TiB_2/C导电复合阴极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二硼化钛(TiB2)是B和Ti的最稳定化合物,是一种具有优良物理化学性能的工程陶瓷材料,具有高熔点、高硬度、高模量、低比重和耐腐蚀等优点。与电解铝用传统碳素阴极材料相比,TiB2对金属铝液具有良好的润湿性,导电性好,且不与铝液发生化学反应。二硼化钛的这些特性使其作为理想的电解铝工业新型惰性可润湿性阴极材料而得到了广泛的研究。由于纯TiB2阴极材料烧结制备困难,且脆性较大,因此目前的研究重点主要集中于TiB2/C复合阴极材料。
     本文采用TiB2和石墨与炭黑两种碳源为原料,通过热压烧结制备TiB2/C复合阴极材料,并加入一定量短切碳纤维来实现材料的增韧补强。在保证材料对铝液完全润湿的前提下,重点研究了原料配比、碳纤维含量、热压烧结工艺参数对于材料显微结构、致密度、力学和电学性能的影响,研究材料结构与性能之间的关系。
     首先研究了短切碳纤维的表面除胶预处理工艺,分别采用真空热处理、浓硝酸氧化和丙酮清洗三种方法来对纤维表面胶层进行处理。发现丙酮清洗法可有效除去碳纤维表面胶层,且不会对碳纤维造成破坏。
     以TiB2、石墨与炭黑为原料,采用热压烧结分别制备了TiB2/C复合材料。研究发现:炭黑粒径较小、颗粒均匀,塑性流动能力较强,TiB2/炭黑材料的致密度高;但是TiB2晶粒容易被炭黑颗粒各自隔离,无法形成连接网络,导致材料力学电学性能很差。TiB2/石墨材料的综合性能较好,但是片状石墨在热压烧结过程中的塑性流动能力较差,其含量过高会导致材料致密度降低、导电性能和力学性能的下降。在此基础上,系统研究了TiB2含量、热压烧结温度和烧结时间对TiB2/石墨材料结构性能的影响。研究表明:随着TiB2含量的增加,TiB2晶粒之间逐渐相互结合形成连接网络,TiB2/石墨材料的致密度、导电性能和力学性能均上升;随着热压烧结温度的升高,TiB2晶粒之间的结合更加充分和紧密,材料的性能进一步提高;而随着烧结时间的延长,TiB2晶粒出现异常长大的现象,TiB2/石墨材料的综合性能呈现出先提高后下降的变化趋势。当TiB2含量为85wt%,石墨含量为15wt%,热压烧结温度为1950℃,烧结时间为1h,压力30MPa时,TiB2/石墨复合材料的综合性能最好为:抗弯强度为210.74MPa,断裂韧性为3.573MPa·m1/2,电阻率为30.02μΩ·cm,致密度为97.14%,维氏硬度为6.49GPa。
     在优化后的样品中掺加短切碳纤维来实现对TiB2/石墨材料的增韧补强作用。研究发现:随着纤维含量的增加,材料的弯曲强度下降,而断裂韧性先增后减。当碳纤维含量为3wt%时,材料的断裂韧性最高为4.61MPa·m1/2,相比不掺加纤维的样品提高了30%左右,而弯曲强度略微下降为197.02MPa。当碳纤维含量超过3wt%后,由于碳纤维之间相互堆积架接,孔隙增多,材料各项性能急剧下降。短切碳纤维对于TiB2/石墨材料的增韧机制主要有裂纹偏转、界面解离、纤维断裂和拔出等几种,通过这些能量耗散途径,使材料在破坏前大量吸收消耗外界的断裂功,提高材料韧性。
As one of the most promising engineering ceramics, titanium diboride (TiB2) possesses excellent physical and chemical properties such as high melting point, high modulus, low density, good chemical stability, high hardness and excellent electric conductivity. Compared with the conventional cathode materials, TiB2ceramics exhibit unique properties such as good wettability with liquid aluminum and good resistance to sodium penetration, these properties make TiB2have been under wide studies as ideal cathode material for aluminum electrolysis. Duo to its bad toughness and difficulty of sintering of pure TiB2cathode material, now many researches focus on the TiB2/C composite cathode material primarily.
     In this paper, the titanium diboride-carbon (TiB2/C) composite was prepared by hot pressing sintering, the main experiment material were TiB2, graphite and carbon black, different content of short carbon fibers were added so as to reinforce TiB2/C composite. The dissertation mainly studied the influences of the ratio of row materials, carbon fiber content and sintering parameters to microstructure, density, mechanical and electrical properties of TiB2/C composite, the relationship between structure and properties was also studied.
     First of all, surface desizing pretreatment process of carbon fiber was studied. Three methods (vacuum heat treatment, oxidation with concentrated nitric acid, washed by acetone) were used to remove the glue line of carbon fiber, the results showed that the method of acetone washing can remove the surface glue line effectively without damaging carbon fiber.
