腐殖质和膨润土对农药的吸附规律及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐殖质和膨润土是土壤的重要成分,拥有复杂结构和多种功能基团,对农药具有强烈的吸附作用。本文采用平衡法研究腐殖质和膨润土对毒死蜱和三唑磷的吸附性能,探讨单一吸附剂与两种农药在不同pH值、温度下的吸附规律及其机理,深入研究混合吸附剂与两种农药的吸附动力学及吸附热力学,寻求最佳吸附条件及混合吸附剂最佳混合比。结果表明:
     (1)吸附能力表现为腐殖质>膨润土,吸附强度表现为三唑磷>毒死蜱。两种农药在腐殖质上的吸附行为用Freundlich模型和Langmuir模型描述均适用,膨润土对两种农药的等温吸附线可用Langmuir模型拟合。
     (2)pH对腐殖质吸附两种农药影响较大,对膨润土吸附两种农药的影响较小;温度对腐殖质和膨润土吸附两种农药的影响较为复杂。
     (3)两种农药与腐殖质和膨润土形成氢键而被吸附,它们还会在吸附剂的一定部位通过范德华力实现吸附。
     (4)随着腐殖质在混合吸附剂中的质量比重增加,对两种农药的吸附效果增强,根据低成本高效益原则,在本试验条件下,混合吸附剂用量为1.0g较好;腐殖质在混合吸附剂中的比重分别达14%和12%时对两农药吸附趋于饱和;综合考虑农药水解因素,pH为5.0、温度为25℃时吸附效果最佳。
     (5)混合吸附剂对两种农药吸附的平衡时间分别为:毒死蜱12h,三唑磷6h,吸附动态符合一级动力学方程;计算不同温度各热力学参数ΔG、ΔH和ΔS,表明反应是自发进行的放热、熵增过程。
Chlorpyrifos and triazophos were the main pesticides for controlling rice stem borers in Yangtze River basin. With the five high-toxic organic phosphorus pesticides banned from 2007, like methamidophos, methyl parathion and so on, high-efficient, low toxic and residual pesticides, chlorpyrifos, triazophos and acephate had become the leading products. But their half lives were longer, slather using them might cause the destruction to eco-environment, pollution to the soil and water, and effected the health of mankind.
     So, to control and predict the environmental behavior of pesticides, propose the evaluation standards and treatment countermeasures of their environmental quality had been the important problem in environmental science. The pesticides’physical behaviors were restricted by their adsorption and desorption capacity in soil. The pesticides adsorbed in soil not only effected their mobility and volatility, but also effected their physical and chemical degradation characteristics. Grasping the regularities of pesticides’migration and transformation in soil, could provided scientific basis for correctly evaluating effectively treating pesticide-contaminated soils.
     Humus and bentonite were very important parts in soil. They can adsorb pesticides intensively because of their complicated structures and many functional groups. The adsorption of chlorpyrifos and triazophos on humus and bentonite were studied by gas chromatography, using the equilibrium oscillometric method. The relationship and mechanism between single adsorbent and pesticides under different pH and temperature were investigated. In order to find the optimum adsorption conditions and mixture ratio of mixed adsorbents the adsorption kinetics and thermodynamics of the two pesticides on mixed adsorbents were further researched. The results showed that:
     (1) Adsorption capacity of humus and bentonite increased gradually with the increase of pesticides equilibrium concentration, but adsorption rate decreased. Humus has the great adsorption capacity than bentonite, and adsorption strength both triazophos more than chlorpyrifos. The adsorption of chlorpyrifos and triazophos on humus fitted well with both Freundlich equation and Langmuir equation, fitted well with the Langmuir equation on bentonite.
     (2) The effects of pH to adsorption on humus were great, the adsorption rate decreased with the pH increased between test ranges; the pH was little influence to adsorpt them on bentonite. The effects of temperature on humus and bentonite were complex.
     (3) Contrasted pre-and-post infrared spectrum of adsorption the two pesticides, non-ion polar pesticides chlorpyrifos and triazophos were adsorped on adsorbents by hydrogen bond and van der waals forces.
