环氧乙烷和环氧丙烷的开环聚合反应与产物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的飞速发展,环氧乙烷和环氧丙烷的开环聚合产物已经形成了规模庞大的聚醚系列产品群。本文选取环氧乙烷和环氧丙烷的开环聚合为研究对象,运用多种研究手段从开环聚合反应机理、开环聚合反应动力学行为和开环聚合产物的构效关系等方面对烷氧基化开环聚合过程进行了较为全面的研究,以进一步推动和加强我国环氧乙烷和环氧丙烷的开环聚合研究工作。
     本文首先通过量子化学计算方法对烷氧基化开环聚合反应机理进行理论研究。运用前线轨道理论从微观电子结构层次上对环氧烷的各种聚合反应机理进行了分析,探讨了烷氧基化开环聚合反应阴离子和阳离子聚合机理的合理性。进而采用量子化学B3LYP/6-31G+(d)方法、HF/6-31G+(d)方法从理论上研究了烷氧基化开环聚合反应的途径,给出各基元反应的活化能。结果表明,环氧乙烷在碱催化条件下的聚合机理是由伯醇型氧负离子引发的S_N2型反应机理;环氧乙烷的阳离子聚合机理是由叔氧鎓离子参与的S_N2型反应机理;而环氧丙烷在碱催化条件下的聚合机理是由仲醇型氧负离子引发的S_N2型反应机理;向环氧丙烷发生的链转移反应主要通过从环氧丙烷中的甲基中失去氢原子的重排反应历程来进行。以上计算结果很好地阐明了实验事实。
     在理论研究的基础上建立了相应的烷氧基化开环聚合反应模型并进一步研究了环氧乙烷和环氧丙烷的聚合反应动力学行为,包括烷氧基化聚合反应的微观动力学行为,以及在循环喷雾式聚合反应器中进行的烷氧基化反应的宏观动力学行为。本文首次在全面考虑了链引发过程细节以及链转移反应和质子交换反应后推导得到烷氧基化阴离子聚合产物的理论分布,常用的Flory分布和W-N-G分布都只是该分布在某些情形下的简化形式。对目前国际上广泛使用的Press循环喷雾式聚合反应器在烷氧基化反应中的传质特性与动力学规律进行了详细的考察,给出了环氧乙烷和环氧丙烷共聚合反应机理模型,建立了共聚合反应动力学模型。通过对实验数据的数值拟合求取了动力学模型中的各个反应速率常数和质子交换平衡常数,进而得到了各基元反应的活化能。
     在动力学研究结果的基础上,本文建立了相应的Monte Carlo模拟模型,验
With the rapid development of science and technology, there has been a growing interest in the polyethers (primarily homopolymers and copolymers of ethylene oxide and propylene oxide), which have the properties of excellent surface activity, flexibleness of HLB and low toxicity to form a wide variety of polyether series. In this dissertation, the ring-opening polymerization mechanism of ethylene oxide and propylene oxide, the polymerization kinetics and the properties of polyethers are studied using various methods to develop high quality polymerization products and improve the alkoxylation process.Firstly, quantum chemical methods are employed to investigate the mechanism of ring-opening polymerization of ethylene oxide and propylene oxide. By analysis of their frontier orbitals, the reasonability of the cationic and anionic polymerization mechanism of ethylene oxide and propylene oxide is confirmed theoretically. Furthermore, the reaction path of alkoxylation process and the activation energies of respective elementary reactions are studied by B3LYP/6-31G+(d) and HF/6-31G+(d) methods, the results show that the anionic ring-opening polymerization of ethylene oxide proceeds by nucleophilic attack of the primary alcohol propagating anion on monomer, the cationic ring-opening polymerization of ethylene oxide proceeds by nucleophilic attack of monomer on the tertiary oxonium ion and the anionic ring-opening polymerization of propylene oxide proceeds by nucleophilic attack of the secondary alcohol propagating anion on monomer. Calculation results could explain the experimental facts satisfactorily.The polymerization kinetics of ethylene oxide and propylene oxide is studied from the microscopic and macroscopic aspects. The theoretical product distribution is deduced with full consideration of the initiation, propagation, chain transfer and proton exchange reactions, and the most widely used theoretical distribution models, Flory and W-N-G, are the reduction of this distribution. The mass transfer and kinetics
    in alkoxylation spray tower loop reactors are studied, whereafter a copolymerization kinetic model of allyl polyether in alkoxylation spray tower loop reactors is established based on the copolymerization mechanism. The kinetic and equilibrium constants of the described model are determined by regression analysis of the experimental data.The Monte Carlo simulation is employed to validate the copolymerization of ethylene oxide and propylene oxide following the first order Markov model and the sequence distributions of monomer units in copolymers are illustrated by graphs according to Monte Carlo simulation. A new algorithm based on the Monte Carlo method is presented to determine the reactivity ratios, i.e., the reactivity ratios are obtained by comparison of the data simulated from random simulation of chain propagation of copolymerization with the experimental data. Moreover, the alkoxylation reaction kinetics is investigated by the Monte Carlo method. These results of simulation are in good agreement with the experiment.The thermal degradation kinetic parameters are calculated from the TG-DTG curves of polyethers, and the most probable mechanism functions are obtained by the universal integral and differerntial equation methods. The thermal stability of polyethers is investigated by the thermal degradation temperature and the thermal lifetime equations, and the effect of thermal atmosphere, copolyether types, initiator, monomer units' ratios and molecular weight on the thermal stability is revealed. Moreover, the quantum chemical method is employed to calculate the molecular parameters of polyether model compounds and the degradation mechanism of polyether is analyzed theoretically. Based on the identification of intermediates and products of polyether thermal degradation by GPC and NMR, the thermal degradation scheme is proposed, i.e., the thermal degradation proceeds through a random bond cleavage of C-0 and C-C of polyether backbone chain while the thermal oxidative degradation proceeds through a complicated radical bond cleavage of polyether peroxide.Finally, the surface activity of dodecyl and tridecyl block copolyether nonionic
    surfactants (RPE) is studied. A linear decrease of ln[CMC] vs the number of oxypropylene units in the copolymer molecule is observed. Furthermore, the penetrating quality of RPE block copolyether is studied and the effect of initiator structures and monomer units' ratios is revealed.As far as know, the above mentioned results concerned the research on the mechanism of ring-opening polymerization by quantum chemical methods, the simulation of the copolymerization by Monte Carlo method, the research on the thermal degradation (kinetics, degradation temperature and lifetime equations) of polyethers by TG-DTG method have not been seen in the literature.
引文
[1] 钱伯章.世界聚醚多元醇需求和扩能现状,化学推进剂与高分子材料(2004),2(6),51~53.
    [2] 章文.国内外聚醚多元醇市场现状和预测,化工科技市场,(2003),(12),5~7.
    [3] M. Ryner, K. Stridsberg, A. C. Albertsson, H. V. Schenck, M. Svensson. Mechanism of Ring-Opening Polymerization of 1,5-Dioxepan-2-one and L-Lactide with Stannous 2-Ethylhexanoate. A Theoretical Study. Macromolecules, (2001), 34(12), 3877~3881.
