellulose and some cellulose derivatives. Polym. Dregrad. Stab.2000,67,111-115.
    [20]Nada A. M. A., Kamel S., El-Sakhawy M. Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym. Dregrad. Stab.2000,70,347-355.
    [21]Loth F., Schaaf E., Fink H.-P., Kunze J., Gensrich J. Method for the production of cellulose carbamate moulded bodies. AZ 102 53 672.4,2002.
    [22]Mormann W., Michel U. Improved synthesis of cellulose carbamates without by-products. Carbohydr. Polym.2002,50,201-208.
    [23]Valta K., Sivonen E. Method for manufacturing cellulose carbamate. WO/2003/064476,2003.
    [24]尹翠玉、许群、沈新元,利用超临界二氧化碳制备纤维素氨基甲酸酯的方法,ZL 200510030727.5,2008.
    [25]Yin C., Li J., Xu Q., Peng Q., Liu Y., Shen X. Chemical modification of cotton cellulose in supercritical carbon dioxide:Synthesis and characterization of cellulose carbamate. Carbohydr. Polym.2007,67,147-154.
    [26]Yin C., Shen S. Synthesis of cellulose carbamate by supercritical CO2-assisted impregnation:Structure and rheological properties. Eur. Polym. J.2007,43, 2111-2116.
    [27]Pinnow M., Fink H.-P., Fanter C., Kunze J. Characterization of highly porous materials from cellulose carbamate. Macromol. Symp.2008,262,129-139.
    [28]吾满江·艾力、哈丽丹·买买提、董听、努尔·买买提,尿素嵌入法制备纤维素氨基甲酸酯新工艺,ZL200510070551.6,2007.
    [29]Nozawa Y, Higashide F. Partially carbamate reaction of cellulose with urea. J. Appl. Polym. Sci.1981,26,2103-2107.
    [30]Kappe C. O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed.2004,43,6250-6284.
    [31]Kappe C. O., Stadler A. Microwaves in organic and medicinal chemistry, Wiley-VCH, Weinheim, Germany,2005.
    [32]Ludlow P. C., Chase A. Microwave induced pyrolysis of plastic wastes. Ind. Eng. Chem. Res.2001,40,4749-4756.
    [33]Gospodinova N., Grelard A., Jeannin M., Chitanu G. C., Carpov A., Thiery V., Besson T. Efficient solvent-free microwave phosphorylation of microcrystalline cellulose. Green Chem.2002,4,220-222.
    [34]Sarotti A. M., Spanevello R. A., Suarez A. G. An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach. Green Chem.2007,9,1137-1140.
    [35]Palm M., Zacchi G. Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromolecules 2003,4,617-623.
    [36]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. Comprehensive cellulose chemistry, Vol 1:Fundamentals and analytical methods, Wiley-VCH, Weinheim Germany 1998, pp.173.
    [37]"Carbon-13 NMR", Sadtler research laboratories, Division of Bio-Rse Laboratories, Inc., Philadelphia, USA,1979, pp.6801C.
    [38]Nehls L., Wagenknecht W., Philipp B., Stscherbina D. Characterization of cellulose and cellulose derivatives in solution by high resolution 13C-NMR spectroscopy. Prog. Polym. Sci.1994,19,29-78.
    [39]McCormick C. L., Callais P. A., Hutchinson B. H. Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 1985,18, 2394-2401.
    [40]Zhou J., Zhang L., Cai J. Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. J. Polym. Sci., Part B:Polym. Phys.2004,42,347-353.
    [1]Kuester J. L. Design, operation and analysis of microwave heated chemical reactors. Res. Chem. Intermed.1994,20,51-59.
    [2]Kappe C. O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed.2004,43,6250-6284.
    [3]Kappe C. O., Stadler A. Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim,2005, pp.410.
    [4]Ludlow-Palafox C, Chase H. A. Microwave-induced pyrolysis of plastic wastes. Ind. Eng. Chem. Res.2001,40,4749-4756.
    [5]Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R. D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [6]Dogan H., Hilmioglu N. D. Dissolution of cellulose with NMMO by microwave heating. Carbohydr. Polym.2009,75,90-94.
    [7]Semsarilar M., Perrier S. Solubilization and functionalization of cellulose assisted by microwave irradiation. Aust. J. Chem.2009,62,223-226.
    [8]Crepy L., Chaveriat L., Banoub J., Martin P., Joly N. Synthesis of cellulose fatty esters as plastics-influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem.2009,2,165-170.