     (4) With the proportion increased of humus in mixed adsorbents, adsorption rate increased gradually, but increasing rate decreased. In order to control cost, 1.0g mixed adsorbents should be selected to adsorpt the two pesticides. When the mass ratio of humus in mixed adsorbents respectively was 12% and 14%, the adsorption of chlorpyrifos and triazophos reached saturation. Comprehensively considered pesticides hydrolysis factor, pH 5.0, 25℃were the best adsorption conditions.
     (5) The equilibrium time of chlorpyrifos and triazophos on mixed adsorbent was 12h and 6h, respectively. Adsorption dynamics fitted well with first-order kinetics equation. Calculated thermodynamic parametersΔG,ΔH andΔS, it was a heat releasing, entropy increasing and physical adsorption process, and it proceed spontaneously.
引文
[1]王雪芳.农药污染与生态环境保护[J].广西农学报, 2004, 1(22):21~24.
    [2]赵其国.从未来土壤学看环境与生态优先研究领域[J].中国科学基金, 1994,(3):166~169.
    [3] Joseph, T. et al. Soil Ecotoxicology [M]. New York: CRC Press, Inc, 1997. 12.
    [4]中华人民共和国统计局.中国农业年鉴[M].北京:中国农业出版社, 2004, 49.
    [5]权桂芝.土壤的农药污染及修复技术[J].天津农业科学, 2007, 13(1):35~38.
    [6]和文祥,蒋新,朱茂旭,等.酶修复土壤农药污染的研究进展[J].生态学杂志, 2001, 20(3):47~51.
    [7]马君贤.化学农药在土壤中的迁移与转化[J].黑龙江环境通报, 2007, 31(1):79~81.
    [8]肖军,赵景波.农药污染对生态环境的影响及防治对策[J].安徽农业科学, 2005, 33(12):2376~2377.
    [9]林玉锁.农药与生态环境保护[M].北京:化学工业出版社, 1999.
    [10]毛文永.生态环境影响评价概论[M].北京:中国环境科学出版社, 1998, 1~3.
    [11]中国科学院主管.科学新闻周刊[J]. 2000, (24):21.
    [12]毛文锋,吴仁海.建议在我国开展累积影响评价的理论与实践研究[J].环境科学研究, 1998, 11 (5):8~11.
    [13]刘艳,王丽华,王玉灿.农药对土壤环境的影响及其去除[J].能源与环境, 2007, 6:67~69.
    [14]迟凤琴.土壤腐殖质特性与土壤肥力[J].黑龙江农业科学, 1995, 1:50~51.
    [15] Stevenson F J著.夏荣基等译.腐殖质化学[M].北京:北京农业大学出版社, 1994.
    [16]党志,黄伟林.环境有机地球化学:有机污染物-土壤/沉积物吸附作用研究的回顾[J].岩石矿物地球化学通报, 1999, 18(3):194~200.
    [17]李克斌,刘维屏,邵颖.重金属离子在腐植酸上吸附的研究[J].环境污染与防治, 1997, 19(1):9~11.
    [18] KACKER T, HAUPT E, GARMS C, et al. Structural characterisation of humic acid-bound PAH residues in soil by 13C-CPMAS-NMR-spectroscopy: evidence of covalent bonds [J]. Chemosphere, 2002, 48 :1172131.
    [19] PANDEYA K, PANDEYS D , MISRA V , et al . Role of free radicals in the binding of organochlorine pesticides and heavy metals with humic acid[J]. The Science of the Total Environment, 1999, 231(2-3):125~133.
    [20] AVENA M, KOOPAL L , RIEMSDIIKW. Proton binding to humic acids: Electrostatic and intrinsic interactions[J] . Journal of colloid and Interface Science, 1999, 217(1):37~48.
    [21] KAISER K. Fractionation of dissolved organic matter affected by polyvalent metal cations [J]. Org Geochem, 1998, 28(12): 849~854.
    [22] GARDEA-Torresdey J L , TANGL , SALVADOR. Copper adsorption by esterified and unesterified fractions of Sphagnumpeat moss and its different humic substances[J]. J Hazard Materials, 1996, 48 (3):191~206.
    [23] MASINI J, ABATE G, LIMA E. Comparison of methodologies for determination of carboxylic and phenolic groups in humic acid[J] .Analytica Chimica Acta, 1998, 364(123):223~233.
