基于LabVIEW的阴极保护电源智能测控系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外加电流阴极保护是地下或水下等电解质环境中金属构筑物电化学腐蚀防止或延缓的重要技术措施之一。外加直流电源是实现外加电流阴极保护措施的关键。本文采用计算机控制技术和虚拟仪器技术,开发设计了具有性能优良、成本低廉、操作简单、智能化、网络化、适于远程集中控制的阴极保护电源测控系统。
     论文主要研究内容包括:
     (1)分析了衡量保护效果的重要指标:电源的输出电压、输出电流、参比电位、被保护体两个关键点的电位。在此基础上选择适合采集这些指标的传感器作为测控系统硬件的一部分。
     (2)设计合理经济的电源硬件电路,包括原始方案和易于实现的替代方案。
     (3)比较了虚拟仪器相对于传统仪器的优势,将计算机控制技术、虚拟仪器技术和数据库技术等有机结合,开发了电源测控系统的管理软件。设计了数据传输模块,用来实现电源系统参数的实时采集以及对硬件电路中执行机构的自动控制。
     (4)实现测控系统软件基本功能模块,提供各参数设置界面,包括间隔设置、目标值设置,算法系数设置和报警参数设置等。使用阴极保护的专家知识库作为参考,实现电源系统参数的即时设定,更有效地对电源进行自动监控。
     (5)结合数据库技术,将LabVIEW与Microsoft Access数据库相连接,实现了强大的数据管理功能,在数据库中建立历史数据和目标值库表以及专家知识库表等,实现对数据库记录的添加、检索、删除等功能。
     (6)实现网络化远程界面控制,利用LabVIEW的Web Publishing工具将测控系统界面发布在Web页面上,使得远程客户端可以通过浏览器实现对现场保护系统的监测和控制,实现真正意义上的虚拟仪器。
Impressed Current Cathodic Protection (ICCP) is one of the most important methods to delay and prevent electrochemical corrosion of the underground or underwater metal structures. The impressed DC power supply is an important part of impressed current cathodic protection. Based on virtual instrument technique and computer control technique, the paper develops an intelligentizing and networking control system of cathodic protection power supply, which is suitable for long-distance centralized control and easy to operation and lower cost and excellent capability.
     The main research content of the dissertation involves:
     (1) The paper analyzes output voltage, output current, the protected structure potential measured by dint of reference electrode as well as the potential of the two key points in the protected structure, all of which are indexes to measure the protection effects. The appropriate sensor which is one part of the system hardware is chosen.
     (2) The reasonable and economical power supply circuit is designed, including the primitive scheme and the easy-realized alternative scheme.
     (3) The paper analyzes the advantage of virtual instruments compared with traditional instruments. Combining computer control technique and database technique with virtual instrument technique, the paper develops a software to manage the monitor system of cathodic protection power supply. Meanwhile, data transmission module is designed to real-time collect the parameters of the power system as well as control the executive mechanism of the circuit.
     (4) The paper discussed how to design the basic function module, which provides the parameters setting interface to set the collecting interval, objective value, the coefficient of the algorithm and alarm parameter, etc. Referred with the cathodic protection knowledge base, the parameters of the system can be real-time set so that the power can be automatic monitored effectively.
     (5) The paper utilizes Microsoft Access as database to manage the data in the LabVIEW. There are two classes of tables in the database: history data and objective value tables and the knowledge base table. The data in the database can be added, searched and deleted.
     (6) Also, the system can be controlled in long distance. With the Web Publishing tool of LabVIEW, the system can be published in the web so that remote client can monitor and control the system through browser. This is the true virtual instruments actually.
引文
[1] 孙明先.舰船阴极保护技术的现状与发展.舰船科学技术,2001.2:44-46.
    [2] I. Gurrappa. Cathodic protection of cooling water systems and selection of appropriate materials. Journal of Materials Processing Technology 2005,166:256-267.
    [3] 迟善武.阴极保护电源的技术现状与发展趋势.仪器仪表用户,2006,13(4):6-7.
    [4] 韩磊,买巍.虚拟仪器技术在腐蚀电化学侧试中的应用.腐蚀科学与防护技术,2004,16(1):51-54.
    [5] Wojcik PT, Agarwal P, Orazem ME. A method for maintaining a constant potential variation during galvanostatic regulation of electrochemical impendance measurement. Electrochemical Acta, 1996,41(7,8):977-980.
    [6] Perusse P, Leech D. Dual electrode cyclic voltammety under computer control using graphical programming of bipotentiostat. Instrumentation Science and Technology, 2000, 28(1):59-62.
    [7] 卢新城,龚沈光,刘胜道等.舰船极低频电场的产生机理及其防护.海军工程大学学报,2003,15 (6):70-74.
    [8] 胡舸,张胜涛.电化学测试仪器的虚拟化对策.计算机与应用化学,2006,23(5):465-468.
    [9] 刘洋.智能防腐电源系统的研制:(硕士学位论文).武汉:武汉理工大学,2005.
    [10] 李华,范多旺,魏文军等.计算机控制系统.北京:机械工业出版社,2007.
    [11] 陈冠玲,吴小滔.基于LabVIEW的虚拟仪器系统及其构成.世界仪表与自动化,2003,7(11):65-66.
    [12] 陈小林.基于LabVIEW的虚拟仪器的设计.温州师范学院学报,2004,25(2):73-76.
