海洋生物膜的电活性及其在微生物燃料电池中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋电活性微生物(又称电活性生物膜,electroactive biofilms, EABs)是自然界存在的一类功能性微生物,能够将代谢有机物产生的电子直接或间接传递给电极,人们对其在环境中的广泛性及其在生物防腐、生物能源和生物修复中的应用正在开展广泛的研究。
     本论文着眼于海洋天然生物膜的电活性,从微生物腐蚀和微生物燃料电池的角度,考察研究了海洋天然生物膜对316L SS腐蚀行为的影响,发现海洋天然生物膜能抑制316L SS腐蚀,系统研究了海洋生物膜与石墨等电极的电子传递过程,提出了电活性生物膜(EABs)与电极间的电子传递机制,并初步研究了海洋电活性生物膜在微生物燃料电池(MFCs)中的应用。
     对附着天然海洋生物膜的316L SS研究发现,生物膜使316L SS电位正移了500mV (vs. Ag/AgCl)。316L SS表面附着海洋生物膜后,其孔蚀电位由原来的50mV增加到540mV,孔蚀敏感性降低;同时,海洋生物膜的附着导致316L SS的阻抗增加,由此,我们明确提出海洋生物膜能够抑制316L SS腐蚀的发生。进一步研究了生物膜抑制腐蚀发生的可能机理。循环伏安实验表明,海洋生物膜与不锈钢电极之间存在电子传递过程。扫描电镜(SEM)及能谱(EDS)分析发现有钙盐的沉积生成。通过以上结果我们提出了生物膜对腐蚀的抑制机制假设,即在电极与电活性海洋生物膜间发生了电子传递,海洋生物膜能够将电子传递给不锈钢,316L SS作为电子接受体受到保护。
     为进一步研究天然海洋生物膜的这种电活性,我们选择不会发生腐蚀的惰性电极材料石墨,玻碳,碳纸电极验证生物膜的电活性。
     首次考察了天然海洋生物膜对石墨电极和玻碳电极的开路电位变化的影响,结果显示随电极在天然海水中浸泡时间,石墨电极正移50mV vs. Ag/AgCl,玻碳电极正移了300 mV (vs. Ag/AgCl)。与316L SS相似,三种电极的变正趋势相同,都经历了三个阶段,即初始缓慢变正期,随后的指数变正期和以后的稳定期,此与生物膜在固体表面形成的趋势相似。伏安曲线及阻抗实验结果表明,在石墨,玻碳和碳纸电极材料表面附着海洋生物膜后,电流密度增加,电荷转移电阻减小,说明生物膜与电极间存在电子传递,并能加速电子传递过程,不同材料表面生物膜的电活性能力由大到小为石墨>316L SS>碳纸>玻碳。
     进一步研究了海洋沉积物-海水生物膜微生物燃料电池,初步建立了相应的电极材料和微生物燃料电池结构。我们选择石墨阳极和石墨阴极或316L SS阴极组装海泥沉积物(阳极区)和海水(阴极区)MFC,316L SS代替石墨做阴极最大输出电量达9mW.m-2,约为后者的2倍。两种MFC输出电流和功率密度随时间的延长而增加的趋势相同,都可以分为三个阶段,即初期的缓慢增加阶段,中期的指数增长阶段,后期的平台稳定期阶段。这也与生物膜在固体表面形成的趋势相似。此研究也说明优化316L SS表面性质筛选活性海洋生物膜用于MFC有其潜在的应用价值。
Marine electro-active biofilms (electrochemical active biofilms, EABs) are kinds of functional biofilms in nature that can transfer the electrons produced by metabolizing organism to electrodes. The application of the EABs in inhibition corrosion, biosources and bioremediation has been studied extensively.
     In this paper, the influence of the marine natural biofilms on the corrosion of 316L SS was studied firstly. And the results showed that the marine biofilms can inhibit the corrosion of 316L SS. And then we systemically studied the electrons transfer process between EABs and electrodes and proposed the mechanism of electrons transfer between EABs and electrodes. And the application of EABs in MFCs was studied.