    [24]崔学奇,吕宪俊,周国华.膨润土的性能及其应用[J].中国非金属矿工业导刊, 2000, 2:6~9.
    [25]熊慕慕.我国膨润土矿资源及发展方向[J].洛阳师范学院学报, 2008, 3:183~184.
    [26] M. Vlasova, I. Leon, Y. Enr?′quez Me′ndez, G. Dominguez-Patin, et al. Monitoring of transformations in bentonite after NaOH-TMA treatment[J]. 2006, 2295:1~8.
    [27]熊慕慕.我国膨润土矿资源及发展方向[J].洛阳师范学院学报, 2008, 3:183~184.
    [28]党志,于红,黄伟林,等.土壤/沉积物吸附有机污染物机理研究的进展[J].化学通报, 2001, 2:81~85.
    [29] Mezin LC. Combined effects of humic acids and salinity on solid-phase micro extraction of DDT and chlorpyrifos an estimator of their bioavailability[J]. 2004 Mar. 23(3):576~582.
    [30]陈飞霞,魏沙平,魏世强.毒死蜱在不同土壤腐殖酸上的吸附-解吸特征[J].环境污染与防治, 2006, 28(11):818~821.
    [31]徐霞,朱利中.共存有机物对毒死蜱在沉积物上的吸附的影响[J].中国环境科学, 2003, 23(4):399~402.
    [32] Dipak, Smith J A. Enhanced trichloroethene desorption from long-term contaminated soil using triton X-100 and pH increase [J].Environ. Sci. Technol, 1997, 31(7):1910~1915.
    [33] Mccary J E, Brusseau M L. Cyclodextrin_enhanced in situ flushing of multiple component immiscible organic liquid contaminated at the field scale mass removal Effectiveness[J]. Environ. Sci. Technol, 1998, 32(9):1285~1293.
    [34] Imhoff P T, Arthur M H. Complete dissolution of trichloroethylene in saturated porous media [J]. Environ. Sci. Technol, 1998, 32(16):2417~2424
    [35]高士祥,高松亭,韩逆睽,等.表面活性剂清洗法在污染土壤修复中的应用[J].环境科学, 2000, 21(1):84~86.
    [36]朱利中.土壤及地下水有机污染的化学与生物修复[J].环境科学进展, 1999, 7(2):65~70.
    [37] SUN, INSKEEPPWP, BOYDSA. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant[J]. Environ. Sci. Technol, 1995, (29):903~913.
    [38] ROY D, KOMMALAPATI R R, MANDVASS, et al. Soil washing potential of a natural surfactant[J]. Environ. Sci. Teechnol, 1997, 31(3):670~675.
    [39] Pal O R ,Vanjara A K. Removal of malathion and butachlor from aqueous solution by clays and organ clays[J]. Separation and Purification Technology, 2001, 24 (11):167~172.
    [40]李改枝.改性膨润土对水中敌百虫和敌敌畏的吸附性能研究[J].烟台大学学报(自然科学与工程版), 2003, 16 (1):73~78.
    [41]曾清如,周细红,杨仁斌,等. CTMAB-膨润土对水溶液中4种农药的吸附特性[J].农药学学报, 2000, (3):80~84.
    [42]汪传刚,龚道新,施翔,等.离子表面活性剂对土壤吸附噻吩磺隆的影响[J].湖南农业大学学报(自然科学版), 2007, 33 (2):221~224.
    [43] Lee DH, Cody RD, Kim DJ, et al. Effect of soil texture on surfactant-based remediation ofhydrophobic organic-contaminated soil [J]. Environ Int, 2002, 27:681~688.
    [44]杨成建,曾清如,廖柏寒,等.非离子表面活性剂对有机磷农药在沉积物上的吸附行为影响[J].环境化学, 2006, 25 (2):159~163.
    [45] Cranwell P.A., Branehed-chain and cyclopropanoid acids in a recent sediment[J]. Chem. Geol., 1973, 11(4):306~313.
    [46] Giles C.H., Smith D., Huitson A.. A general treatment and classification of the solute adsorption isotherm[J]. Colloid Interface Sci., 1974, 47:755.