    [4] Z. Liu, M. Torrent, K. Morokuma. Molecular Orbital Study of Zinc(Ⅱ)-Catalyzed Alternating Copolymerization of Carbon Dioxide with Epoxide, Organometallics, (2002), 21(6), 1056~1071.
    [5] R. Schmid, T. Ziegler. Polymerization Catalysts with d~n Electrons (n=l-4): A Theoretical Study. Organometallics, (2000), 19(14), 2756~2765.
    [6] P. Ballone, R. O. Jones. Density functional/Monte Carlo study of ring-opening polymerization, Computer Physics Communications, (2002), 147, 325~330.
    [7] M. Tayakout-Fayolle, C. Jallut, E. Pollet, T. Hamaide. Combination of a Monte Carlo approach with the contact time distribution concept for the steady-state modeling of an isothermal heterogeneous coordinated anionic ring opening polymerization reactor, Chemical Engineering Science, (2003), 58, 1509~1519.
    [8] G. Odian. Principles of Polymerization, John Wiley &Sons, New York, (1991).
    [9] D. J. Worsfold, A. M. Eastham. Cationic Polymerization of Ethylene Oxide. Ⅰ. Stannic Chloride, J. Am. Chem. Soc., (1957), 79(4), 897~899;D. J. Worsfold, A. M. Eastham. Cationic Polymerization of Ethylene Oxide. Ⅱ. Boron Trifluoride, J. Am. Chem. Soc., (1957), 79(4), 900~902.
    [10] S. Boileau. In Comprehensive Polymer Science, Vol. 3, Eds.: G. C. Eastmond, A. Ledwith, S. Russo, P. Sigwalt. Pergamon Press, London, (1989), 467~487.
    [11] 朱树新.开环聚合,化学工业出版社,北京,(1987).
    [12] 王梅,魏秀贞,黄鹏程,范昱伟,何正安.环氧丙烷的阴离子聚合,化学世界, (1997), 38(2), 59-64.
    [13] G J. Dege, R. L. Harris, J. S. MacKenzie. Terminal Unsaturation in Polypropylene Glycol, J. Am. Chem. Soc, (1959), 81(13), 3374-3379.
    [14] L. E. St. Pierre, C. C. Price. The Room Temperature Polymerization of Propylene Oxide, J. Am. Chem. Soc, (1956), 78(14), 3432-3436.
    [15] D. M. Simons, J. J. Verbanee. The polymerization of propylene oxide, J. Polym. Sci, (1960), 44(144), 303-311.
    [16] E. C. Steiner, R. R. Pelletier, R. O. Trucks. A study of the polymerization of propylene oxide catalyzed by anhydrous potassium hydroxide, J. Am. Chem. Soc, (1964), 86(21), 4678-4686.
    [17] G. Gee, W. C. E. Higginson, K. J. Taylor, M. W. Trenholme. The Polymerization of Epoxides. Part III. The Polymerization of Propylene Oxide by Sodium Alkoxides, J. Chem. Soc, (1961), 4298-4303.
    [18] K. Yang, G. L. Nield, P. H. Washecheck. Ethoxylation with strontium bases, US 4223164,1980;K. YANG. Barium oxide catalyzed ethoxylation, US 4239917,1980;K. Yang, G. L. Nield, P. H. Washecheck. Inorganic catalyst for alkoxylation of alcohols, US 4302613, 1981;K. Yang, G. L. Nield, P. H. Washecheck. Strontium- and barium-containing alkoxylation systems for unsaturated alcohols, EP 49358, 1982;K. Yang, P. H. Washwcheck, G L. Nield. Alkoxylation of alkanols in the presence of strontium-containing catalysts and promoters, EP 34648,1981;K. Yang, G L. Nield, P. H. Washecheck. Alkoxylation with calcium and magnesium salts, EP 85167,1983.
    [19] G. Smith, W. M. J. R. Sawyer, R. C. Morris. Alcohol Ethoxylates, US 3682849, 1982;J. H. Mccain, J. L. F. Theiling. Process for preparing nonionic surfac-tants-oxyalkylation with promoted barium catalysts, US 4453023,1984.
    [20] W. Reikichi, W. Hiromutsu. Structure of ethylene oxide oligomer complexes. 5. A complex of tetraethylene glycol dimethyl ether with cadmium chloride, J. Am. Chem. Soc, (1976), 98(13), 3764-3768;Y. Shozo, T. Kazutomo, O. Mitsuo. Metal-ion com- plexation of noncyclic poly(oxyethylene) derivatives. I. Solvent extraction of alkali and alkaline earth metal thiocyanates and iodides, Bull. Chem. Soc. Jpn., (1977), 50(6),
     1386~1390;K. L. Matheson, M. F. Cox, Narrow range alcohol ethoxylates, Rivista Italiana delle Sostanze Grasse, (1995), 72(9), 391~395.
    [21] R Sallay, J. Morgos, L. Farkas, I. Rusznak, G. Veress, B. Bartha. Complex forming effect of the product in ethoxylation in the presence of sodium hydroxide. Verification and theoretical interpretation of the Weibull-Toernquist effect, Tenside Detergents, (1980), 17(6), 298~300;W. C. Ziegenhain, R. T. Jackson, L. ROSE. Removal of catalyst from ethoxylates by centrifugation, US 4254287, 1981.
    [22] N. N. Yodhifa. Manufacture of polyethers with high molecular weight and narrow molecular weight distribution, JP 02227426, 1991.
    [23] H. R. Johnston. Method of making a polyether using a double metal cyanide complex compound, US 3278459, 1966.
    [24] 吴立传,余爱芳,张敏,陈立班.双金属催化环氧化物聚合动力学研究,高分子学:掘(2003),(6),871~874。
    [25] 颜再荣,杨淑英,余爱芳,陈立班.用双金属催化剂合成聚醚的研究进展,高分子通报,(2001),(5),1~6.
    [26] 黄亦军,戚国荣,封麟先.双金属氰化物络合物催化环氧烷烃开环聚合的特征,高分子学报 (2002),(3),271~275.
    [27] J. F. Pazos, T. T. Shih. Continuous preparation of low unsaturation polyoxyalkylene polyether polyols with continuous addition of starter, US 5689012, 1997.
    [28] 顾约伦.拜耳公司转让聚醚多元醇工艺,高桥石化 (2004),19(6),55~56.
    [29] I. Kim, J. T. Aim, C. S. Ha, C. S. Yang, I. Park. Polymerization ofpropylene oxide by using double metal cyanide catalysts and the application to polyurethane elastomer, Polymer, (2003), 44, 3417~3428.
    [30] K.S.克莱门特,L.L.瓦尔克,R.M.韦迈儿,R.H.惠特马什.使用金属氰化物催化剂聚合环氧乙烷,CN 1360607A,2002.
    [31] O. W Webser. Living polymerization methods, Science, (1991), 25 1(25), 887~892.
    [32] 黄梅,胡耿源,封麟先.金属卟啉络合体系引发的环状化合物开环聚合,高分子材料科学与工程(1999),15(5),40~44.
    [33] 董雅莉,周新锐,郑玉斌,陈有刚.金属-卟啉引发体系在表面活性剂合成中的应用,是用化学工业(2005),35(1),36~39.