     The OCP (open circuit potential) of 316L SS ennobled 500mV vs. Ag/AgCl. The marine biofilms increased the pitting potential of 316L SS from 0.05V to 0.54V and increased the impedance. And the Electron microscopy (EMS) and Energy-Dispersive Spectroscopy (EDS) found there was no corrosion production on the 316L SS surface. So we made the decision that the marine biofilm can inhibit corrosion of the 316L SS. The cyclic voltammograms (CV) showed that the marine biofilms accelerated the electron transfer, catalyzed the cathode reaction. So we presented the inhibition mechanism of marine biofilms on 316L SS. The marine biofilms have electrochemical active to transfer electron between the biofilms and 316L SS. And the 316L SS can accept electron transferred by marine biofilms to avoid the corrosion.
     And then we used the graphite, glasscarbon and carbon paper electrodes to validate the EABs.
     The ennoblement of glasscarbon and graphite OCP in seawater were firstly studied. The glasscarbon ennobled positively 300mV vs. Ag/AgCl, and the graphite ennobled positively 50mV vs. Ag/AgCl. And the ennoblement trends of the two electrodes were in common with 316L SS and were agreed with the trends of the biofilm’s growth: the first ennoblement slowly, exponent period, and then the platform period.
     The CV and EIS showed that the marine biofilms attached on graphite, glasscarbon and carbon paper electrodes catalyzed the cathodic reduction effectively and decreased the impedance that showed that the marine biofilms were EABs and can transfer electrons. The ability of the catalysis descended according to the sequence graphite, 316L SS, carbon paper and glasscarbon.
     We farther studied the marine deposition-seawater Microorganism fuel cells (MFCs). The MFCs were set up with graphite as anode and graphite or 316L SS as cathode. The stainless steel electrodes gave current densities 2 times higher than graphite. And the trends of the power and current increasing were agreed with the trend of the biofilm’s growth. So it is important significance to enhance the 316L SS surface quality and screen electroactive biofilms to be used in MFC.
引文
1. Henrici A T. Studies of freshwater bacteria I: A direct microscopic technique. J. Bacteriol., 1933, 25: 277-287
    2. Geesey G G, Richardson W T, Yeomans H G, Irvin R T, Costerton J W. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can. J. Microbiol., 1977, 23(12): 1733-1736
    3. Angst E C. The Fouling of Ships Bottoms by Bacteria. Rep., Bur. Constr. Repair, US Navy Dep., Washington, DC, 1923
    4. Heilmann C, Gerke C, Perdreau-Remington F, Gotz F. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun., 1996, 64(1): 277-282
    5. Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Gotz F. Molecular basis of intercellular adhesion in the biofilm-forming Staphlococcus epidermidis. Mol. Microbiol., 1996, 20(5): 1083-1091
    6. Mack D, Nedelmann M, Krokotsch A, Schwarzkopf A, Heesemann J, Laufs R. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intracellular adhesin. Infect. Immun. 1994, 62(8): 3244-3253
    7. O'Toole G A, Kolter R. The initiation of biofilm formation in Pseudomonas aeruginosa WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol., 1998, 28: 449-461
    8. Adal K A, Farr B M. Central venous catheter-related infections: a review. Nutrition, 1996, 12(3): 208-213