    [47] Freeman D.H., CheungL.S.. A gel partition model for organic desorption from a pond sediment. Science, 1981, 214:790~793.
    [48] Chiou C. T., PorterP. E., SchmeddingD.W.. Partition equilibrium of nonionic organic compounds between soil organic matter and water[J]. Environ. Sci. Technol., 1983, 17:227~231.
    [49]郑巍.除草剂普杀特在土壤/水两相中的吸附——脱附和光解[J].中国环境科学, 1998, 18(5):476~480.
    [50]李克斌,等.苯达松在单离子蒙脱石上的吸附机理研究[J].环境科学与技术, 1998, (3): 5~7.
    [51]戴荣玲,章钢娅,宗良纲,等.有机黏土和黏土对p,p’-DDE的吸附/解吸研究[J].环境污染与防治, 2007, 29 (2):85~90.
    [52] Boyd S A, et al. Sorption characteristics of organic compounds on hexadecyl trimethyammonium-smectite [J]. Soil Sci. Soc. Am. J. 1988, 52:652~657.
    [53] Ahlrichs J. L., In Oganic Chenicals in the soil Environment Goring, C.A.I., HamakerJ.W., Eds.; Mareel Dekker: New York, 1972,1.
    [54] Pusino A., Liu W., Gessa C.. HPLC determination of the hethicide imazapyr residues in water and soil[J]. Pesrie. Sci., 1992, 36:283~287.
    [55] Teree M., Calvet R.Z., Role of aluminumin the adsorption of atrazine by clay minerals[J]. Agrie. Res. Organ., 1977, 82:33~39.
    [56] Khan S.U., In Pesticides in the soil Environmenr Wakeman, R.J., Ed, Elsevier Sci.Publ:Amsterdam, 1980. p29.
    [57] Werkheiser W O, Anderson S J. Effect of soil properties and surfactant on primisulfuron sorption [J]. Environ. Qual., 1996, 25 (4):809~814.
    [58] Pusino A., LiuW., GessaC.I.. Effect of metal-binding ability on the adsorption of acifluorfen on soil[J]. Agric. Food Chem., 1993, 41(3):502~505.
    [59]冯青琴,郝存江,元炯亮.纳米γ-Al2O3自水溶液中吸附除去对苯二酚的特性研究[J].河南师范大学学报(自然科学版) , 2004 , 32(3) :61~64.
    [60]汤枫秋,黄校先,郭景坤. Al2O3表面化学特性的研究[J].陶瓷学报, 1998, 19(3):121~124.
    [61]汤灿,曾清如,李国学,等.表面活性剂对中性氧化铝吸附甲基对硫磷的影响[J].环境科学, 2007, 28 (2);358~362.
    [62]杨成建,曾清如,廖柏寒,等.非离子表面活性剂对有机磷农药在沉积物上的吸附行为影响[J].环境化学, 2006, 25 (2):159~163.
    [63]曾清如,周细红,杨仁斌,等. CTMAB-膨润土对水溶液中4种农药的吸附特性[J].农药学学报,2000, (3):80~84.
    [64] Kozak J., Weber J.B., SheetsT.J.. Adsorption of prometryn and metolaehlor by selected soil organic matter fractions[J]. SoilSci., 1983, 136(2):94~101.
    [65] [美]W.D.冈吉,等编.夏增禄,等译.土壤和水中的农药[M].科学出版社, 1985:21~22.
    [66] Moder B T, Uwe-Goos K, Eisenreich S J. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces[J]. Environ. Sci. Technol., 1997, 31 (4): 1079~1086.
    [67]朱燕,代静玉.腐殖质对有机污染物的吸附行为及环境学意义[J].土壤通报, 2006, 37(6):1224~1230.
    [68] Xia G, Pignatello J J. Detailed Sorption isotherms of polar and a polar compounds in a high - organic soil [J]. Environ. Sci. Technol., 2001, 35 (1): 84~94.
    [69] White J C, Pignatello J J. Influence of biosolute competition on the adsorption kinetics of polycyclic aromatic hydrocarbons in soil[J].Environ. Sci. Technol., 1999, 33(23): 4292~4298.