     TiB2/C composite was prepared by hot pressing sintering using TiB2, graphite and carbon black as raw materials. The experimental results are as follow: TiB2/carbon black composite showed a high density because carbon black exhibited small particle size and had good ability of plastic flow, however, TiB2grain was likely to be separated by carbon black and could not form a connected network, this caused poor mechanical and electrical properties of TiB2/carbon black composite. TiB2/graphite composite exhibited better comprehensive performance, but high content of graphite would decrease density, mechanical and electrical properties of TiB2/graphite composite because of its low ability of plastic flow. Subsequently, the effect of TiB2content, sintering temperature and sintering time to TiB2/graphite composite's structure and properties was studied systematically. It could be found that the increase of TiB2content improved the density, mechanical and electrical properties of composite duo to the connected network caused by more and more TiB2grain. TiB2/graphite composite showed a closer combination and better performance with the increase of sintering temperature. The abnormal grain growth was appear with the increase of sintering time, the comprehensive properties of composite appeared the trend from increasing to decreasing. When TiB2content was85wt%, graphite content was15wt%, sintering temperature was1950℃, sintering time was1h, sintering press was30MPa, TiB2/graphite composite exhibited best comprehensive properties as following:flexural strength was210.74MPa, fracture toughness was3.573MPa·m1/2, electrical resistivity was30.02μ(?)·cm, the relative density was97.14%, the Vickers hardness was6.49GPa.
     Different content (0-9wt%) of short carbon fibers were added into TiB2/graphite composite to reinforce TiB2/C composite. The results showed that flexural strength of composite decreased with the increase of carbon fiber, and fracture toughness appeared the trend from increasing to decreasing, TiB2/graphite composite with3wt%carbon fiber had the highest fracture toughness,4.61MPa·m1/2, which improved by30%than composite without fiber, and the flexural strength exhibited slight decrease of197.02MPa. When fiber content was over3wt%, the comprehensive properties of composite decreased sharply due to the increasing number of pores caused by the fiber bridging effect. Interface debonding, fiber fracture and pull-out were main toughening mechanisms of TiB2/graphite composite, all of these toughening mechanisms could consume much fracture energy and improve the fracture toughness of TiB2/graphite composite.
引文
[1]向军辉,肖汉宁.TiB2材料的研究现状及其应用[J].陶瓷工程,1992,29(4):39-45.
    [2]刘利,傅正义.硼化钛系复合材料研究进展[J].粉末冶金技术,2000,18(3):218-220.
    [3]K Grjotheim and H K vande. Introduction to Aluminium Electrolysis[J],2nd Edition. Dusseldorf: Aluminium-Verlag,1993.8-25.
    [4]Warren E Haupin. Principles of Aluminum ElectrolysispJ], In: J Evans, eds. Light Metals 1995. Warrendale PA, USA:TMS,1995.196-203.
    [5]邱竹贤.铝电解原理及应用[M].中国矿业大学出版社,1997.
    [6]B. J. Welch and J.T. Keniry. Advancing the Hall-Heroult Electrolytic Process[J]. In:R. D. Peterson, eds.LightMetals2000. Warrendale PA, USA:TMS, 2000.18-25.
    [7]张勇,马思聪.浅谈中国铝电解技术发展与进步[J].世界有色金属,2008,(1):22-24.
    [8]霍庆发.电解铝工业技术与设备[M].辽海出版社,2002.
    [9]R. P. Pawlek. Review of the Aluminum Reduction Sessions[J], Part I. Aluminum,1999, 75(7/8):621-624.
    [10]刘业翔铝电解惰性阳极与可润湿性阴极的研究与开发进展[J].轻金属,2001,(5):27-29.
    [11]许彦利,张建晴.提高电解槽槽底抗渗透性优化电解指标[J].轻金属,2001,12:38-39.
    [12]罗爱民,王智堂.铝电解槽优质阴极碳素材料[J].金属世界,2008,(1):38-40.
    [13]齐仲辉.改善半石墨质阴极炭块性能的探讨[J].炭素工艺与设备,2002,9:172-175.
    [14]Billehaug K, Ye H A. Inert Cathode for Aluminium Electrolysis in Hall-Heroultcells[J]. Aluminium,1980,56 (10):42.
    [15]S. Briem, Z. Alkan, R. Quinkertz and M.Dienhart et al. Development of Energy Demand and Energy-Related CO2 Emissions in Melt Electrolysis for Primary Aluminum Production[J]. Aluminium,2000,76(6):503-506.
    [16]H A Oye, N Mason, R D Peterson et al. Aluminum:Approaching the New Millennium JOM, 1999,51(2):32-42.