    9. Archibald L K, Gaynes R P. Hospital acquired infections in the United States: the importance of interhospital comparisons. Nosocom. Infect., 1997, 11(2): 245-255
    10. Dickinson M, Bisno A L. Infections associated with prosthetic devices: clinical considerations. Int. J. Artif. Organs, 1993, 16: 749-754
    11.宋永香,王志政.海洋生物及其粘附机理-微生物、小型海藻、巨型海藻、贻贝。中国胶粘剂,2003, 11(4):48-52
    12. Gatenholon P. Toward biological autifouling surface coatings: marine bacteria limmobilized in hydrogel inhibit barnacle larvae. Biofouling, 1996, 9: 293-301
    13. Kolter R, Siegele D A, Tormo A. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol., 1993. 47: 855-874
    14. Costerton J W, Lewandowski Z, Caldwell D E, Korber D R, Lappin-Scott H M. Microbial biofilms. Annu. Rev. Microbiol., 1995, 49: 711-745
    15. Little B J, Wagner P. Myths related to microbiologically influenced corrosion. Mater. Perform., 1997, 36(6): 40-44
    16. Percival S L. Review of potable water biofilms in engineered systems. British Corrosion Journal, 1998, 33(2): 130-137
    17. Brenda J Little, Patricia Wagner. Factors Influencing the Adhesion of Microorganisms to Surfaces. J. Adhesion., 1986, 20: 187-210
    18. Percival S L. Biofilm development on stainless steel in mains water. Wat. Res., 1998, 32(1): 243-253
    19.马士德.海洋微型生物与金属腐蚀关系的初步探讨[A].国家科委腐蚀科学学科组,1979年腐蚀与防护学术报告会议论文集[C].北京:科学出版社,1982
    20. Zbigniew Lewandowski. Structure and Function of Bacterial Biofilms. Corrosion, 1998, 54: 296-310
    21. Fuhu Xia. An Electrochemical Technique to Measure Local Flow Velocity in Biofilms. Wat. Res., 1998, 32(12): 3637-3645
    22. Kjetil Rasmussen, Zbigniew Lewandowski. The Accuracy of Oxygen Flux Measurements Using Microelectrodes. Wat. Res., 1998, 32(12): 3747-3755
    23. Xu K,Dexter S C, Luther G W. Voltammetric microelectrodes for biocorrosion studies. Corrosion, 1998, 54(10): 814-823
    24. L’Hostis E. Characterization of Biofilms Formed on Gold in Natural Seawater by Oxygen Diffusion Analysis. Corrosion, 1997, 53(1): 4-10
    25. Gill G. Geesey. Role of bacterial exopolymer in the deterioration of metalliccopper surfaces. Mater. Perform., 1980, 25(2): 37-40
    26. Chen G, Kagwade S V, French G E, Clayton C R. Metal ion and exopolymers interaction: a surface analytical study. Corrosion, 1996, 52(12): 891-899
    27.樊友军,皮振邦,华萍,微生物腐蚀的作用机制与研究方法现状,材料保护2001,34(5):18-20
    28. Mollica, E. Traverso and D. Thierry, in D. Thierry (Ed), Aspects of Microbially Induced Corrosion. The Institute of Materials, London UK, 1997
    29. Beech I B, Gaylarde C C. Recent advances in the study of biocorrosion- An overview. Revista de Microbiol., 1999, 30: 177-190
    30. Kim B H, Kim H J, Hyun M S, Park D H. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol., 1999, 9: 127-131
    31. Tender L M, Reimers C E, Stecher III H A, Holmes D E, Bond D R, Lowy D A, Pinobello K, Fertig S J, Lovley D R. Harnessing microbially generated power on the seafloor. Nat. Biotechnol., 2002, 20: 821-825
    32. Information on www.ea-biofilms.org
    33. Park D H, Zeikus J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 2003, 85: 348-355
    34. Logan B E, Regan J M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol., 2006, 14: 512-518
    35. Debabov V G. Electricity from microorganisms. Microbiology, 2008, 77: 123-131