    [70] Xing B, Pignatello J J. Dual - mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter [J]. Environ. Sci. Technol., 1997 31 (3): 792~799.
    [71]吴平霄,廖宗文.农药在蒙脱石层间域中的环境化学行为[J].环境科学进展, 1999, 7(3):70~77.
    [72] Morillo E, Perez-Rodriguez JL, Maqueda C. Mechanisms of Interaction between Montmorillonites. Soil Science, 1993, 155(2):105~113.
    [73] Hayes M. H.B., Piek M.E., Toms B.A.,et al.. Interactions between clay minerals and bipyridylium herbicides[J]. Residue Rev., 1975, 57(1):25~30.
    [74] Anderson R.B. Modifieation of the brunauer, Em-mert, and teller equation[J]. Am. Chem. Soc., 1956, 68:686~691.
    [75]邵颖,刘维屏.除草剂普杀特在黏土矿物上的作用行为研究[J].上海环境科学, 1996, 15(12):40~41.
    [76]李克斌,季谨,王小芳,等.苯达送在单离子蒙脱石上的吸附机理研究[J].环境科学与技术, 1998, (3):5~7.
    [77] Senesi N., Binding mechanisms of pestieides to soil humic substances[J]. Sci. Toral Environ, 1992, 123/124:63~76.
    [78] Pusino, A. Liu W, Gessa C. Dimepiperate Adsorption and Hydrolysison Al3+-,Fe3+-,Ca2+-,and Na+-mont-morillonite Clays and Clay Minerals, 1993, 41(3):335~340.
    [79] Gessa C., Delitala L., SolinasV.. Water stress and plastieity of phenolic metabolism in Thymus capitatus.Soil Sci., 1987, 144(4):420~426
    [80] Chiou C.T., Shoup T.D.. Soil sorption of organic vapors and effeets of humidity on sorptive mechanism and capacity[J]. Environ. Sci. Technol., 1985, 19:1196~1200
    [80]郭荣君,李世东,章力建.土壤农药污染与生物修复研究进展[J].中国生物防治, 2005, 21(3):129~135.
    [81]单正军编著.农用化学品环境安全评价与监测技术[M].北京:中国环境科学出版社, 2008:19~20.
    [82]任理,毛萌.农药在土壤中中运移的模拟——以阿特拉津为例[M].北京:科学出版社, 2008:1~4.
    [83]杨英利,朱小燕,李爱民. 3种淡水藻对三唑磷的降解研究[J].环境科学研究, 2007, 20(1):85~89.
    [84] Abu-Qare A W, Abou-Donia M B. J Chromatogr B, 2001,757:295.
    [85]凌云,王,雍炜,等.气相色谱-质谱/质谱法检测蔬菜中的毒死蜱及其代谢物[J].色谱, 2009, 27(1):78~81.
    [86]黄冬梅,钱蓓蕾,于慧娟.气相色谱-氮磷检测法测定贝类产品中残留的三唑磷[J].色谱, 2007, 25(6):953~954.
    [87]吴小毛,方华,王晓,等.固相萃取-毛细管气相色谱法测定蔬菜、土壤和水中的毒死蜱残留量[J].环境污染与防治, 2005, 27(2):142~145.
    [88]张心明.固相萃取-气相色谱法测定韭菜中毒死蜱的残留量[J].现代农业科技, 2008, 3:61~62.
    [89]伍翔,魏晓林,魏方林,等. 30%三唑磷微乳剂的气相色谱法分析[J].现代农药, 2005, 4(5):18~19.
    [90]王志波,康文斌,黄琼辉.气相色谱法测定40%毒死蜱乳油中有效成分含量的不确定度评估[J].农药科学与管理, 2006, 25(10):1~5.
    [91]李少霞,黄伟雄,陈明,等.水中毒死蜱的气相色谱测定法[J].环境与健康杂志, 2006, 23(5):458~459.
    [92]化工部农药信息站,化工部化肥司,化工部合成材料研究院.农用化学品手册[M].北京化学工业出版社, 1995:97~98.
    [93]程燕.毒死蜱的环境行为研究进展[J].安徽农学通报, 2008, 14(8):75~76.