    [34] 曹维孝.新型开环聚合催化剂——四苯基卟啉铝化物,化学通报(1991),(8),25~29.
    [35] T. Aida, S. Inoue. Living polymerization of epoxide catalyzed by the porphyrin-chlorodiethylaluminum system. Structure of the living end, Macromolecules, (1981), 14(5), 1166~1169.
    [36] 黄梅,陈关喜.环氧乙烷、环氧丙烷的金属卟啉络合体系催化聚合,浙江大学学报(2000),34(3),297~300;于剑昆,用TPPAlX络合物引发环氧化物的聚合,黎明化工(1997),(3),8-13.
    [37] 周立宏,唐辉.环氧化物开环聚合催化体系的研究进展,精细与专专用化学品,(2004),12(13),3~5,12.
    [38] 胡富陶,房江华.Fe-Al配位催化环氧丙烷均聚,分子催化,(2001),15(5),388~390
    [39] K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida, K. Kaneda. Mg-AI Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides, J. Am. Chem. Soc., (1999), 121, 4526~4527. 121(18);4526-4527.
    [40] R. A. Kozlovshii, V. V. Yushchenko, L. E. Kitaev, O. V. Bukhtenko, A. M. Voloshchuk, L. N. Vasil' eva, M. V. Tsodikov. Structural organization of phosphorus titanate oxides prepared by the alkoxo method and their catalytic activity in ethylene glycol oxyethylation, Russian Chemical Bulletin, International Edition, (2002), 51 (6), 967~974.
    [41] 王国平,张一烽,沈之荃,叶鸿伟.稀土络合催化环氧丙烷聚合,浙江大学学报,(1988),22(1),67~73.
    [42] 彭建德,张一烽,沈之荃,李竭冰.稀土络合催化剂 Nd(P_(204))_3-Al(i-Bu)_3-H_2O的活性中心形成研究,浙江大学学报(自然科学版),(1990),24(6),810~816.
    [43] 曾宪标,张一烽,张富尧,沈之荃.壳聚糖负载稀土化合物催化环氧乙烷与环氧丙烷共聚合反应研究,高分子子材料科学与工程,(1999),15(4),30~33.
    [44] Y. S. Zheng, L. Q. Ying, Z. Q. Shen. Polymerization ofpropylene oxide by a new neodymium complex of calixarene derivative, Polymer, (2000), 41 (4), 1641~1643.
    [45] V. Jacquier-Gonod, M.-F. Llauro, T. Hamaide. Aluminium and rare earths alkoxides as initiators for the heterogeneous anionic coordinated polymerization of propylene oxide. A ~1H NMR approach of the regioselectivity and transfer ability of the catalytic system, Macromol. Chem. Phys., (2000), 201(1), 12~20.
    [46] T. Nobori, T. Suzuki, S. Kiyono, M. Kouno, K. Mizutani, Y. Sonobe, U. Takaki. Phosphazenium salt and preparation process thereof, and process for producing poly(alkylene oxide), EP 791600, 1997.
    [47] 于剑昆.磷腈类催化剂及其在聚醚多元醇合成中的应用,聚氨酯工业,(2004),19(5),10~14.
    [48] G. Gee, W. C. E. Higginson, P. Levesley, K. J. Taylor. Polymerisation of Epoxides. Part Ⅰ. Some Kinetic Aspects of the Addition of Alcohols to Epoxides catalysed by Sodium Alkoxides. J. Chem. Soc., (1959), 1338~1344.
    [49] G. Gee, W. C. E. Higginson, G. T. Merrall. Polymerisation of Epoxides. Part Ⅱ. The Polymerasation of Ethylene Oxide by Sodium Alkoxides, J. Chem. Soc., (1959), 1345~1352.
    [50] G.-E. Yu, A. J. Masters, F. Heatley, C. Booth, T. G. Blease. Anionic polymerization of propylene oxide. Investigation of double-bond and head-to-head content by NMR spectroscopy, Macromol. Chem. Phys., (1994), 195, 1517~1538.
    [51] F. Patat, E. Cremer, O. Bobleter. Zur frage der anionpolymerisation, Ⅱ. Die addition von Athylenoxyd an phenol, J. Polym. Sci., (1954), 12(1), 489~496.
    [52] E. Santacesaria, M. D. Serio, L. Lisi, D. Gelosa. Kinetics of nonylphenol polymerization catalyzed by potassium hydroxide, lnd Eng. Chem. Res., (1990), 29(5), 719~725.
    [53] C. A. Hall, P. K. Agrawal. Separation of kinetics and mass-transfer in a batch alkoxylation reaction, Can. J. Chem. Eng., (1990), 68, 104~112.
    [54] 杨忠保,范存良,庄椿,陈光华.新型乙氧基化反应技术的开发,石油化工(1996),25(10),702~705.
    [55] 杨忠保,范存良,杨钟辉.钡系催化剂合成 AEO-3 的研究,精细石油化工, (1996),(5),6~10.
    [56] 范存良,杨忠保,奚军.连续乙氧基化反应技术的研究,日用化学品科学(2000),23(增刊),44~47.
    [57] E. Santacesaria, M. D. Serio, R. Garaffa, G. Addino. Kinetics and mechanisms of fatty alcohol polyethoxylation. 1. The reaction catalyzed by potassium hydroxide, Ind. Eng. Chem. Res., (1992), 31(11), 2413~2418;W. B. Satkowski, C. G. Hsu. Polyoxyethylation of Alcohol, Ind. Eng. Chem., (1957), 49(11), 1875~1878.
    [58] E. Santacesaria, M. D. Serio, R. Garaffa, G. Addino. Kinetics and mechanisms of fatty alcohol polyethoxylation. 2. Narrow range ethoxylation obtained with barium catalysts, Ind. Eng. Chem. Res., (1992), 31(11), 2419~2421.
    [59] 张庆,吴肖群,沈庆扬,沈晓清,吕德伟.脂肪醇聚氧乙烯醚聚合反应动力学的研究,化学工程(1993),21(2),5~9,41.
    [60] B. Y. Stul', B. B. Chesnokov. Association-Assisted Kinetics of Pentanol-1 and Heptanol-1 Oxyethylation: Kinetic Parameters of Reactions and Association Parameters of Alcohols in the Series Butanol-1~Heptanol-1, Kinetics and Catalysis, (2002), 43(5), 741~745.
    [61] M. D. Serio, S. D. Martino, E. Santacesaria. Kinetics of fatty acids polyethoxylation, Ind. Eng. Chem. Res., (1994), 33(3), 509~514.
    [62] M. D. Serio, G. Vairo, E Iengo, E Felippone, E. Santacesaria. Kinetics of ethoxylation and propoxylation of 1- and 2- octanol catalyzed by KOH, Ind. Eng. Chem. Res., (1996), 35(11), 3848~3853.
    [63] M. D. Serio, R. Tesser, A. Dimiccoli, E. Santacesaria. Kinetics ofethoxylation and propoxylation of ethylene glycol catalyzed by KOH, Ind. Eng. Chem. Res., (2002), 41(21), 5196~5206.