    36. Torres C I, Marcus A K, Rittmann B E. Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl. Microbiol. Biotechnol., 2007, 77: 689-697
    37. Chang I S, Moon H, Bretschger O, Jang J K, Park H I, Nealson K H, Kim B H. Electrochemically active bacteria (EAB) and mediatorless microbial fuel cells. J. Microbiol. Biotechnol., 2006, 16: 163-177
    38. Lovley D R, Nevin K P. Electricity production with electricigens. In Bioenergy. Edited by Wall JD, Harwood CS, Demain AL. ASM Press; 2008: 295-306
    39. Lovley D R. The microbe electric: conversion of organic matter to electricity.Curr. Opin. Biotech., 2008, 19: 564-571
    40. Esteve-Nunez A, Sosnik J, Visconti P, Lovley D R. Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Environ. Microbiol., 2008, 10: 497-505
    41. Richter H, McCarthy K, Nevin K P, Johnson J P, Rotello V M, Lovley D R. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir, 2008, 24: 4376-4379
    42. Lanthier M, Gregory K B, Lovley D R. Electron transfer to electrodes with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol. Lett., 2007, 278: 29-35
    43. Zhang T, Cui C, Chen S, Yang H, Shen P. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun., 2008, 10: 293-297
    44. Lin W C, Coppi M V, Lovley D R. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl. Environ. Microbiol., 2004, 70(4): 2525-2528
    45. Bergel A, Feron D, Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun., 2005, 7: 900-904
    46. Dulon S, Parot S, Delia M-L, Bergel A. Electroactive biofilms: new means for electrochemistry. J. Appl. Electrochem., 2007, 37:173-179
    47. Dumas C, Basseguy R, Bergel A. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim. Acta, 2008, 53: 2494-2500
    48. Eggleston C M, Vo¨ro¨s J, Shi L, Lower BH, Droubay TC, Colberg PJS. Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium with oxide electrodes: a candidate biofuel cell system. Inorg. Chim. Acta, 2008, 361: 769-777
    49.洪义国,郭俊,孙国萍.产电微生物及微生物燃料电池最新研究进展.微生物学报, 2007, 47(1): 173-177
    50. Lovley D R, Stolz J F, Nord Jr. G L, Phillips E J P. Anaerobic production ofmagnetite by a dissimilatory iron-reducing microorganism. Nature, 1987, 330(6145): 252-254
    51. Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69(3): 1548-1555
    52. Bond D R, Holmes D E, Tender L M, Lovley D R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295: 483-485
    53. Pham C A, Jung S J, Phung N T, Lee J, Chang I S, Kim B H, Yi H, Chun J. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Aeromonas hydrophilaisolated from a microbial fuel cell. FEMS Microbiol. Lett., 2003, 223(1): 129-134
    54. Kim H J, Park H S, Hyun M S, Chang I S, Kim M, Kim B H. Amediator-lessmicrobial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microbial Technol., 2002, 30: 145-152.
    55. Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediator-less microbial fuel cells. Nature Biotechnol., 2003, 21: 1229-1232
    56. Holmes D E, Bond D R, Lovley D R. Electrontransfer to Fe(Ⅲ) and graphite electrodes byDesulfobulbus propionicus. Appl. Environ. Microbiol., 2004, 70: 1234-1237
    57. Mathis B J, Marshall C W, Milliken C E, Makkar R S, Creager S E, May H D. Electricity generation by thermophilic microorganisms from marine sediment. Appl. Microbiol. Biotechnol., 2008, 78: 147-155