    [94]张敏恒.农药商品手册[M].沈阳:沈阳出版社, 1999, 85~88.
    [95]刘春来,李素平,胡昌弟,等.三唑磷在甘蓝中残留动态试验研究[J].农药科学与管理, 2005, 26(5):8~10.
    [96]李雪生,谭辉华,黄辉晔,等.三唑磷在荔枝及土壤中残留检测方法研究[J].西南农业学报, 2004, 17(3):334~336.
    [97]张为农.逐渐升温的高毒农药替代品——三唑磷[N].农资导报, 2006-08-15(128).
    [98]朱丽珺,张金池,宰德欣,等.腐殖质对Cu2+和Pb2+的吸附特征[J].南京林业大学学报, 2007, 4(31):74.
    [99]朱丽珺.不同林分类型土壤及主要组分对重金属的吸附特征研究[D].南京林业大学博士研究生学位论文, 2007, 6:30.
    [100]国家环境保护局.化学农药环境安全评价试验准则[M]. 1989, 13~15.
    [101]王永华,编著.气相色谱分析应用[M].北京:科学教育出版社, 2006:3~5, 55~91.
    [102]刘虎威,编著.气相色谱方法及应用[M].北京:化学工业出版社, 2007:1~10.
    [103]朱明华,编著.仪器分析[M].北京:高等教育出版社, 2003:4~53, 286~287.
    [104]顾蕙祥,阎宝石,编.气相色谱实用手册[M].北京:化学工业出版社, 1990:5~90.
    [105]许国旺,编著.现代实用气相色谱法[M].北京:化学工业出版社, 2004:7~54.
    [106]李(Lee, M.L.)等著,王其昌,等译.毛细管柱气相色谱法[M].北京:化学工业出版社,1988.
    [107]陈飞霞,魏沙平,魏世强.毒死蜱在不同土壤腐殖酸上的吸附-解吸特征[J].环境污染与防治, 2006, 28(11):818~821.
    [108]许端平,陈洪,曹云者,等.多环芳烃菲在不同土壤及其组分中的吸附特征研究[J].农业环境科学学报, 2005, 24(4):625~629.
    [109]石利利,单正军,蔡道基.三唑磷农药在土壤中的降解与吸附特征研究[J].农业环境科学学报, 2006, 25(3):733~736.
    [110]沈培友,徐晓燕.黏土矿物在环境修复中的研究进展[J].中国矿业,2004,13(1):47~50.
    [111]刘松长,李继睿,何文.农药在土壤环境中的吸附-解吸作用[J].广东化学, 2007, 34(11):101~104.
    [112] Hamaker J.W., Thompson J.M., Adsorption of Organic Chemicalsi in the Soil Environment, Marcel Dekker: New York, 1972, 1:28.
    [113] Gao J.P., Maguhn J., Spitzauer P.. Sorption of pesticides in the sediments of the Teufelsweiher pond. I. Equilibrium assessments effect of organic carbon content and pH. Wat.Res.1998, 32(5):1662~1672
    [114] Harter R.D., Lehmarnn R. G., Assessment of copper-soil bond strength by desorption kinetics[J]. Soil Sci. Soc. Am., 1984, 48(4):1979~1984.
    [115]田芹,周志强,江树人,等.毒死蜱在环境水体中降解的研究[J].农业环境科学学报, 2005, 24(2): 289~293.
    [116] Macalay D L, Wolf N L. New perspectives on the hydrolytic degradation of the organophorothioate insecticide chlorpyrifos[J]. J Agric Food Chem, 1983, 31(6):1139~1147.
    [117] LIN K D, YUAN D X, DENG Y Z, et al. Hydrolytic products and kinetics of triazophos in buffered and alkaline solutions with differ-ent values of pH [J]. Journal of Agriculture and Food Chemistry, 2004, 52(17): 5404~5411.
    [118]朱燕,代静玉.腐殖质对有机污染物的吸附行为及环境学意义[J].土壤通报, 2006, 37(6):1224~1230.
    [119]高海英,杨仁斌,龚道新,等.三唑酮在土壤中的吸附及其机理[J].湖南农业大学学报(自然科学版), 2006, 32(2):203~205.