    [64] 李鹏,朱中南,袁渭康.环氧丙烷开环聚合反应的工程研究:(1)环氧丙烷开环聚合反应动力学,化学反应工程工艺(1989),5(2),60~67.
    [65] 于在璋,李宝芳,蔡振云,金桂娟,潘祖仁.辛基酚为起始剂的环氧丙烷聚合反应动力学研究,化学反应工程与工艺,(1985),1(4),12~17.
    [66] 彭建德,张一烽,沈之荃.环氧化物稀土络合催化开环聚合动力学研究,高分 子学报(1991),(2),184~189.
    [67] 杨薇蔓,汪汉卿,颜星中,黄学俭,韩秀雯.原位核磁研究环氧丙烷的开环聚合反应动力学,高分子学报(1993),(4),456~462.
    [68] J. F. Ding, C. Price, C. Booth. Use of crown ether in the anionic polymerization of propylene oxide-1. Rate of polymerization, Eur. Polym. J., (1991), 27(9), 891~894.
    [69] J. F. Ding, F. Heatley, C. Price, C. Booth. Use of crown ether in the anionic polymerization of propylene oxide-2. Molecular weight and molecular weight distribution, Eur. Polym. J., (1991), 27(9), 895~899.
    [70] G.-E. Yu, F. Heatley, C. Booth, T. G. Blease. Anionic Copolymerisation of Ethylene Oxide and Propylene Oxide. Investigation of Double-Bond Content by NMR Spectroscopy, Eur. Polym. J., (1995), 31 (6), 589~593.
    [71] 刘金廷.环氧丙烷聚合反应动力学研究,吉林石油化工(1994),(3),14~16,33.
    [72] G.-E. Yu, F. Heatley, C. Booth, T. G. Blease. Anionic polymerization of propylene oxide: Isomerization of allyl ether to propenyl ether end groups, J. Polym. Sci.: Part A: Polym. Chem., (1994), 32(6), 1131~1135.
    [73] 尹红,环氧乙烷环氧丙烷无规聚醚分子结构控制方法研究,[博士学位论文] ,浙江大学,(1999).
    [74] F. Heatley, G. E. Yu, C. Booth, T. G. Blease. Determination of reactivity ratios for the anionic copolymerization of ethylene oxide and propylene oxide in bulk, Eur. Polyre. J., (1991), 27(7), 573~579;Y. L. Deng, J. F. Ding, G. E. Yu, R. H. Mobbs, F. Heatley, C. Price, C. Booth. Preparation and properties of stat-copoly-(oxyethyleneoxypaopylene)-block-poly(oxyethylene). I. Use of crown ether in the anionic copolymerization of propylene oxide and ethylene oxide, Polymer, (1992), 33(9), 1959~1962.
    [75] M. Adal, R Flodin, E. Gottberg-Klingskog, K. Holmberg. Determination of monomer reactivity ratios in the copolymerization of ethylene oxide and propylene oxide, Tenside surf Det., (1994), 31(1), 9~11.
    [76] Z. Q. Shen, J. Wu, G. p. Wang. Use of rare earth coordination catalyst for ethylene oxide and propylene oxide copolymerization, J. Polym. Sci. Part A: Polym. Chem., (1990), 28(7), 1965~1997.
    [77] R J. Flory. Molecular size distribution in ethylene oxide polymers, J. Am. Chem. Sot., (1940), 62(6), 1561~1565.
    [78] B. Weibull, B. Nycander. The distribution of compounds formed in the reaction between ethylene oxide and water, ethanol, ethylene glycol, or ethylene glycol monoethyl ether, Acta. Chem. Scand., (1954), 8, 847~858;B. Weibull. The distribution of compounds formed in the reaction between ethylene oxide and alcohols, Acta. Chem. Scand., (1995), 49(3), 207~216.
    [79] L. Gold. Modified distribution functions for ethylene oxide-type polymerizations, J. Chem. Phys., (1952), 20, 1651~1652;L. Gold. Kinetics of yield distribution in bimolecular, simultaneous-consecutive reactions, J. Phys. Chem., (1958), 62, 362~363;L. Gold. Statistics of copolymer molecular size distribution, J. Chem. Phys., (1959), 30, 1360~1361.
    [80] L. Gold. Statistics of Polymer Molecular size distribution for an invariant number of propagating chains, J. Chem. Phys., (1958), 28, 91~99;L. Gold. Variable reaction rate theory of polymer size distribution, J. Chem. Phys., (1959), 30, 1284~1286.
    [81] G. Natta, R. Mantica. The distribution of products in a series of consecutive competive reactions, J. Am. Chem. Sot., (1952), 74(12), 3152~3156.
    [82] D. R. Weimer, D. E. Cooper. Component distribution of alcohol-ethylene oxide adducts, J. Am. Oil Chem. Soc., (1966), 43(7), 440~445.
    [83] 杨忠保.乙氧基化反应技术的现状与发展前景,日用化学工业,(1997),(3),23~27;杨忠保.聚醚生产技术的现状与进展,金山油化纤(1993),12(2),46~50.
    [84] G. J. Stockburger, J. D. Brandner. The Reactions of Alkylene oxides with Various Butyl and Other Alcohols, J. Am. Oil Chem. Soc., (1963), 40, 590~594.
    [85] P. Sallay, M. H. M. Ahmed, S. Bekassy, L. Farkas, A. Vig, I. Rusznak. Molar mass distribution of hydroxyethylated aralkyl alcohols, Periodica Polytechnica Set Chem. Eng., (2000), 44(2), 95~110.
    [86] 于剑昆.聚醚合成反应器工艺进展,化学推进剂与高分子材料(1998),(1),19~21.
    [87] 朱建民,刘兆滨,李晓燕.聚醚型非离子表面活性剂生产技术现状与发展,辽 阳石油化工高等专科学校学报(1995),11(4),7~17.
    [88] 潘正律.聚醚反应与聚醚反应器,聚氨酯工业(1993),(3),28~31.
    [89] 马文斌,孙立宏.乙氧基化工艺的最新进展,精细石油化工(1997),(2),12~15.
    [90] 董慧茹,王英,毕鹏禹.聚醚型表面活性剂结构的波谱表征,北京化工大学学报(2004),31(2),78~81.
    [91] 彭勤纪,张蓉,靳煜,张华,王壁人.典型表面活性剂结构和组成的波谱表征——脂肪醇聚氧乙烯醚和壬基酚聚氧乙烯醚的波谱,分析测试学报(2001),20(6),36~39.
    [92] 魏俊富,张纪梅,葛启.~1H NMR确定环氧乙烷/环氧丙烷聚醚的结构,精细化工,(1999),16(3),12~14.
    [93] F. Heatley, Y. Z. Luo, J. F. Ding, R. H. Mobbs, C. Booth. A ~(13)C Nuclear Magnetic Resonance Study of the Triad Sequence Structure of Block and Statistical Copolymers of Ethylene oxide and Propylene oxide, Macromolecules, (1988), 21 (9), 2713~2721.
    [94] 靳煜,孙婷,张蓉,彭勤纪.脂肪胺聚氧乙烯醚结构的核磁共振波谱表征,分析化学(2003),31(6),659~663.