    58. Lovley D R. How electricity-generating microbes can keep going, and going– faster. Taming electricigens: The Scientist, 2006, 7: 4
    59.付宁,无介体微生物燃料电池处理模拟有机废水及其影响因素研究,硕士学位论文,大连理工大学,2006年12月
    60. Scotto V, Di Cintio R, Marcenaro G. The influence of marine aerobic microbial film on stainless steel corrosion behaviour. Corros. Sci., 1985, 25: 185-194
    61. Motoda S, Suzuki Y, Shinohara T, Tsujikawa S. The effect of marine fouling on the ennoblement of electrode potential for stainless steels. Corros. Sci., 1990, 31:515
    62. Mollica A. Biofilm and corrosion on active-passive alloys in seawater. Int. Biodeter. Biodegr., 1992, 29: 213-229
    63. Marconnet C, Dagbert C, Roy M, Féron D. Stainless steel ennoblement in freshwater: From exposure tests to mechanisms. Corros. Sci., 2008, 50: 2342-2352
    64. Eashwar M, Maruthamuthu S. Mechanisms of biologically produced ennoblement: ecological perspectives and a hypothetical model. Biofouling, 1995, 8: 203-213
    65. Little B J, Ray R, Wagner P, Lewandowski Z, Lee W C, Characklis W G, Mansfeld F. Impact of biofouling on the electrochemcial behavior of stainless steels in natural seawater. Biofouling, 1991, 3: 45-59
    66. Mollica A, Trevis A. roc. 4fh Ini. Gong. Marine Corr. and Foul. p, 351. Antibcs. France (1976). S. C. Dcxtcr and H. J. Zhang, Proc. 1 Ifh Int. Corr. Gong.. p. 333. Association Italianadi Metallurgia, Florence (1990)
    67. Dickinson W H, Caccavo F, Lewandowski Z. The ennoblement of stainless steel by manganic oxide biofouling. Corr. Sci., 1996, 38(8): 1407-1422
    68. MaOtila K, Carpen L, Hakkarainen T, Salkinoja-Salonen M S. Biofilm Development During Ennoblement of Stainless Steel in Baltic Sea Water: A Microscopic Study. Int. Biodeter. Biodegr., 1997, 40(1): l-10
    69. Jones D A. Principles and Prevention of Corrosion, MacMillan, New York. 1992 pp.115-141
    70. Johnson, D. B. (1995) Mineral cycling by Microorganisms: iron bacteria. In Microbial Diversity and Ecosystem Function, eds D. Allsop, R. R. Colwell and D. L. Hawksworth, p. 137-160. CAB International, Wallingford, UK.
    71. Paul Linhardt. MIC of stainless steel in freshwater and the cathodic behaviour of biomineralized Mn-oxides. Electrochim. Acta, 2006, 51: 6081-6084
    72. Washizu N, Katada Y, Kodama T. Role of H2O2 in microbially influenced ennoblement of open circuit potentials for type 316L stainless steel in seawater. Corr. Sci., 2004, 46: 1291-1300
    73. Féron D, Dupont I. in S.A. Campbell, N. Campbell and F.C. Walsh (Eds), Developments in Marine Corrosion. (The Royal Society of Chemistry, Cambridge, 1998), p. 89
    74. Le Bozec N, Compère C, Her M L, Laouenan A, Costa D, Marcus P. Influence of stainless steel surface treatment on the oxygen reduction in seawater. Corr. Sci., 2001, 43: 765-786
    75. Scotto V, Lai M E. The ennoblement of stailess steels in seawater: A likely explanation coming from the field. Corr. Sci., 1998, 40: 1007-1018
    76.马士德.舰船的生物附着与腐蚀调查.海洋学报,1996, 1: 80-81
    77. Proc. Int. Conf. Biologically Induced Corrosion (Houston, TX:NACE, 1985), p. 363
    78. Kobrin G. A Practical Manual on Microbiologically Influenced Corrosion, NACE international (Houston, TX: NACE, 1993), p. 233
    79. Stoecker J G. A Practical Manual on Microbiologically Influenced Corrosion, Vol. 2, NACE, International, Houston, TX., 2001, p. 1.1-11.38