    [9]Li J., Zhang L., Peng F., Bian J., Yuan T., Xu F., Sun R. Microwave-assisted solvent-Free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 2009,14,3551-3566.
    [10]Possidonio S., Fidale L. C., Seoud O. A. E. Microwaveassisted derivatization of cellulose in an ionic liquid:An efficient, expedient synthesis of simple and mixed carboxylic esters. J. Polym. Sci. Part A:Polym. Chem.2009,48,134-143.
    [11]Gospodinova N., Grelard A., Jeannin M., Chitanu G. C., Carpov A., Thiery V., Besson T. Efficient solvent-free microwave phosphorylation of microcrystalline cellulose. Green Chem.2002,4,220-222.
    [12]Palm M., Zacchi G. Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromolecules 2003,4,617-623.
    [13]Nadagouda M. N., Varma R. S. Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 2007,8,2762-2767.
    [14]Sarotti A. M., Spanevello R. A., Suarez A. G. An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach. Green Chem.2007,9,1137-1140.
    [15]Zhu S., Wu Y., Yu Z., Liao J., Zhang Y. Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem.2005,40,3082-3086.
    [16]Zhu S., Wu Y, Yu Z., Zhang X., Li H., Gao M. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technol.2006,97, 1964-1968.
    [17]Ma H., Liu W., Chen X., Wu Y, Yu Z. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technol.2009,100, 1279-1284.
    [18]Zhang Z., Zhao Z. K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresource Technol.2010,101,1111-1114.
    [19]Hong S. M., Park J. K., Lee Y. O. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Res.2004,38, 1615-1625.
    [20]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. Comprehensive cellulose chemistry, Vol 1, Fundamentals and analytical methods. Wiley-VCH, Weinheim,1998, pp.173.
    [21]Kaplan D. L. Biopolymers from renewable Resources. Spinger-Verlag:Berlin Heidelberg,1998, pp.55.
    [22]Nada A. M. A, Kamel S., El-Sakhawy M. Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym. Dregrad. Stab.2000,70,347-355.
    [23]Maunu S., Liitia T., Kauliomaki S., Hortling B., Sundquist J. 13C CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 2000,7, 147-159.
    [24]Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose:Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [25]Strauss C. R., Varma R. S. Microwaves in green and sustainable chemistry. Top Curr. Chem.2006,266,199-231.
    [26]Hou A., Wang X., Wu L. Effect of microwave irradiation on the physical properties and morphological structures of cotton cellulose. Carbohydr. Polym. 2008,74,934-937.
    [27]Conner W. C., Tompsett G. A. How could and do microwave influence chemistry at interfaces? J. Phys. Chem. B 2008,112,2110-2118.
    [1]Voges M., Briick M., Fink H. P., Gensrich J. In proceedings of the Akzo-Nobel cellulosic man-made fibre seminar, Stenungsund, Sweden,2000.
    [2]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht, W. In comprehensive cellulose chemistry, Vol.2:Functionalization of cellulose, Wiley-VCH:Weinheim, Germany,1998, pp.161-164.
    [3]Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose:Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [4]Ekman K., Eklund V., Fors J., Huttunen J. I., Selin J. F., Turunen O. T. In cellulose-structure, modification and hydrolysis; Young, R. A., Rowell, R. M., Eds.; John Wiley & Sons:New York,1986, pp.131-148.
    [5]Keunecke G. Production of cellulose carbamate with improved solubility properties. DE 4417140,1998.
    [6]Loth F., Schaaf E., Fink H.-P., Kunze J., Gensrich J. Method for the production of cellulose carbamate in an inert organic reaction medium. AZ 10253672.4,2002.
    [7]Nada A. M. A., Kamel S., El-Sakhawy M. Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym. Dregrad. Stab.2000,70,347-355.
    [8]Reddmann C. E., Riesenfeld F. C., Iaviola F. S. Formation of biuret from urea. Ind. Eng. Chem.1958,50,633-636.
    [9]Mormann W., Michel U. Improved synthesis of cellulose carbamates without by-products. Carbohydr. Polym.2002,50,201-208.
    [10]Iller E., Stupinska H., Starostka P. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps. Radiat. Phys. Chem.2007,76, 1189-1194.
    [11]Yin C., Li J., Xu Q., Peng Q., Liu Y., Shen X. Chemical modification of cotton cellulose in supercritical carbon dioxide:Synthesis and characterization of cellulose carbamate. Carbohydr. Polym.2007,67,147-154.