    [95] 胡耿源,黄梅,陈关喜,封麟先.聚醚型化合物的核磁共振碳谱解析,分析测试学报,(1998),17(6),88~91.
    [96] 张宪旺.用~(13)C、~1H及APT研究聚氧乙烯-聚氧丙烯聚醚结构,石油化工(1990),19(4),256~261.
    [97] 雍忠根.用~(13)C-NMR研究环氧丙烷与环氧乙烷共聚醚的序列结构,聚氨酯工业,(1991),(4),36~42.
    [98] F. C. Schilling, A. E. Tonelli. Carbon-13 NMR Determination of Poly(propylene oxide) Microstructure, Macromolecules, (1986), 19(5), 1337~1343.
    [99] L. Yang, F. Heatley, T. G. Blease, R. I. G. Thompson. Determination of the oligomer distribution in ethoxylated linear and branched alkanols using ~(13)C-NMR, Eur. Polym. J., (1997), 33(2), 143~151.
    [100] T. Flood, A. Ghosh. Characterization of the chain distribution in ethoxy/propoxy copolymers by NMR and mass spectrometry, PPG Technology Journal, (1998), 4(1),
    [101] E. B. Whipple, P. J. Green. Sequence Analysis of Ethylene oxide-Propylene oxide Copolymers by Carbon-13 Nuclear Magnetic Resonance, Macromolecules, (1973), 6(1), 38~42.
    [102] 周子南,高林,孙克时,景凤英,吴盛荣,方天如.环氧乙烷-环氧丙烷无规共聚醚链结构的核磁共振研究,分析化学(1991),19(9),1015~1019.
    [103] 齐永新,胡世民,于晶,张凤英.聚醚多元醇的生产现状及技术进展,兰化科技,(1997),15(2),117~121;陈风秋.聚醚多元醇GEP-560G的抗氧化性能研究,高桥石化(2003),18(5),6~9.
    [104] 杨清,雷芳龄.聚醚多元醇热稳定性研究,中国塑料(1991),5(1),78~82;杨清,雷芳龄.聚醚多元醇热稳定性研究,黎明化工(1991),(2),38~40.
    [105] 武燕丽,胡丽霞,刘春花.化学纤维油剂的发展方向,河南纺织科技(2001),22(2),2~4.
    [106] 葛继均,崔永芳,葛启.涤纶高速纺POY油剂配方设计技术依据,合成纤维工业(1991),16(2),48~52.
    [107] 翟晓文,武荣瑞.聚醚-无机盐复合物导电性的研究进展,高分子通报(1998),(1),79~83,40.
    [108] G. Gallet, S. Carroccio, R Rizzarelli, S. Karlsson. Thermal degradation of poly (ethylene oxide-propylene oxide-ethylene oxide) triblock copolymer: comparative study by SEC/NMR, SEC/MALDI-TOF-MS and SPME/GC-MS, Polymer, (2002), 43, 1081~1094.
    [109] 钟世云,许乾慰,王公善.聚合物降解与稳定化,化学工业出版社,北京,(2002),19~58.
    [110] S. L. Madorsky, S. Straus. Thermal Degradation of Polyethylene oxide and Polypropylene oxide, J. Polym. Sci., (1959), 36, 183~194.
    [111] N. Grassie, G. A. E Mendoza. Thermal degradation of polyether-urethanes: Part 1—Thermal degradation of poly(ethylene glycols) used in the preparation of polyurethanes, Polym. Degrad. Stab., (1984), 9(3), 155~165.
    [112] R. E Lattimer. Mass spectral analysis of low-temperature pyrolysis products from poly(ethylene glycol), J. Anal. AppL Pyrolysis, (2000), 56(1), 61~78.
    [113] L. Costa, G. Camino, M. R Luda, G. G. Cameron, M. Y. Qureshi. The thermal degradation of poly(propylene oxide) and its complexes with LiBr and LiI, Polym. Degrad Stab., (1995), 48(3), 325~331.
    [114] S. Morlat, J. L. Gardette. Phototransformation of water-soluble polymers. I: photo- and thermooxidation of poly(ethylene oxide) in solid state, Polymer, (2001), 42(14), 6071~6079.
    [115] L. Yang, F. Heatley, T. G. Blease, R. I. G. Thomson. A Study of the mechanism of the oxidative thermal degradation of poly(ethylene oxide) and poly(propylene oxide) using ~1H- and ~(13)C- NMR, Eur. Polym. J., (1996), 32(5), 535~547.
    [116] S. Han, C. Kim, D. Kwon. Thermal degration of poly(ethyleneglycol), Polym. Degrad Stab., (1995), 47(2), 203~208.
    [117] 罗善国,陈福泰,谭惠民,张建国,罗运军.多种谱学方法研究环氧乙烷/四氢呋哺共聚醚的热氧降解,分析化学(2001),29(5),516~521.
    [118] 罗善国,陈福泰,谭惠民,张建国,满光磊,罗运军.NMR研究聚乙二醇的热氧降解,高分子材料科学与工程(2001),17(4),128~130.
    [119] O. A. Mkhatresh, F. Heatley. A study of the products and mechanism of the thermal oxidative degradation of poly(ethylene oxide) using ~1H and ~(13)C 1-D and 2-D NMR, Polym. Int., (2004), 53, 1336~1342.
    [120] O. A. Mkhatresh, F. Heatley. A ~(13)C NMR study of the products and mechanism of the thermal oxidative degradation of poly(ethylene oxide), Macromol. Chem. Phys., (2002), 203, 2273~2280.
    [121] P. J. F. Grifflths, J. G. Hughes, G. S. Park. The autoxidation of poly(propyleneoxide)s, Eur. Polym. J., (1993), 29(2/3), 437~442.
    [122] Z. Barton, T. J. Kemp, A. Buzy, K. R. Jennings. Mass spectral characterization of the thermal degradation of poly(propylene oxide) by electrospray and matrix-assisted laser desorption ionization, Polymer, (1995), 36(26), 4927~4933.
    [123] P. Gauvin, J. Lemaire, D. Sallet. Photo-oxydation de polyether-bloc-polyamides, 3. Proprietes des hydroperoxydes dans les homopolym'res de polyethers correspondants, Makromol. Chem., (1987), 188(8), 1815~1824.
    [124] G. Gallet, B. Erlandsson, A.-C. Albertsson, S. Karlsson. Thermal oxideation of poly(ethylene oxide-propylene oxide-ethylene oxide) triblock copolymer: focus on low molecular weight degradation products, Polym. Degrad. Stab., (2002), 77, 55-66.
    [125] C. Decker, J. Marchal. Caracterisation de reactions primaires de degradation oxydante au cours de l'autoxydation des polyoxyethylenes a 25℃: Etude en solution aqueuse avec amorcage par radiolyse du solvant. VI. Polyoxyethylene: Produits d'oxydation et schema cinetique, Makromol. Chem., (1973), 166(1), 155-178.
    [126] C. Decker. Radiation-induced oxidation of solid poly(ethylene oxide). I. Experimental results, J. Polym. Sci.: Polym. Chem. Ed, (1977), 15(4), 781-798.