    80. Little B J, Wagner P, Mansfeld F. Microbiologically influenced corrosion of metals and alloys. Int. Mater. Rev. 1991, 36(6): 253-272
    81. Mansfeld F. Evaluation of MIC and its inhibition with EIS and ENA. Proc. ISMCC-2000 Int. Symp. on“Marine Corrosion and Control”, Qingdao, Peoples Republic of China, July 30 - August 1, 2000, Ocean Press
    82. Ismall h M, Gehrig R, Jayaraman A, Trandem K, Arps P J, Wood T K, Earthman J C. Corrosion control of mild steel by aerobic bacteria under continuous flow conditions. Corrosion, 2002, 58(5): 417-423
    83. Pedersen A, Kjelleberg S, Henmansson M. A screening method for bacterial corrosion of metals. J. Microbiol. Methods, 1988(8): 191-198
    84. Videla H A, Guiamet P. Protection Action of Serratia marcescens in Relation to the Corrosion of Aluminum and its Alloys, in Biodeterloration Research 1, eds.G, Llewellyn, C. O’Rear(New York, NY:Plenum Press,1986), p. 75
    85. Geesey G, Jang L,“Binding of Metal Ions by Extracellular Polymers”in Metals, Ions, and Bacteria, eds. T. Beveridge, R. Doyle (New York, NY: John Wiley &Sons, 1988), p. 325
    86. Ford T E, Maki J S, Mitchell R. Biodeterioration 7, (Cambridge, UK: The Biodeterioration Society, 1988), p. 70
    87. C. von Wolzogen Kuehr, Water Gas, 1923, 7 (26): 277
    88. Mansfeld F, Little B. Electrochemical techniques applied to microbi- ologically induced corrosion. Corros. Sci., 1991, 32: 247-272
    89. Chandrasekaran P, Dexter S C.“Mechanism of Potential Ennoblement of Passive Metals by Seawater Biofilms”, Corrosion/93, NACE, 1993, P. 493
    90. Johnsen R, Bardal E. Cathodic properties of different stainless steels in natural seawater. Corrosion, 1985, 41: 296-302
    91. Dickinson W H, Lewandowski Z. Electrochemical concepts and techniques in the study of stainless steel ennoblement. Biodegradation, 1998, 9: 11-21
    92. Olesen B H, Avci R, Lewandowski Z. Manganese dioxide as a potential cathodic reactant in corrosion of stainless steels. Corros. Sci., 2000, 42: 211-227
    93. Linhardt P. Failure of chromium–nickel steel in a hydroelectric power plant by manganese oxidizing bacteria, in: E. Heitz, -C.H. Fleming, W. Sand (Eds.), Microbially Influenced Corrosion of Materials, Springer Verlag, 1996, p. 221
    94. Eashwar M, Maruthamutu S, Sathyanarayanan S, Balakrishnan K. Proceedings of the 12th International Corrosion Congress, vol. 5b, September 1993, Houston, TX, NACE, 1993, p. 3708
    95. Little B, Mansfeld F. Proceedings of the H.H. Uhlig Symposium on Passivity of Stainless Steels in Natural Seawater. J. Electrochem. Soc., 1994, 94-26
    96. Johnsen R, Bardal E. Cathodic properties of different stainless steels in natural seawater. Corrosion, 1985, 41: 296-302
    97. Little B J, Wagner P A, Ray R I. An evaluation of titanium exposed to thermophilic and marine biofilms. Corrosion/93, NACE, 1993. P. 308
    98. Mansfeld F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J. Appl. Electrochem., 1995, 25: 187-202
    99. Mansfeld F. The interaction of bacteria and metal surfaces. Electrochim. Acta,2007, 52(27): 7670-7680
    100. Mansfeld F, Lee C C, Han L T, Zhang G, Little B J, Wagner P, Ray R, Jones-Meehan J. The Impact of Microbiologically Influenced Corrosion on Protective Polymer Coatings, Final Report to the Office of Naval Research, Contract No. N00014-94-2-0026, August 1998.