    [120]杨维,杨军锋,王立东,等./阳离子有机膨润土制备及其对苯酚吸附性能的实验研究[J].环境污染与防治, 2007, 29(10):725~730.
    [121]肖曲,郝冬亮,刘毅华,等.农药水环境化学行为研究进展[J].中国环境管理干部学院学报, 2008, 18(3):58~61.
    [122] Kozak J, Weber J B, Sheets J. Adsorption of prometryn and metolachlor by selected soil organic matter fractions[J]. Soil Sci., 1983, 136(2): 94~101.
    [123]姜桂兰,张培萍,编著.膨润土加工与应用[M].北京:化学出版社, 2005:69~72.
    [124] [美] F. J.斯蒂文森,著,夏荣基,译.腐殖质化学[M].北京:北京农业大学出版社, 1994:199~206.
    [125] Morrison R T, Boyd R N. Organic Chemistry[J]. Allyn and Bacon Inc: Neston, Massachusetts, 1983, Part 17.
    [126] Kaiser K, Zech W. Natural organic matter sorption on different mineral surfaces studies by DRIFT spectroscopy[J].Science of Soils, 1997, 2:71~74.
    [127]顾志忙,王晓蓉.傅里叶变换红外光谱和核磁共振法对土壤中腐植酸的表征[J].分析化学, 2000, 28(3):314~217.
    [128]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境, 2002, 11(1):94~97.
    [129]孙洪良.有机膨润土吸附水中重金属和有机污染物的性能及机理研究[J]. 2007, 19(9):745~751.
    [130]吕家珑,张一平.陕西几种土壤磷吸附动力学特征及过渡态理论运用的研究[J].土壤通报, 1997, 28(3):112~115.
    [131]余纯丽,任建敏,胡然.膨润土吸附结晶紫的动力学与热力学研究[J].西南大学学报(自然科学版), 2009, 31(6):165~168.
    [132]傅献彩,沈文霞,姚天扬,等.物理化学(第四版)[M].北京:高等教育出版社, 1997, 961~978.
    [133]吴应琴,周敏,马明广,等.不溶性腐殖酸吸附对硝基苯胺的动力学研究[J].水处理技术, 2009, 33(2):15.
    [134] HAL SEY G D. The role of surface heterogeneity [J]. Advanced Catalyst, 1952, (4):259~269.
    [135] WAN G Y, MU Y, ZHAO Q B , et al. Isotherms,kinetics and thermodynamics of dye biosorption by anaerobic sludge [J]. Separation and Purification Technology, 2006, 50(1):127.
    [136]邹学权,万先凯,史惠祥,等.渗氮活性炭对2 ,4-二氯苯酚的吸附动力学特性[J].浙江大学学报(理学版), 2009, 36(4):457~462.
    [137] FREITAS A F, MENDES M F, COEL HO G L V. Thermodynamic study of fatty acids adsorption on different adsorbents [J]. The Journal of Chemical Thermodynamics, 2007, 39(7):1027~1037.
    [138]马明海,彭书传,朱承驻,等. LDO吸附水中苯甲酸钠的热力学研究[J].合肥工业大学, 2007, 30: 1233~1236.
    [139]罗刚,张全兴,李爱民.吸附树脂对山梨酸的吸附作用及其热力学性质[J].应用化学, 2003, 19: 1139~1142.
    [140] FREITAS A F , MENDES M F , COEL HO G L V. Thermodynamic study of fatty acids adsorption on different adsorbents[J]. The Journal of Chemical Thermodynamics, 2007, 39 (7):1027~1037.
    [141]杨克武,安凤春,莫汉宏.单甲脒在土壤中的吸附[J].环境化学, 1995, 14(5):431~435.
    [142]罗玲.硫肟醚菊酯在土壤中的吸附行为及机理研究[D].湖南:湖南农业大学硕士论文, 2004.
    [143]应兴华,徐霞.影响农药在土壤与沉积物上吸附作用的研究[J].中国农学通报, 2005, 21(8):393~396.
    [144]罗玲,欧晓明,廖晓兰.农药在土壤中的吸附机理及其影响因子研究概况[J].化工技术与开发, 2004, 33(2): 12~16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700