    [127] C. Decker. Radiation-induced oxidation of solid poly(ethylene oxide). II. Mechanism, J. Polym. Sci.: Polym. Chem. Ed, (1977), 15(4), 799-813.
    [128] L. Costa, G. Camino, M. P. Luda, G. G. Cameron, M. Y. Qureshi. The thermal oxidation of poly(propylene oxide) and its complexes with LiBr and LiI, Polym. Degrad. Stab., (1996), 53(3), 301-310.
    [129] U. Hahner, W. D. Habicher, K. Schwetlick. Studies on the thermooxidation of ethers and polyethers: Part I-The uninhibited thermooxidation of a polyether, Polym. Degrad. Stab., (1991), 34(1-3), 111-118.
    [130] L. Costa, A. M. Gad, G. Camino, G. G. Canmeron, M. Y. Qureshi. Thermal and Thermooxidative Degradation of Poly(ethylene oxide)-Metal Salt Complexes, Mac- romolecules, (1992), 25(20), 5512-5518.
    [131] L. Costa, G. Camino, M. P. Luda, G. G. Cameron, M. Y. Qureshi. Thermal and thermo-oxidative degradation of poly(trimethylene oxide) and its complexes with NaCNS and LiClO_4, Polym. Degrad. Stab., (1998), 62, 49-56.
    [132] G. G. Cameron, M. D. Ingram, M. Y. Qureshi, H. M. Gearing. The Thermal Degradation of Poly(ethylene oxide) and its complex with NaCNS, Eur. Polym. J., (1989), 25(7/8), 779-784.
    [133] C. Robitaille, S. Marques, D. Boils, J. Prud'homme. Thermal Properties of Poly(ethylene oxide) Complexed with NaSCN and KSCN, Macromolecules, (1987), 20(12), 3023-3034.
    [134] D. Al-Sammerrai, N. Nidawy. Study of thermal stabilities of polyethyleneoxides(molecular weight range, M_n=200-4000), Thermochimica Acta., (1988), 132, 245~251.
    [135] J. Scheirs, S. W. Bigger, O. Delatycki. Characterizing the solid-state thermal oxidation of poly(ethylene oxide) power, Polymer, (1991), 32(11), 2014~2019.
    [136] J. Plucinski, R. Janik. Thermooxidative decomposition of nonionic Pluronic-type surfactants, Tenside Detergents, (1982), 19(2), 83~88;J. Plucinski, R. Janik, O. Staroojciec. Oxidation of nonionic surfactants of the pluronic and tetronic type, Tenside Detergents, (1980), 17(4), 186~190.
    [137] B. Erlandsson. Stability-indicating changes in poloxamers: the degradation of ethylene oxide-propylen oxide block copolymers at 25 and 40℃, Polym. Degrad. Stab., (2002), 78, 571~575.
    [138] E. Santacesaria, D. Gelosa, M. D. Serio, R. Tesser. Thermal stability of nonionic polyoxyalkylene surfactants, J. Appl. Polym. Sci., (1991), 42(7), 2053~2061.
    [139] 吉佩芳.运用热分析技术选择聚醚的热稳定抗氧剂,金俊石油化工,(1992),10(3),4~9.
    [140] 王伟,尚炳坤.抗氧剂对聚乙二醇氧化稳定性的影响,化学推进剂与高分子材料(2000),(4),30~31.
    [141] 颜再荣,吴立传,余爱芳,杨淑英,陈立班.DMC聚醚的降解研究,高分子学报,(2003),(1),129~132.
    [142] 刘德源,翟春源.关于聚醚多元醇起始热分解温度的探讨,聚氨酯工业,(1994),(4),33~35,39.
    [143] 张一烽,段清国,沈之荃.高分子量聚环氧乙烷的合成与降解性能研究,精细石油化工(1988),(4),18~21.
    [144] 方天如,孙克时,高林,徐素贤,朱晓光.水溶性聚合物和两亲聚合物:12.环氧乙烷—环氧丙烷无规共聚醚结构与性能的关系,功能高分子学报(1992),5(1),47~53.
    [145] 胡少强,郭旭明,尚炳坤,王伟.聚醚用抗氧剂的热分析研究,聚氨酯工业,(2003),18(4),10~13.
    [146] 王文,任夕娟,孙国良,车民.化纤油剂用表面活性剂使用寿命及热分解动力 学研究,合成技术及应用(1999),14(2),13~16.
    [147] K. Vovan, S. L. Malhotra, L.-P. Blanchard. Kinetic Study of the Thermal Decomposition of Poly(oxypropylene) Glycols by Differential Scanning Calorimetry, J. Appl. Polym. Sci., (1974), 18, 2671~2691.
    [148] F.-Y. Wang, C.-C. M. Ma, W.-J. Wu. Kinetic Parameters of thermal degradation of polyethylene glycol-toughened novolac-type phenolic resin, J. Appl. Polym. Sci., (2001), 80, 188~196.
    [149] A. M. Afifi-Effat, J. N. Hay. The Thermal Stabilization of Polyethylene oxide, Eur. Polym. J., (1972), 8, 289~297.
    [150] R. B. Jones, C. J. Murphy, L. H. Sperling, M. Farber, S. P. Harris, G. E. Manser. Thermal Decomposition behavior of poly[3,3-bis(ethoxymethyl) oxetane] and related polyethers, J. Appl. Polym. Sci., (1955), 30, 95~109.
    [151] 林梦海.量子化学计算方法与应用,科学出版社,北京,(2004).
    [152] J. B. Foresman, E. Frisch. Exploring Chemistry with Electronic Structure Methods. (Second Edition), Gaussian Inc., USA, (1996).
    [153] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, E Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, E M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 03, Revision B. 03, Gaussian Inc., Pittsburgh PA, (2003).
    [154] 杨玉良,张红东.高分子科学中的Monte Carlo方法,复旦大学出版社,上海,(1993).
    [155] K. Platkowshi, K. H. Reichert. Application of Monte Carlo methods for modelling of polymerization reactions, Polymer, (1999), 40(4), 1057~1066.
    [156] N. Metropolis, S. M. Ulam. The Monte Carlo method, J. Am. Stat. Ass., (1949), 44, 335~353.
    [157] K. Binder, W. Paul. Monte Carlo simulations of polymer dynamics: Recent advances, J. Polym. Sci.: Polym. Phys. Ed., (1997), 35(1), 1~31.
    [158] Y. U. Lee, S. S. Jang, W. H. Jo. Off-lattice Monte Carlo simulation of hyperbranched polymers, 1. Polycondensation of AB_2 type monomers, Macromol. Theory Simul., (2000), 9, 188~195.
    [159] 吕文琦,丁建东.连锁聚合反应的动态Monte Carlo模拟及其浓度效应,中国科学B缉:化学(2005),35(1),27~32.
    [160] I. Chung. Monte Carlo simulation of free radical telomerization, Polymer, (2000), 41(15), 5643~5651.
    [161] J. P. He, H. D. Zhang, J. Chen, Y. L. Yang. Monte Carlo simulation of kinetics and chain length distribution in living free-radical polymerization, Macromolecules, (1997), 30(25), 8010~8018.