    [17]R P Pawlek. Inert anodes:an update. In:W Schneider, eds. LightMetals2002. Warrendale PA, USA:TMS,2002.450-456.
    [18]H. Kvande. Inert Electrodes in Aluminum Electrolysis Cells[J]. In:C Edward Echert, eds. LightMetalsl999. Warrendale PA, USA:TMS,1999.369-375.
    [19]D. A. WEIRAUCH, JR., W. J. KRAFICK. The wettability of titanium diboride by molten aluminum drops[J]. Journal of Materials Science,2005,40:2301-2306.
    [20]Aluminum Industry Technology Roadmap [EB/OL].http://www.oit.doe.gov/aluminum/pdfs/al_roadmap.pdf, 2003-04-17.
    [21]M. Sorlie. Cathodes in Aluminum Electrolysis, Dusseldorf: Aluminium-Verlag,1994.67-73.
    [22]De Nora Vittorio, Sekhar Jainagesh. Aluminum electrolytic cell method with application of refractory protective coatings on cell components[J]. US, Patent, 5340448,1994-08-23.
    [23]杨宝刚,于佩志,于先进.电解铝生产用的惰性电极材料[J].轻金属,2000,(5):32-35.
    [24]王为民.二硼化钛基陶瓷的自蔓延高温合成与加工.[博士学位论文].武汉:武汉工业大学,1998.
    [25]H. R Banmgartner and R. A Steiger, Sintering and Properties of Titanium Diboride Made from power Synthesized in a Plasma-Arc Heater. J. Am. Ceram. Sco, 1984,67(3):210-212.
    [26]刘业翔,邹忠.导电陶瓷TiB2开发与应用的最新进展[J].稀有金属,1996,20(6):439-441.
    [27]宋文杰,钟晖.TiB2陶瓷材料制备方法及其研究新进展[J].稀有金属与硬质合金,2005,33(2):47-52.
    [28]Takeyasu, et al. Synthesis of ultrafine titanium diboride particles by rapid carbon thermal reduction in a particulate transport reactor[J]. Journal of Materials Science,1997,3(2): 3934-3936.
    [29]Merzhanov A G, Borovinskaya I P. Dokl Akad Nauk SSSR,1972,204(2):429.
    [30]张金咏,傅正义,王为民.自蔓延高温合成(SHS)过程的热动力学研究[J].复合材料学报,2005,22(2):71-73.
    [31]傅正义,袁润章,王为民,等.TiB2的自蔓延高温合成过程研究[J].硅酸盐学报,1995,23(1):27-29.
    [32]Liang Shi, et al. A convenient solid-state reaction route to nano crystalline TiB2[J]. Inorganic Chemistry Communications,2004(7):192-194.
    [33]J A Sekhar, V De Nora, J Liu, et al. TiB2/Colloidal Alumina Carbon Cathode Coating in Hall-Heroult and Drained Cells. In:Barry Welch, eds. Light Metals1998. Warrendale PA, USA:TMS,1998.606-615
    [34]张智敏,蒋明学.铝电解槽用硼化钛惰性阴极的研究进展[J].稀有金属快报,2008,27(11):1-3.
    [35]李冰,邱竹贤.TiB2阴极涂层性能的研究[J].轻金属,1993,(7):23-27.
    [36]廖贤安,刘业翔.TiB2/C复合涂层阴极材料的研制与应用[J].材料导报,1995,(2):18-20.
    [37]Larry G. Boxall, Arthur V. Cooke. Use of TiB2 Cathode Material Application and Benefits in Conventional VSS Cells:In:J P McGeer, eds. Light Metals1994. Warrendale PA, USA:TMS, 1994:573-588.
    [38]Liao Xian-an, H. A. Oye. Effects of Carbon-Bonded Coatings on Sodium Expansion of the Cathode in Aluminum Electrolysis. In:C Edward Eckert, eds. Light Metals1999. Warrendale PA, USA:TMS,1999:629-636.
    [39]卢惠民,邱竹贤.铝冶金进展[M].北京.冶金工艺出版社,2000.
    [40]K. Billehaug and H. A. Oye. Inert Cathodes and Anodes for Aluminum Electrolysis[J]. Dusseldorf Aluminum-Verlag,1981.1 -3.
    [41]Kang S H. Pressureless Sintering and Properties of Titanium Diboride Ceramics Containing Chromium and Iron. J A m Cera Soc,2001,84 (4):893-895.
    [42]Einarsrud M A. Pressureless Sintering of Titanium Diboride with Nickel, Nickel Boride, and Iron additives. J A m Ceram Soc,1997,80 (12):3013-3022.
    [43]刘雪凡.半石墨碳块硼化钛涂层研究:[硕士学位论文],中南工艺大学,1992.