    [13] 李金伴,李捷辉,李捷明.开关电源技术.北京:化学工业出版社,2006.
    [14] Miguel A. Mendez, Jose Luis Gonzalez, Diego Mateo et al. An investigation on the relation between digital circuitry characteristics and power supply noise spectrum in mixed-signal CMOS integrated circuits. Microelectronics Journal, 2005,36:77-84.
    [15] X. Aragones, A. Rubio. Experimental comparison of substrate noise coupling using different wafer types. IEEE J. Solid-State Circuits, 1999,34(10):1405-1409.
    [16] R. Frye. Switching-induced substrate noise and mixed-signal receiver design. Proceedings of the Southwest Symposium on Mixed-Signal Design, 2000:119-124.
    [17] Douglas Goodman, James Hofmeister, Justin Judkins. Electronic prognostics for switched mode power supplies. Microelectronics Reliability, 2007,47:1902-1906.
    [18] 张爱平.LabVIEW入门与虚拟仪器.北京:电子工业出版社,2004.
    [19] G. Faraco, L. Gabriele. Using LabVIEW for applying mathematical models in representing phenomena. Computers & Education, 2007,49:856-872.
    [20] K.D. Kima, Rizwan-uddin. A web-based nuclear simulator using RELAP5 and LabVIEW. Nuclear Engineering and Design, 2007,237:1185-1194.
    [21] G.S. Katranas, T. Meydan, A. Ovari et al. Simulation and measurement of bilayer sensor characteristics. Sensors and Actuators, 2006,129:243-246.
    [22] 周求湛,钱志鸿,刘萍萍等.虚拟仪器与LabVIEW 7Express程序设计.北京:北京航空航天大学出版社,2004.
    [23] 焦世统,董克俭.虚拟仪器的基本原理及其应用.科技情报开发与经济,2004,14(9):172-173.
    [24] 徐赟.虚拟仪器和传统仪器的比较.今日电子,2005,(9):71-72.
    [25] 戴鹏飞,王胜开,王格芳等.测试工程与LabVIEW应用.北京:电子工业出版社,2006.
    [26] 侯国屏,王坤,叶齐鑫等.LabVIEW7.1编程与虚拟仪器设计.北京:清华大学出版社,2005.
    [27] 涂湘缃.实用防腐蚀工程施工手册.北京:化学工业出版社,1999.
    [28] 赵同贺.开关电源设计技术与应用实例.北京:人民邮电出版社,2007.
    [29] 唐文彦.传感器.北京:机械工业出版社,2006.
    [30] Verbauwhede, Ingrid. Touriguian, Mihran. Using LH9124 in SAR Real Time Image rocessor&Design for F9124 DSP Board Download. Electric Power Systems Research, 2000: 27~33
    [31] 王幸之,王雷.单片机应用系统抗干扰技术.北京:北京航空航天大学出版社,2002.
    [32] 李文元.无线通信技术概论.北京:国防工业出版社,2006.
    [33] 李文仲.短距离无线数据通信入门与实战.北京:北京航空航天大学出版社,2006.
    [34] 卢伟国,童明俶.基于蓝牙的无线数据采集系统.电测与仪表,2002,39(9):26-29.
    [35] 李华,范多旺,魏文军等.计算机控制系统.北京:机械工业出版社,2007.
    [36] 杨帮文.新型实用电源电路集锦.人民邮电出版社,1999.
    [37] Wu An-Yeu, Liu K.J. Ray, Ragnupathy et al. Digital signal processing. IEEE Transactions on Circuits and Systems for Video Technology, 1998, (1):54-73.
    [38] 张艳兵,王忠庆,鲜浩.计算机控制技术.北京:国防工业出版社,2006.
    [39] 樊琦.基于LabVIEW的温室环境智能测控系统软件设计实现:(硕士学位论文).杭州:浙江大学,2006.
    [40] 邓焱,王磊.LabVIEW7.1测试技术与仪器应用.北京:机械工业出版社,2004.
    [41] 石博强,赵德永,李畅等.LabVIEW6.1编程技术实用教程.北京:中国铁道出版社,2002.
    [42] Paul Wilton, John Colby. SQL入门经典.北京:清华大学出版社,2006.
    [43] 尹仁平,刘刚,汪立新等.LabVIEW中的数据库访问.电子测量技术,2006,29(3):51-52.
    [44] Cary Prague, Michael Irwin. 中文版Access 2002宝典.北京:电子工业出版社,2002.
    [45] 毕虎,律方成,李燕青等.LabVIEW中访问数据库的几种不同方法.微计算机信息,2006,22(1-1):131-134.
    [46] 杨乐平,李海涛,赵勇等.LabVIEW高级程序设计.北京:清华大学出版社,2003.
    [47] 秘晓元,张彦斌,薛德庆等.LabVIEW中利用LabSQL访问数据库.微计算机信息,2004,20(10):53-54.
    [48] Alex Kriegel,Boris M.Trukhnov.SQL宝典.北京:电子工业出版社,2003.
    [49] 尹仁平,刘刚,汪立新等.LabVIEW中的数据库访问.电子测量技术,2006,29(3):51-52.
    [50] 雷振山.LabVIEW 7 Express实用技术教程.北京:中国铁道出版社,2004.
    [51] 杨乐平,李海涛,杨磊.LabVIEW程序设计与应用.北京:电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700