电热水器搪瓷内胆电子防腐技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电热水器搪瓷内胆防腐一直是电热水器技术研究的重点。目前,使用镁牺牲阳极进行阴极保护是最为常用的一种搪瓷内胆的防腐方式。但是这种防腐方式存在着不少问题,例如:阳极使用寿命短,需要定期更换;溶解物影响沐浴卫生,甚至危害人体健康等。针对以上的问题,本文提出采用电子防腐技术取代牺牲阳极阴极保护对搪瓷内胆进行防腐保护的方案。在此基础上,研究一种具有良好性能电热水器搪瓷内胆电子防腐装置。本文的主要工作如下:
     第一,以目前常用的辅助阳极材料研究为基础,根据搪瓷内胆实际的情况,利用辅助阳极的设计公式,对各种辅助阳极材料进行分析筛选。
     第二,将模糊控制技术与传统电源控制技术相结合,完成了电子防腐装置的阴极保护电源控制系统的研究和设计。同时,借助MATLAB软件中的模糊逻辑工具箱以及同样由MATLAB软件提供的Simulink软件包,对电子防腐装置的电源输出控制系统进行了仿真模拟。验证该控制系统的可行性和优越性。
     第三,提出以开关电源技术为基础的电子防腐装置阴极保护电源电路,详细论述了电路中变换器和高频变压器的选型、设计的问题与原则。提出及论述了以单片机为核心控制电路方案。同时还提出并研究了电子防腐装置的后备电源方案。
     本文为解决电热水器搪瓷内胆的防腐保护问题提供了一个切实可行的方案,并对阴极保护电源的控制进行了研究。得出了以下的结论:高硅铸铁是最适合在搪瓷内胆中使用的材料;在电源输出控制系统中加入模糊控制技术确实可以有效的提高控制系统的性能,特别是可以有效减少控制系统的超调量;完成了搪瓷内胆电子防腐装置阴极保护电源的研究,电源能够有效的实现控制系统的控制功能,提供搪瓷内胆所需要的保护电流,同时还能在供电突然中断的情况下维持一段较长时间的电流供应。
Anti-corrosion of enameled tank is important for the research of electrical water heater. Cathode protection of magnesium sacrificial anode is the useful method for anti-corrosion of enameled tank. But this method has some problem, for example, the magnesium anode has to be replaced frequently because of its short life; the dissolve things of it will affect the hygiene of bath and be harmful to human. In order to solve these problems, in this paper, the method of electronic anti-corrosion but not the sacrificial anode is applied, and a device of electronic anti-corrosion which will be used inside the enameled tank of electrical water heater is studied. The main study content of this paper involves:
     First, the material of the auxiliary anode has been analyzed and selected on the basis of the research of the material of auxiliary anode and according to the situation of enameled tank.
     Second, fuzzy control has been combined with the general control technology of power supply. And the control system of cathode protection power of the equipment of electrical anti-corrosion has been completed. The tool of MATLAB software has been used to verify the feasibility and advantages of the control system of the power supply.
     Third, the circuit of cathode protection power supply using the form of switching power has been proposed; Selection and principle of design of converter and high-frequency transformer has been described and studied in detail. Control circuit which core is MCU has been proposed and research. The program of backup power supply has been proposed and studied.
     In this paper, a feasible solution has been proposed for the problem of anti-corrosion of enameled tank. And the main conclusion of this paper involves: first, high silicon cast iron is the most suitable anode material which will be used in the enameled tank; second, the function of the control system has been improved obviously when using the technology of fuzzy control, in particular the overshoot of the control system can be reduced effectively; third, the design of cathode protection power has been completed, this power can supply the protection current which the enameled tank need, and then when the power supply of the family network was interrupted suddenly, the system can continue to supply the protection current for some time.