    [12]Yin C., Shen X. Synthesis of cellulose carbamate by supercritical CO2-assisted impregnation:Structure and rheological properties. Eur. Polym. J.2007,43, 2111-2116.
    [13]Vo L.T.T., Siroka B., Manian A. P., Bechtold T. Functionalisation of cellulosic substrates by a facile solventless method of introducing carbamate groups. Carbohydr. Polym.2010,82,1191-1197.
    [14]Brown W., Wiskston R. Viscosity-molecular weight relationship for cellulose in cadoxen and hydrodynamic interpretation. Eur. Polym. J.1965,1,1-10.
    [15]Maunu S., Liitia T., Kauliomaki S., Bohortling, Sundquist J.13C CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 2000,7, 147-159.
    [16]Zhou J., Zhang L., Cai J. Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. J. Polym. Sci., Part B:Polym. phys.2004,42,347-353.
    [17]Ferry J. D. Viscoelastic properties of polymers,3rd ed., John Wiley & Sons, New York,1980, pp.509.
    [18]Cai J., Zhang L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 2006,7,183-189.
    [19]Kobayashi K., Huang C., Lodge T. P. Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 1999,32,7070-7077.
    [20]Weng L., Zhang L., Ruan D., Shi L., Xu J. Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 2004,20,2086-2093.
    [21]Rees D. A. Structure, conformation and mechanisms in the formation of polysaccharide gels and network. Adv. Carbohydr. Chem. Biochem.1969,24, 267-332.
    [22]Flory P. J. Introductory lecture. Faraday Discuss Chem. Soc.1974,57,7-18.
    [23]Rees D. A. In:Polysaccharide gels—A molecular view. Chem. Ind. (London) 1972,19,630-636.
    [24]Cabane B., Lindell K., Engstom S., Lindman B. Microphase separation in polymer surfactant systems. Macromolecules 1996,29,3188-3197.
    [25]Lin L., Aoki Y. Rheological images of poly(vinyl chloride) gels.1. The dependence of sol-gel transition on concentration. Macromolecules 1997,30, 7835-7841.
    [26]Selin J., Huttunen J., Turunen O., Eklund V., Ekman K. Cellulose carbamate solutions. US Patent 4526620,1985.
    [27]Roy C., Butdtova T., Navard P. Structure of cellulose-soda solutions at low temperatures. Biomacromolecules 2003,4,259-264.
    [28]Winter H. H., Chambon F. J. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol.1986,30,367-382.
    [29]Chambon F. J., Winter H. H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol.1987,31,683-697.
    [30]te Nijenhuis K., Winter H. H. Mechanical properties at the gel point of a crystallizing poly (vinyl chloride) solution. Macromolecules 1989,22,411-414.
    [31]Vilgis T. A., Winter H. H. Mechanical selfsimilarity of polymers during chemical gelation. Colloid Polym. Sci. 1988,266,494-500.
    [32]Scanlan J. C., Winter H. H. Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point. Macromolecules 1991,24, 47-54.
    [33]Izuka A., Winter H. H., Hashimoto T. Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 1992,25, 2422-2428.
    [34]KJoniksen A.-L., Nystrom B. Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly(vinyl alcohol) near the gelation threshold. Macromolecules 1996,29,5215-5222.
    [35]Mours M., Winter H. H. Relaxation patterns of nearly critical gels. Macromolecules 1996,29,7221-7229.
    [36]Koike A., Nemoto N., Watanabe Y, Osaki K. Dynamic viscoelasticity and FT-IR measurements of end-crosslinking a, co-dihydroxyl polybutadiene solutions near the gel point in the gelation process. Polym. J.1996,28,942-950.
    [37]Schwittay C., Mours M., Winter H. H. Rheological expression of physical gelation in polymers. Faraday Discuss.1995,101,93-104.
    [38]Peyrelasse J., Lamarque M., Habas J. P., Bounia N. E. Rheology of gelatin solutions at the sol-gel transition. Phys. Rev. E.1996,53,6126-6133.
    [39]Lindell K., Cabane B. Structures of physical gels in the EHEC-SDS-water system. Langmuir 1998,14,6361-6370.
    [1]张俐娜,天然高分子改性材料及应用,北京:化学工业出版社,2006。
    [2]Zugenmaier P. J. Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci.2001,26,1341-1417.