    [162] 陈天红,冯鸣华,左榘,何炳林.计算机Monte Carlo法模拟自由基交联共聚网络结构的增长,离子交换与吸附,(1998),14(2),139~143.
    [163] S. S. Jang, W. S. Ha, W. H. Jo, J. H. Youk, J. H. Kim, C. R. Park. Monte Carlo simulation of copolymerization by ester interchange reaction in miscible polyester blends, J. Polym. Sci. Part B: Polym. Phys., (1998), 36(10), 1637~1645.
    [164] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., (1977), 81(25), 2340~2361.
    [165] 童伟达,陆建明,孙猛,杨玉良.自由基聚合反应的Monte Carlo模拟,高等学校化学学报(1991),12(7),979~982.
    [166] K. Platkowski, A. Pross, K. H. Reichert. The inverse emulsion polymerization of acrylamide with pentaerythritolmyristate as emulsifier. 2. Mathematical modeling, Polym. lnt., (1998), 45(2), 229~238.
    [167] H. Liang, F. Li, X. He, W. Jiang. Monte Carlo simulation for the modification of polymer via grafting, Eur. Polym. J., (2000), 36, 1613~1617.
    [168] 凌君,沈之荃,陈万里.共聚合多分散体系的Monte Carlo仿真算法及应用,中国科学:B辑(2002),32(4),308~315.
    [169] 凌君,新型稀土催化剂催化开环聚合及Monte Carlo模拟研究[博士学位论文] ,浙江大学,(2002).
    [170] 詹晓力,罗正鸿,陈丰秋,阳永荣.基于Monte Carlo模拟的化学反应动力学参数估算,高等学校化学学报(2003),24(8),1511~1514.
    [171] 罗正鸿,D_4/APAEDMS的本体开环共聚与数学模拟,[博士学位论文] ,浙江大学,(2003).
    [172] W.施耐贝尔.聚合物降解原理及应用,化学工业出版社,北京,(1988).
    [173] 胡荣祖,史启祯.热分析动力学,科学出版社,北京,(2001).
    [174] 刘振海.分析化学手册(第二版)第八分册:热分析,化学工业出版社,北京,(2000).
    [175] 尹红,陈志荣.高速纺丝油剂用无规聚醚的起始端基结构控制,合成纤维工业(2001),24(4),16~18.
    [176] K. Frimand, K. J. Jalkanen. SCC-TB, DFT/B3LYP, MP2, AMl, PM3 and RHF study of ethylene oxide and propylene oxide structures, VA and VCD spectra, Chem. Phys., (2002), 279, 161~178.
    [177] R. E Pereira, A. M. Rocco, C. E. Bielschowsky. Poly(ethylene oxide): Electronic Structure, Energetics, and Vibrational Spectrum, J. Phys. Chem. B, (2004), 108, 12677~12684.
    [178] A. Vila, R. A. Mosquera. AIM electron density analysis on the structure and bonding in oxiranes, Journal of Molecular Structure (Theochem), (2002), 586, 47~56.
    [179] J. M. Coxon, R. G. A. R. Maclagan, A. Rauk, A. J. Thorpe, D. Whalen. Rearrangement of Protonated Propene Oxide to Protonated Propanal, J. Am. Chem. Soc., (1997), 119(20), 4712~4718.
    [180] 王大喜,杜永顺.烷基苯酚聚氧乙烯醚酸碱催化缩聚机理的量子化学研究, 石油学报(石油加工),(2002),18(5),58~63.
    [181] A. D. Becke. Density-functional thermochemistry. Ⅲ. The role of exact exchange, J. Chem. Phys., (1993), 98(7), 5648~5652.
    [182] J. J. R Stewart. MOPAC: A Semiempirical Molecular Orbital Program, J. Comp. Aid. Mol. Des., (19911), 4, 1~105.
    [183] J. J. P. Stewart, Optimization of Parameters for Semiempirical Methods, I: Method, J. Comput. Chem., (1989), 10(2), 209~220;J. J. E Stewart, Optimization of Parameters for Semiempirical Methods, Ⅱ: Applications, J. Comput. Chem., (1989), 10(2), 221~264.
    [184] J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch. Toward a systematic molecular orbital theory for excited states, J. Phys. Chem., (1992), 96(1), 135~149.
    [185] R. E. Stratmarnn, G. E. Scuseria, and M. J. Frisch. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., (1998), 109(19), 8218~8224;R. Bauernschrnitt, R. Ahlrichs. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett., (1996), 256(4,5), 454~464;M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys., (1998), 108(11), 4439~4449.
    [186] 朱永,韩世纲,朱平仇.量子有机化学,上海科学技术出版社,上海,(1986).
    [187] 陈志行.有机分子轨道理论,山东科学技术出版社,济南,(1991).
    [188] 陈念陔,高坡,乐征宇.量子化学理论基础,哈尔滨工业大学出版社,哈尔滨,(2002).
    [189] M. J. S. Dewar, W. Thiel. Ground States of Molecules, 38: The MNDO Method Approximations and Parameters, J. Am. Chem. Soc., (1977), 99(15), 4899~4907.
    [190] C. Gonzalez, H. B. Schlegel. An Improved Algorithm for Reaction Path Following, J. Chem. Phys., (1989), 90(4), 2154~2161;C. Gonzalez, H. B. Schlegel. Reaction Path Following in Mass-weighted Internal Coordinates, J. Phys. Chem. (1991)), 94(14), 5523~5527.
    [191] A. P. Scott, L. Radom. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock. Maller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem., (1996), 100(41), 16502~16513.
    [192] 魏运洋,李建.化学反应理理导论,科学出版社,北京,(2004).
    [193] 应圣康,余丰年.共聚合原理,化学工业出版社,北京,(1984).
    [194] 唐敖庆.高分子反应统计理论,科学出版社,北京,(1985).
    [195] 杨梅林,沈家骢.加聚反应微观动力学,高分子通报(1989),(2),7~17.
    [196] 王万兴,张维冰.脂肪醇聚氧乙烯醚合成反应的动力学研究(一):强碱催化等速率离子反应机理的理论分布,表面活性剂工业(1992),(3),20~23,45.
    [197] 张维冰,王万兴.脂肪醇聚氧乙烯醚合成反应的动力学研究(二):强碱催化环氧乙烷加成速率的变化规律,表面活性剂工业(1993),(4),8~11.
    [198] 张维冰,王万兴.脂肪醇聚氧乙烯醚合成反应的动力学研究(三):强碱催化非等速率离子反应机理的理论产物分布,表面活性剂工业(1996),(1),15~18.
    [199] 张维冰,王万兴.脂肪醇聚氧乙烯醚合成反应的动力学研究(四):强碱催化环氧乙烷加成速率的变化规律,表面活性剂工业(1996),(2),11~14.
    [200] 陈国良,张维冰.脂肪醇聚氧乙烯醚合成反应的动力学研究——产物分布的统计矩,齐齐哈尔大学学报:自然科学版,(1998),14(3),55~59.
    [201] 黄继红,徐洁.阴离子聚合的分子量分布的动力学分析,北京石油化工学院学报(2000),8(1),71~74.