    101. Mansfeld F, Hsu C H, O¨rnek D, Wood T K, Syrett B C. Corrosion control using regenerative biofilms on aluminum 2024 and brass in different media. J. Electrochem. Soc., 2002, 149: B130-B138
    102. Iverson W P. Microbial corrosion of metals. Adv. Appl. Microbiol. 1987, 32: 1-36
    103. Hernandez G, Kucera V, Thierry D, Pedersen A, Hermansson M. Corrosion inhibition of steel by bacteria. Corrosion, 1994, 50(8): 603-608
    104. Jayaraman A, Ornek D, Duarte D A, Lee C C, Mansfeld F B, Wood T K. Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Appl. Microbiol. Biotechnol., 1999, 52: 787-790
    105. Ismail K M, Gehrig R, Jayaraman A, Trandem K, Arps P J, Wood T K, Earthman J C. Corrosion Control of Mild Steel by Aerobic Bacteria Under Continuous Flow Conditions. Corrosion, 2002, 58 (5): 417-423
    106. Jayaraman A, Chang E T, Earthman J C, Wood T K. J. Ind. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Microbiol. Biotechnol., 1997, 48: 11-17
    107. McCafferty E, McArdle J V,“Corrosion Inhibition by Biological Siderophore,”in Proc. 182nd Society Meeting (Toronto, Canada: The Electrochemical Society, 1992), p. 185-186
    108. Jayaraman A, Hallock P J, Carson R M, Lee C C, Mansfeld F B, Wood T K. Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl. Microbiol. Biotechnol., 1999, 52: 267-275
    109. Little B, Ray R. A Perspective on Corrosion Inhibition by Biofilms. Corrosion,2002, 3, NACE International: 424-428
    110. Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors foranaerobic respiration. Environ. Microbiol., 2004, 6: 596-604
    111. Lovley D R. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol., 2006, 17: 327-332
    112. Bond D R, Lovley D R. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentaas. Appl. Environ. Microbiol., 2005, 71(4): 2186-2189
    113. Esteve-Nunez A, Rothermich M, Sharma M, Lovley D. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ. Microbiol., 2005, 7(5): 641-648
    114. Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435(7045): 1098-1101
    115. ZHONG Li(钟理), ZHANG Teng-yun(张腾云), WEI Guo-ling(魏国林). Performance of cell and proton-conducting membranes used in hydrogen sulfide fuel cell(H2S燃料电池用质子传导膜及其电池性能). J. Chem. Eng. of Chinese Univ.(高校化学工程学报), 2004, 18(2): 208-211
    116. Potter M C. Electrical effects accompanying the decomposition of organic compunds. Proc. R. Soc. Lond. B. 1910, 84: 260-276
    117.韩保祥,毕可万.采用葡萄糖氧化酶的生物燃料电池的研究.生物工程学报, 1992, 8(2): 203-206
    118. Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 2005, 23(6): 291-298
    119. Jang J K, Pham T H, Chang I S. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem., 2004, 39(5): 1007-1012
    120. Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 2004, 38(14): 4040-4046
    121.詹亚力,张佩佩,闫光绪,郭绍辉.无中间体无膜微生物燃料电池的构建与运行.高校化学工程学报, 2008, 22(1): 177-181
    122. Lovely D R. Anearobic benzene degradation. Biodegradation, 2000, 11: 107-116
    123. Jonathan M W, Lovely D R. Anaerobic benzene degradation in petroleum-contaminated aquifer sediments after inoculation with a benzene-oxidizing enrichment. Appl. Environ. Microb., 1998, 64(2): 775-778
    124. Anderson R T, Lovley D R. Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microbial. Ecol., 1997, 15: 289-350
    125. Gregory K B, Lovley D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol., 2005, 39: 8943-8947
    126. Haiping Luo, Guangli Liu, Renduo Zhang, Song Jin. Phenol degradation in microbial fuel cells. Chem. Eng. J., 2009, 147: 259-264
    127. Logan B E. Simutaneous wastewater treatment and biological electricity generation.Water Science, 2005, 52: 31-37
    128. Angenent LT, Karim KA, Dahhan MH. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol., 2004, 22: 477-485