    [3]Miyamoto I., Matsuoka Y., Matsui T., Saito M., Okajima K. Studies on structure of cuprammonium cellulose. Ⅲ. Structure of regenerated cellulose treated by cuprammonium solution. Polym. J.1996,28,276-281.
    [4]高杰、汤烈贵,纤维素科学,北京:科学工业出版社,1999。
    [5]Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose:Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [6]Philipp B. Organic solvents for cellulose as a biodegradable polymer and their applicability for cellulose spinning and derivatization. J. Macromol. Sci. Pure Appl. Chem.1993,30,703-714.
    [7]Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R. D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [8]Zhang H., Wu J., Zhang J., He J. S. 1-allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005,38,8272-8277.
    [9]Zhou J., Zhang L. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J.2000,32,866-870.
    [10]吕昂、张俐娜,纤维素溶剂研究进展,高分子学报,2007,10,937-944。
    [11]Fink H.-P., Weigel P., Purz H. J., Ganster J. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci.2001,26, 1473-1524.
    [12]Liu R., Shao H., Hu X. The online measurement of lyocell fibers and investigation of elongational viscosity of cellulose N-methylmorpholine-N-oxide monohydrate solutions. Macromol. Mater. Eng.2001,286,179-186.
    [13]Liu R., Shen Y., Shao H., Wu C., Hu X. An analysis of lyocell fiber formation as a melt-spinning process. Cellulose 2001,8,13-21.
    [14]Niekraszewicz B., Czarnecki P. Modified cellulose fibers prepared by the N-methylmorpholine-N-oxide (NMMO) process. J. Appl. Polym:Sci.2002,86, 907-916.
    [15]Woodings, C. Regenerated cellulose fibres. Woodhead Publishing Ltd:England, 2001.
    [16]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht, W. In comprehensive cellulose chemistry, Vol.2:Functionalization of cellulose, Wiley-VCH:Weinheim, Germany,1998, pp.161-164.
    [17]urunen O., Meinander K., Selin J.-F., Fors J., Eklund V., Mandell L. Non-woven fibre product. WO 005090,1988.
    [18]Belch M., Keunecke G, Wack J. Process for spinning of solutions of cellulose carbamate. US Patent 5968433,1999.
    [19]Belch M., Keunecke G, Wack J. Device for spinning of solutions of cellulose carbamate. US Patent 6234778,2001.
    [20]Loth F., Schaff E., Weigel P., Fink H.-P. Method for the production of cellulose carbamte moulded bodies. WO 099871,2003.
    [21]Loth F., Schaff E., Weigel P., Fink H.-P. Method for the production of cellulose carbamte moulded bodies. US Patent 0234229,2005.
    [22]张俐娜、蔡杰、周金平,一种溶剂组合物及其制备方法和用途,ZL 03128386.1,2005。
    [23]Mao Y., Zhou J., Cai J., Zhang L. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J. Membr. Sci.2006,279,246-255.
    [24]Zhou J., Zhang L., Cai J., Shu H. Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J. Membr. Sci.2002,210,77-90.
    [25]Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [26]Ziabicki A. Man-made fibers science and technology. Wiley:New York/London/Sydney,1967, Vol.1.
    [27]Ziabicki A. Fundamentals of fiber formation. John Wiley & Sons:New York, 1976.
    [28]Kamide K., Okajima K., Kowsaka K. Dissolution of natural cellulose into aqueous alkali solution:Role of super-molecular structure of cellulose. Polym. J. 1992,24,71-86.
    [29]Kamide K., Okajima K., Matsui T., Kowsaka K. Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and carbon-13 NMR. Polym. J.1984,16,857-866.
    [30]Yokota H., Sei T., Horii F., Kitamaru R.13C CP/MAS NMR study on alkali cellulose. J. Appl. Polym. Sci.1990,41,783-791.
    [31]Yamashiki T., Matsui T., Kowsaka K., Saitoh M., Okajima K., Kamide K. New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method. J. Appl. Polym. Sci.1992,44,691-698.
    [32]Kaplan D. L. Biopolymers from renewable resources. Spinger-Verlag:Berlin Heidelberg,1998, pp.55.
    [1]Klemm D., Heubletin B., Fink H. P., Bohn A. Cellulose:Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [2]Schurz J.'Trends in Polymer Science':A bright future for cellulose. Prog. Polym. Sci.1999,24,481-483.
    [3]Mulder M. Basic principles of membrane technology. Kluwer, Dordrecht,1992.