引文
[1]胡昌文.热水器内胆腐蚀分析与研究[D].天津:天津大学,2002
    [2]房中学.电热水器内胆腐蚀机理及实施阴极保护[J].全面腐蚀控制,2001,15(5): 24-27
    [3]房中学,符永高.电热水器内胆腐蚀机理及实施阴极保护综述[J].家电科技,2002, (2):41-43
    [4]伟霖,朱学明.电热水器内胆防腐新技术[J].家用电器科技,2001,(8):72-74
    [5]张岳遐.贮水式热水器腐蚀与防护技术的发展[J].现代家电,2003,(3):61-63
    [6] (美)欧斯特罗夫等.腐蚀控制手册[M].北京:石油工业出版社,1988
    [7]赵国仙.腐蚀技术与防护[J].北京:石油工业出版社,1998.19(2):51
    [8]肖纪美.材料的腐蚀及其控制方法[M].北京:化学工业出版社,1994
    [9]张翼鸣.搪瓷内胆是这样炼成的[J].现代家电,2004,(14):54-55
    [10]窦安民.静电干粉搪瓷[J].中华手工,2002,(2):21-24
    [11]段久华,黄国岚.静电干粉搪瓷在热水器内胆上的应用[J].玻璃与搪瓷,2000,(5): 33-34
    [12]曾爱平,张承平,徐乃欣.镁合金牺牲阳极对贮水式家用电热水器的阴极保护[J].腐蚀与防护,1999,20(2):78-80
    [13]布勤.镁阳极对电热水器内胆的阴极保护[J].家电科技,2003,(7):53-56
    [14]布勤.镁阳极对电热水器内胆的阴极保护(续)[J].家电科技,2003,(8):56-58
    [15]李培技,房中学.镁阳极棒在电热水器上的应用[J].电机电器技术,1999,(1): 35-36
    [16] (德)WV贝克曼.阴极保护手册[M].北京:人民邮电出版社,1990.199-200
    [17]火时中.电化学保护[M].北京:化工工业出版社,1980
    [18]胡时信.阴极保护工程手册[M].北京:化工工业出版社,1999
    [19]张文毓.牺牲阳极材料研究与应用[J].云南冶金,2008,37(6):45-48
    [20]宋曰海,郭忠诚,樊爱民,等.牺牲阳极材料的研究现状[J].腐蚀科学与防护技术,2004,16(1):24-27
    [21]齐公台,郭稚弧,林汉同,等.腐蚀保护常用的几种牺牲阳极材料[J].材料开发与应用,2001,(1):36-40
    [22]余罡,刘春松.一种新型热水器用铝合金牺牲阳极[J].全面腐蚀控制,2009, (6):48-49
    [23]郭炜,文九巴,马景灵,等.铝合金牺牲阳极材料的研究现状[J].腐蚀与防护, 2008,29(8):495-498
    [24]孔小东,朱梅五,丁振斌,等.铝合金牺牲阳极研究进展[J].稀有金属,2003,(3): 376-381
    [25]马丽杰,郭忠诚,宋曰海,等.镁合金牺牲阳极及其在防腐蚀工程中的应用[J]. 2003,6(3):38-42
    [26]郭为民,樊洪,李文军,等.锌合金牺牲阳极保护失效原因分析[J].材料开发与利用, 2004,19( 4):24-27
    [27]颜民.从腐蚀的角度探讨电热水器技术发展趋势[J].现代家电,2003,(5):31-33
    [28]田玉林.电子防腐解决电热水器顽疾之我见[J].现代家电,2004,(19):52-53
    [29]焱鑫.电子防腐解决电热水器顽疾的新处方[J].现代家电,2004,(14):49
    [30]赵杰,贺胜民,赵积红.电子防腐在太阳能热水器中的应用设计[J].全面腐蚀控制,2009,(3):35-37
    [31]胡学文,吴丽蓉,许崇武,等.外加电流阴极保护用辅助阳极的研究现状及发展趋势[J].腐蚀与防护,2000,21(12):546-549
    [32]夏定健.外加电流阴极保护辅助阳极[J].全面腐蚀控制,2005,19(2):38-41
    [33]潘会波.外加电流阴极保护用阳极[J].稀有金属材料与工程,1991,20(4):61-64
    [34]迟善武.阴极保护电源的技术现状与发展趋势[J].仪器仪表用户,2006,(4): 6-7
    [35] Douglas Goodman, James Hofmeister, Justin Judkins. Electronic prognostics for switched mode power supplies[J]. Microelectronics Reliability,2007, 47:1902-1906
    [36] Miguel A. Mendez, Jose Luis Gonzalez, Diego Mateo et al. An investigation on the relation between digital circuitry characteristics and power supply noise spectrum in mixed-signal CMOS integrated circuits[J].Microelectronics Journa1,2005,36:77-84
    [37] X.Aragones, A.Rubio. Experimental comparison of substrate noise coupling using different wafer types[J]. IEEE J. Solid-State Circuits, 1999, 34(10):1405-1409
    [38] R.Frye. Switching-induced substrate noise and mixed-signal receiver design[J]. Proceedings of the Southwest Symposium on Mixed-Signal Design, 2000:119-124