    [202] 孟庆新,李长海,王元瑞.脂肪醇乙氧基化窄分布催化剂,吉林工学院学报(2001),22(4),31~35.
    [203] E. Santacesaria, M. D. Serio, P. Iengo. Mass transfer and kinetics in ethoxylation spray tower loop reactors, Chem. Eng. Sci., (1999), 54, 1499~1504.
    [204] A. Dimiccoli, M. D. Serio, E. Santacesaria. Mass transfer and kinetics in spray tower-loop absorbers and reactors, Ind. Eng. Chem. Res., (2000), 39(11), 4082~4093.
    [205] E. Santacesaria, M. D. Serio, R. Tesser. Role of ethylene oxide solubility in the ethoxylation processes, Catalysis Today, (1995), 24, 23~28.
    [206] M. D. Serio, R. Tesser, F. Felippone, E. Santacesaria. Ethylene oxide solubility and ethoxylation kinetics in the synthesis of nonionic surfactants, Ind. Eng. Chem. Res., (1995), 34(11), 4092~4098.
    [207] A. I. Johnson, A. E. Hamielic, D. Ward, A. Golding, End effect corrections in heat and mass transfer studies, Can. J. Chem. Eng. Sci., (1958), 8, 201~215.
    [208] V. Srinivasan, R. C. Aiken, Mass transfer to droplets formed by the controlled breakup of a cylindrical Jet-Physical Absorption, Chem. Eng. Sci., (1988), 43(12), 3141~3150.
    [209] J. C. Charpentier, Mass Transfer Rates in Gas-Liquid Absorbers and Reactors, Advances in Chemical Engineering, Academic Press, New York, (1981), Vol. 11.
    [210] R. H. Perry, D. W. Green, J. O. Maloney (Eds.). Perry's Chemical Engineer's Handbook, 6~(th) Ed., McGraw-Hill, New York, (1984).
    [211] 谢建军,潘勤敏,潘祖仁.聚合物浓溶液气液平衡估算的基团贡献法,合成橡胶工业(1998),21(2),118~122.
    [212] L. C. Yeen, S. S. Woods. A Generalized Equation for Computer Calculation of Liquid Densities. AIChE J., (1966), 12, 95~99.
    [213] J. Prausnitz, T. Anderson. Computer calculations for multicomponent vapour-liquid and liquid-liquid equilibria, Prentice-Hall, New York, (1980).
    [214] A. Fredeslund, J. Gmehling, E Rasmussen. Vapour-Liquid Equilibria using UNIFAC: a group contribution method, Elsevier Publishing, Amsterdam, (1977).
    [215] 李君发.计算活度系数的UNIFAC基团贡献法(Ⅰ),化学工程(1991),19(4),12~23.
    [216] 李君发.计算活度系数的UNIFAC基团贡献法(Ⅱ),化学工程(1991),19(5),31~44.
    [217] T. Oishi, J. M. Prausnitz. Estimation of Solvent Activities in Polymer Solutions Using a Group-Contribution Method, Ind. Eng. Chem. Process Des. Dev., (1978), 17(3), 333~339.
    [218] Y. Iwai, Y. Arai. Measurement and Prediction of Solubilities of Hydrocarbon Vapors in Molten Polymers, J. Chem. Eng. Jpn., (1989), 22(2), 155~161.
    [219] Y. Iwai, M. Ohzono, Y. Arai. Gas chromatographic determination and correlation of weight-fraction Henry's constants for hydrocarbon gases and vapors in molten polymers, Chem. Eng. Commun., (1985), 34(1), 225-240.
    [220] G. M. Kontogeorgis, A. Saraiva, A. Fredenslund, D. P. Tassios. Prediction of Liquid-Liquid Equilibrium for Binary Polymer Solutions with Simple Activity Coefficient Models, Ind. Eng. Chem. Res., (1995), 35(5), 1823-1834.
    [221] G. M. Kontogeorgis, A. Fredenslnd, D. P. Tassios. Simple Activity Coefficient Model for the Prediction of Solvent Activities in Polymer Solutions, Ind. Eng. Chem. Res., (1993), 32(2), 362-372.
    [222] M. Fineman, S. D. Ross. Linear method for determining monomer reactivity ratios in copolymerization, J. Polym. Sci., (1950), 5, 259-262.
    [223] A. I. Yezrielev, E. L. Brokhina, E. S. Roskin. Analytical method for calculating copolymerization constants, Vy-sokomol. Soedin., (1969), All(8), 1670-1680.
    [224] T. Kelen, F. Tudos. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method, J. Macromol. Sci. Chem., (1975), A9(l), 1-27.
    [225] E. S. Freeman, B. Carroll. The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, J. Phys. Chem., (1958), 62, 394-397.
    [226] H. E. Kissinger. Reaction kinetics in differential thermal analysis, Anal. Chem., (1957), 29, 1702-1706.
    [227] T. Ozawa. A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., (1965), 38(11), 1881-1886.
    [228] T. W. Dakin. Electrical Insulation Deterioration Treated as a Chemical Rate Phenomena, AIEE Transactions, Part I (Communication and Electronics), (1948), 67, 113-122.
    [229] P. Alexandridis, L. Yang. Micellization of Polyoxyalkylene Block Copolymers in Formamide, Macromolecules, (2000), 33(9), 3382-3391.
    [230] G. Gente, A. Iovino, C. L. Mesa. Supramolecular association of a triblock co- polymer in water, J. Colloid Interface Sci., (2004), 274(2), 458~464.
    [231] A. Kelarakis, Z. Yang, E. Pousia, S. K. Nixon, C. Price, C. Booth, I. W. Hamley, V. Castelletto, J. Fundin. Association Properties of Diblock Copolymers of Propylene Oxide and Ethylene Oxide in Aqueous Solution. The Effect of P and E Block Lengths, Langmuir, (2001), 17(26), 8085~8091.
    [232] G. Waton, B. Michels, R. Zana. Dynamics of Block Copolymer Micelles in Aqueous Solution, Macromolecules, (2001), 34(4), 907~910.
    [233] J. Chlebicki, E Majtyka. Effect of Oxypropylene Chain Length on the Surface Properties of Dialkyl Glycerol Ether Nonionic Surfactants, J. Colloid Interface Sci., (1999), 220(1), 57~62.
    [234] S. Kucharski, J. Chlebicki. The Effect of Polyoxypropylene Chain Length on the Critical Micelle Concentration of Propylene Oxide-Ethylene Oxide Block Copolymers, J. Colloid Interface Sci., (1974), 46(3), 518~521;A. Sokolowski, J. Chlebicki. The effect of polyoxypropylene chain length in nonionic surfactants on their adsorption at the aqueous solution-air interface, Tenside Detergents, (1952), 19(5), 282~286.
    [235] K. T. Shinoda, T. Nakagawa, B. Tamamushi, T. Isemura. Colloid Surfactant, Academic Press, New York, (1963), 58.
    [236] 王连生,韩朔暌.分子结构、性质与活性,化学工业出版社,北京,(1997),1.
    [237] 言敏达.聚醚的功能化,精细化工,(2000),17(12),683~689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700