    [4]Fink H. P., Weigei P., Purz H. J., Ganster J. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci.2001,26, 1473-1524.
    [5]Clasen C., Sultanova B., Wilhelms T., Heisig P., Kulicke W. M. Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol. Symp.2006,244,48-58.
    [6]Kim J., Yun S., Ounaies Z. Discovery of cellulose as a smart material. Macromolecules 2006,39,4202-4206.
    [7]Simon J., Miiller, H. P., Koch R., Muller V. Thermoplastic and biodegradable polymers of cellulose. Polym. Degrad. Stab.1998,59,107-115.
    [8]Inamoto M., Miyamoto I., Hongo T., Iwada M., Okajima K. Morphological formation of the regenerated cellulose membranes recovered from its cuprammonium solution using various coagulants. Polym. J.1996,28,507-512.
    [9]McCormick C. L. Preparation of chemically reactive polysaccharides. US 4278790,1981.
    [10]Turbak A. F., El-Katrawy A., Synder F., Auerbach A. Solvent system for cellulose. US 4302252,1981.
    [11]McCormick C. L., Callais P. A., Hutchinson B. H. Jr. Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 1985,18, 2394-2401.
    [12]Dawsey T. R., McCormick C. L. The lithium chloride/dimethylacetamide solvent for cellulose:A literature review. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 1990, C30,405-440.
    [13]Rosenau T., Potthast A., Sixta H., Kosma P. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog. Polym. Sci.2001,26,1763-1837.
    [14]Rosenau T., Hofinger A., Potthast A., Kosma P. On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer 2003,44,6153-6158.
    [15]Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R. D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [16]Zhang H., Wu J., Zhang J., He J. 1-allyl-3-methylimidazolium chloride room temperature ionic liquid:A new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005,38,8272-8277.
    [17]Rogers R. D., Turner M. B., Spear S. K., Holbrey J. D. Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 2004,5, 1379-1384.
    [18]Zhou J., Zhang L. Solubility of cellulose in NaOH/urea aqueous solution. Polym. J.2000,32,866-870.
    [19]张俐娜、蔡杰、周金平,一种溶剂组合物及其制备方法和用途,ZL 03128386.1,2005.
    [20]Mao Y., Zhou J., Cai J., Zhang L. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J. Membr. Sci.2006,279,246-255.
    [21]Zhou J., Zhang L., Cai J., Shu H. Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J. Membr. Sci.2002,210,77-90.
    [22]Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:Structure and properties. Adv. Mater.2007,19,821-825.
    [23]Togawa E., Kondo T. Change of morphological properties in drawing water-swollen cellulose films prepared from organic solutions. A view of molecular orientation in the drawing process. J. Polym. Sci:Polym. Phys.1999, 37,451-459.
    [24]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. Comprehensive cellulose chemistry, Vol 1, Fundamentals and analytical methods. Wiley-VCH, Weinheim,1998, pp.173.
    [25]Rabek J. F. Experimental methods in polymer chemistry:Applications of wide-angle X-ray diffraction (WAXS) to the study of the structure of polymers, Wiley Interscience Chichester,1980, pp.505.
    [26]Nelson M. L., O'Connor R. T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part Ⅱ. A new infrared ratio for estimation of crystallinity in celluloses Ⅰ and Ⅱ. J. Appl. Polym. Sci.1964,8,1311-1324.
    [27]Nelson M. L., O'Connor R. T. Relation of certain infra-red bands to cellulose crystallinity. J. Appl. Polym. Sci.1964,8,1325-1341.
    [28]Nada A. M. A., Kamel S., El-Sakhawy M. Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym. Dregrad. Stab.2000,70,347-355.
    [29]Isogai A., Usuda M., Kato T., Uryu T., Atalla R. H. Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 1989,22, 3168-3172.
    [30]Kaplan, D. L. Biopolymers from renewable resources. Spinger-Verlag:Berlin Heidelberg,1998, pp.55.
    [31]Nada A. M. A., Hassan, M. L. Thermal behavior of cellulose and some cellulose derivatives. Polym. Degrad. Stab.2000,67,111-115.
    [32]Manabe S., Iwata M., Kamide K. Dynamic mechanical absorptions observed for regenerated cellulose solids in the temperature range from 280 to 600 K. Polym. J. 1986,18,1-14.
    [33]Hongoh T., Yamane C., Saitoh M., Okajima K. Supermolecular structures controlling the swelling behavior of regenerated cellulose membrane. Polym. J. 1996,28,1077-1083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700