    [39] Douglas Goodman, James Hofmeister, Justin Judkins. Electronic prognostics forswitched mode power supplies[J]. Microelectronics Reliability, 2007, 47:1902-1906
    [40]王健健,王燕.外加电流阴极保护高频开关恒电位仪的研制[J].石油化工腐蚀与防护,2008,25(3):41-44
    [41]迟善武.一种智能无线遥控型恒电位仪[J].管道技术与设备,2006,(1):13-14
    [42]张加胜,高春侠,张磊.适用于阴极防腐保护的一种新型恒电位仪[J].测控技术,2004,23(10):77-78
    [43]薛胜东.一种新型阴极防腐特种电源[J].现代电子技术,2005,22(213):119-120
    [44]刘洋.智能防腐电源系统的研制[D].武汉:武汉理工大学,2005
    [45]张捷.基于LabVIEW的阴极保护电源智能测控系统研究[D].大连:大连理工大学,2007
    [46] Choi H S, Kim J W, Cho B H. Zero voltage and zero current switching full bridge PWM converter using coupled output inductor[J]. IEEE Transactions on Power Electronics, 2002, 17(5): 641-648
    [47] RUAN Xin-bo, YAN Yang-guang.A novel zero voltage and zero current switching PWM full bridge converter using two diodes in series with the lagging leg[J]. IEEE Transactions on Industrial Electronics, 2001, 48(4): 777-785
    [48]郭唐仕,陈锦云,林龙凤,等.低功率开关电源的新型数字控制系统[J].电力电子技术,2003,37(1):63-65
    [49] Arbetter B, Maksimovic D. Control method for low voltage DC power supply in battery power systems with power management[J].IEEE Power Electronics Specialists Conference. St Louis, 1997(1): 145-160
    [50] Peterchev A, Sanders S. Quantization resolution and limit cycling in digitally controlled PWM converter[J].Electronics Specialists Conference Vancouver, 2001: 465-471
    [51] Prodic A, Maksimovic D, Erickson R. Design and implement switching DC-DC power converter[J].IEEE Power Electronics Specialists Conference California, 2001: 893-898
    [52]李华,范多旺,魏文军,等.计算机控制系统[M].北京:机械工业出版社,2007
    [53]师黎,陈铁军,李晓媛,等.智能控制理论及应用[M].北京:清华大学出版社,2009
    [54]刘曙光,魏俊民,竺志超.模糊控制技术[M].北京:中国纺织出版社,2001
    [55] QB/T2509—2003,贮水式热水器搪瓷制件[S].2003
    [56]叶则华.电热水器不锈钢内胆的阴极保护[J].现代家电,2004,(18):56-57
    [57]张国良,曾静,柯熙政,等.模糊控制及以MATLAB应用[M].西安:西安交通大学出版社,2002
    [58]赵广元.MATLAB与控制系统仿真实践[M].北京:北京航空航天大学出版社,2009
    [59] HUANG Jian, GAO Hai-sheng, CHEN Te-fang, et al. Research on model of switching power-supply system based on PWM closed-loop control[J]. Electronic Engineer, 2003, 29(11): 45-48
    [60]成庶,陈特放,余明扬.开关电源时变模型的新型PID算法[J].中南大学学报(自然科学版).2007,38(5):970-974
    [61]赵同贺.开关电源设计技术与应用实例[M].北京:人民邮电出版社,2007
    [62]刘金涛.模糊控制逆变弧焊电源的研究与设计[D].天津:天津大学,2005
    [63]楼然昌,李飞.51系列单片机设计实例[M].北京:北京航空航天人学出版社,2003
    [64]上海电子专科学校.霍尔元件及其应用[M].上海:上海人民出版社,1974
    [65]王鸿麟,钱建立,周晓军.智能快速充电器设计与制作[M],北京:科学出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700