    [44]T R Alcorn, D V Stewart, A T Tabereaux, et al. Pilot Reduction Cell Operation Using TiB2-G Cathodes, In:Christian M Blckert, eds. Light Metals 1990. Warrendale PA, USA:TMS, Light Metals,1990.415-418.
    [45]Martin Dionne, Gilles L Esperance, Amir Mirtchi. Wetting of TiB2-Carbon Material Composite[J]. In:C Edward Eckert, eds. Light Metalsl999. Warrendale PA, USA:TMS, 1999.389-394.
    [46]段学良,冯乃祥.TiB2/C复合材料阴极在电解过程中的膨胀和对钠的渗透性研究[J].材料与冶金学报,2004,3(1):30.
    [47]Xue Jilai, Harald A Oye. Wetting of Graphite and Carbon/TiB2 Composites by Liquid Aluminum. In:Subodh K Das, eds. Light Metals1993. Warrendale PA, USA:TMS,1993. 631-637.
    [48]李庆余,赖延清.中低温烧结铝电解用TiB2-碳素复合阴极材料[J].中南工业大学学报(自然科学版),2003,34(1):24-28.
    [49]成庚,吕增旭,王醒钟.铝电解可润湿性阴极的研究开发与工业试验[J].包头钢铁学院学报,2002,21(3):288-292.
    [50]欧文莉,薛济来.铝电解过程中TiB2/C复合阴极内化学反应的研究[J].第二届全国延长铝电解槽使用寿命学术研讨会,23-24.
    [51]夏鸿雁.C/TiB2复合材料的反应制备与性能:[硕士学位论文],哈尔滨工业大学,2006.
    [52]王玉成,傅正义.TiB2-BN复相导电陶瓷的研究进展[J].武汉工业大学学报,2000,22(5):36-37.
    [53]罗学涛,谢小林,袁润章.热压烧结TiB2陶瓷的显微结构和力学性能研究[J].无机材料学报,2000,15(3):541.
    [54]齐志军,宋威.PAN原丝生产过程对碳纤维强度的影响因素[J].高科技纤维与应用,2001,26(5):17-20.
    [55]Bennett S C, Johnson D J. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibers[J]. Carbon,1979,17(1):25-39.
    [56]Diefendorf R J, Tokarsky E W. High-Performance Carbon Fibers[J]. Polymer Engineering and Science,1975,15:155-159.
    [57]沃丁柱.复合材料大全[M].北京:化学工业出版社,2000:6,98-121,128-129.
    [58]郭景坤.纤维补强陶瓷基复合材料的进展[J].材料科学与工程,1989,2:7.
    [59]Evans A. G. Perspective on the development of high-toughness ceramics[J]. J Am Ceram Soc. 1990,73(2):187.
    [60]Mitomo. M, Uenosono. S. Microstructural Development during Gas pressure sintering of α-silicon nitride[J]. Journal of the American Ceramic Society,1992,75(1):103-108.
    [61]施剑林.固相烧结-Ⅱ粗化与致密化关系及物质传输途径[J].硅酸盐学报,1997,25(6):657-667.
    [62]周长城,周新贵.短碳纤维增强碳化硅基复合材料的制备[J].高科技纤维与应用,2004,29(4):36-38.
    [63]张长瑞,郝元恺.陶瓷基复合材料[M].长沙:国防科技大学出版社,2001.
    [64]Wang Y y, Meng J y. Surface Treatment of Carbon Fiber for Composites[J]. Surface Technology,2007,36(3):53-55.
    [65]殷永霞,沃西源.碳纤维表面改性研究进展[J].航天返回与遥感,2001,25(1):51-53.
    [66]Chen G l, Geng H r. Effect of Carbon Fiber Surface and Strength of Cf/C Composite by Different Treatment Methods[J]. Materials Engineering,2006,1:160-164.
    [67]张秀莲,徐志淮,李贺军.碳纤维表面处理对单向C/C复合材料强度的影响[J].机械科学与技术,2003,22(3):484-486.
    [68]Song Guiming, Li Qiang. Mechanical properties of short carbon fiber-reinforced TiC composites produced by hot pressing[J]. Materials Science and Engineering, A326,2002: 240-248.
    [69]Yang Feiyu, Zhang Xinghong. Mechanical properties of short carbon fiber reinforced ZrB2/SiC ceramic matrix composites[J]. Materials Letters,2008,62:2925-2927.
    [70]唐汉玲,熊信柏.短切碳纤维含量对Csf/SiC复合材料力学性能的影响[J].硅酸盐学报,2007,35(8):1058-1061.
    [71]周卫兵,梅炳初,朱教群.碳纤维增强Cu-Ti3SiC2材料的制备及性能研究[J].武汉理工大学学报,2009,31(12):23-25.
    [72]Wang Weimin,Fu Zhengyi,Wang Hao, et al,Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J.Euro Soc, 2002,22(7):1045-1049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700