    129. Mina B, Kima J, Oha S. Electricity generation from swine wastewater using microbial fuel cells. Water Res., 2005, 39: 4961-4968
    130. Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol., 2004, 38: 5809-5814
    131. Kim H J, Hyun M S, Chang I S. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. Microbiology and Biotechnology, 1999, 3: 365-367
    132. Kim B H, Chang I S, Gil G C. Novel BOD(biological oxygen demand)sensor using mediator-less microbial fuel cell. Biotechnol. Lett., 2003, 25: 541-545
    133. Tront J M, Fortner J D, Plotze M, Hughes J B, Puzrin A M. Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens. and Bioelectron., 2008, 24: 586–590
    134.王伟,海洋环境中微生物膜与金属电化学状态相关性研究,中国科学院研究生院博士学位论文,20030701
    135.段继周,海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响,中国科学院研究生院博士学位论文,20030701
    136.杜利成.玻碳电极上核黄素的电化学行为研究.中国测试, 2008, 34(6): 81-85
    137. Cui X Y, Martin D C. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators B: Chem., 2003, 89: 92-102
    138. Monika Naumowicza, Aneta Dorota Petelskaa, Zbigniew Artur Figaszewski. Impedance spectroscopic investigation of the interactions between phosphatidylethanolamine andα-tocopherol in bilayer membranes. Electrochim. Acta, 2009, 54: 1089-1094
    139. Khaled K F, Hackerman N. Investigation of the inhibitive effect of ortho-substituted anilines on corrosion of iron in 1 M HCl solutions. Electrochim. Acta, 2003, 48: 2715-2723
    140. Growcock F B, Jasinski J H. J. Electrochem. Soc. 1989, 136: 2310-2314.
    141. Shobhana Chongdar, G. Gunasekaran, Pradeep Kumar Corrosion inhibition of mild steel by aerobic biofilm. Electrochim. Acta, 2005, 50: 4655-4665
    142. Potekhina J S, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G. Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl. Microbiol. Biotechnol., 1999, 52: 639-646
    143. Catherine Dagbert, Thierry Meylheuc, Marie-Noelle Bellon-Fontaine. Corrosion behaviour of AISI 304 stainless steel in presence of a biosurfactant produced by Pseudomonas fluorescens. Electrochim. Acta, 2006, 51: 5221-5227
    144. Benabdellah M, Touzani R, Dafali A, Hammouti B, El Kadiri S. Ruthenium–ligand complex, an efficient inhibitor of steel corrosion in H3PO4 media. Mater. Lett., 2007, 61: 1197-1204
    145.宋诗哲.腐蚀电化学研究,中国腐蚀与防护学会,化学工业出版社, 1988,p187
    146. Mollica A, Ventura G, Traverso E, Scotto V. Catholic behaviour of nickel andtitanium in natural seawater. Int. Biodeter., 1988, 24: 221-230
    147. Bergel A. Recent advances in electron transfer between biofilms and metals, Laboratoire de Génie Chimique– CNRS, 5 rue Paulin Talabot, BP1301, 31106 Toulouse, France
    148. Yuri A. Gorby, Svetlana Yanina, Jeffrey S. McLean, Kevin M. Rosso. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, PNAS, 2006, 103(30): 11358-11363
    149. Crolet J L. From biology and corrosion to biocorrosion. In: Sequeira CAC & Tiller AK (Eds) Proceedings of the 2nd EFC Workshop, (pp 50–60). The Institute of Materials, London (1991)
    150. Little B J, Jason S. Lee, Richard I. Ray. The influence of marine biofilms on corrosion: A concise review. Electrochim. Acta, 2008, 54: 2-7
    151. Lai M E, Bergel A. Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase. J. .Electroanal. Chem., 2000, 494: 30-40
    152. Rabaey K, Clauwaert P, Aelterman P. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol., 2005, 39(20): 8077-8082
    153. Cheng S, Liu H, Logan B E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8, 489-494
    154. Min B, Cheng S, Logan B E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 2005, 39, 1675-1686

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700