镓酸镧基中温固体氧化物燃料电池的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用非水基流延法制备大面积镓酸镧(La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)简称LSGM)电解质支撑体,并对与之相匹配的新型高性能电极的材料制备、组织结构和各方面性能特别是电化学性能进行详细系统的研究,为大功率电池堆的组装打下坚实的基础。
     对固相反应法合成LSGM粉体的制备工艺进行优化,确定了LSGM粉体的最佳煅烧制度为:900℃预烧24 h,1300℃煅烧36 h,得到粉体平均粒径为3.04μm。随后通过沉降试验和粘度测试,确定了LSGM的流延浆料组成:粉料—LSGM 80 g,溶剂—丁酮/乙醇36 mL/24 mL,分散剂—三乙醇胺2 mL,粘结剂—聚乙烯缩丁醛6.4 g,塑性剂—聚乙二醇/邻苯二甲酸二乙酯3.2 g/4 mL。用此浆料流延出的素坯经过1500℃烧结6 h后,制备出宏观平整均匀、大小为10 cm×10 cm的大面积LSGM电解质,相对密度和显气孔率分别可以达到96.0%和0.38%,与玻璃陶瓷密封胶BCAS551的热膨胀匹配性良好,保证了工作温度范围内电池结构的稳定性。电化学阻抗谱分析表明LSGM电解质低温区电导率主要取决于晶界电导,而在高温区电导率主要取决于晶粒电导。低温下由于缺陷缔合的存在,电导率激活能较高为0.91 eV,随着温度升高到600℃解缔合之后,在高温下的激活能较低为0.62 eV。
     利用NiO-La_(0.45)Ce_(0.55)O_(2-δ)(LDC)阳极/LDC阻挡层/LSGM电解质这一阳极半电池中La3+离子的等活度策略,设计并验证了LDC作为NiO-LDC新型阳极和LSGM电解质之间的阻挡层,来抑制阳极与电解质间的界面反应。采用草酸共沉淀法制备出分布范围较窄平均粒径为1.36μm的LDC粉体。通过对浆料粘结剂、丝网印刷和烧结工艺的系统研究,采用丝网印刷法成功制备出一层厚约10μm、表面致密且与电解质结合紧密的LDC阻挡层薄膜。该薄膜与电解质和阳极间化学相容性和热膨胀匹配性良好,并改善了阳极与电解质之间的热膨胀匹配性,抑制了阳极/电解质界面固相反应的发生,在还原气氛下的混合离子电导促进了阳极/电解质界面的电荷转移过程。
     采用共沉淀法合成了在分子级水平上混合均匀的NiO-LDC阳极复合粉体,制备了新型NiO-LDC复合阳极。发现NiO的含量决定了阳极的导电机制,当NiO的含量>25mass%时金属Ni在阳极中形成连通的网络结构所导致的“逾渗相变”是造成导电机制发生变化的微观机制,其中NiO含量为60mass%的阳极电导率高达2260 S·cm~(-1),催化性能较好,在极化电流密度接近200 mA·cm~(-2)时,过电位为0.1V。
     通过对SrCo_(0.8)Fe_(0.2)O_(3-δ)(SCF)粉体合成工艺、阴极烧结工艺、LDC与SCF和LSGM的热膨胀匹配性和化学相容性的系统研究,制备了SCF-LDC复合阴极,研究表明LDC的加入可以有效改善阴极材料的热膨胀性能,增大阴极的三相反应界面,内层中LDC含量为50mass%的SCF50双层复合阴极的电化学性能最好,800℃时在0.1 V过电位的极化电流密度达到了1.102 A·cm~(~(-2)),极化电阻为0.1480 ?·cm2,优于单层复合阴极中最佳的SCF60阴极。在此基础上,提出并制备了SCF-LDC三层复合阴极,优化结构为SCF含量在三层阴极中由内至外分别为50mass%、70mass %和10mass %。复合阴极中LDC的加入,不仅大大改善了阴极与电解质间的结合和SCF阴极的热膨胀性能,而且增加了三相界面和阴极的总的比表面积,使三层复合阴极在800℃过电位为0.1 V时,极化电流密度达到了1.32 A·cm~(-2)。通过电化学阻抗谱系统地研究了复合阴极的电化学性能,提出了SCF-LDC三层复合阴极的反应机理:氧的扩散和解离吸附—氧原子在三相界面处发生电化学还原—氧离子由三相界面处向阴极与电解质界面的传输,认为氧的扩散和解离吸附过程成为速度控制步骤。
     研究了电池各元件的热膨胀匹配性,组装了电池,并对SCF-LDC三层复合阴极组装的电池进行了放电性能测试,在800℃时开路电压为1.073 V,电池的最大功率密度为0.33 W·cm~(-2)。
This study prepared the lanthanum gallate, La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-δ)(LSGM) electrolyte base of a large area with non-aqueous solvent tape-casting and conducted a sysmtematic investigation on the preparation technology, microstructure and electrochemical performance of the high performance electrodes, which layed a consolidate foundation for the assembly of the SOFC stacks.
     The preparation conditions of the LSGM powders by a solid state reaction method were investigated and the optimum sintering procedure was decided. The average size of LSGM powders was 3.04μm as obtained by being sintered at 900℃for 24 h and at 1300℃for 36 h. Then, the best slurry composition, which was decided by precipitation and viscocity tests, contained 80 g LSGM powders, 36 mL/24 mL butanone/ethanol as the solvent, 2 ml triethanolamine as the dipersant and 6.4 g polyvinyl butyral as the binder and 3.2 g polyethylene glycol/4 mL diethyl phthalate as the plasticizer.
     The smooth and homogeneous LSGM electrolyte base of 10 cm×10 cm in size was obtained by non-water solvent tape-casting and sintering the green tape at 1500℃for 6 h. The thus prepared LSGM electrolyte base possessed a relative density of 96%, a porosity of 0.38% and good thermal compatiblitty with the BCAS551 glass-ceramic sealing materials, which ensured the structural stability of the cell within the operating temperature. Electrochemical impedance spectrum test revealed that the conductivity of the LSGM electrolyte was primarily controlled by conductivity of the grain boundary at the low temperatures and the conductivity of the grain at the high temperatures. The conductivity activation energy was 0.91eV at low temperatures, which was higher than the conductivity activation energy of 0.62 eV at the temperature above 600℃.
     Moreover, the strategy of La~(3+) isoactivity in the anodic half cell of NiO-LDC anode/LDC interlayer/LSGM electrolyte was utilized to design and to evaluate the effectiveness of LDC as the buffer layer to restrain the reaction between the anode and the electrolyte. The LDC powders of 1.36μm with a narrow diameter distribution were prepared by oxalic acid coprecipitation method. A thin and dense LDC barrier layer of 10μm, which adhered strongly to the electrolyte, was successfully prepared by screen-printing method based on the systematic study of the slurry composition, screen-printing conditions and sintering procedure. The thus prepared barrier layer improved the chemical and thermal compatibility between the anode and the electrolyte, hampered the reation between the anode and the electrolyte, and facilitated the charge transfer process in the reducing atomophere.
     Furthermore, the anodic NiO-LDC composite powders mixed at the molecular level, which were later used to prepare the new NiO-LDC composite anode, were synthesized by the coprecipitation method. The conducting mechanism of the anode material depended on the NiO content strongly and the conductivity of the anode was 2260 S·cm~(-1) with 60% NiO content. The anode with 60mass% NiO content possessed the best polarization performance, which was 200 mA·cm~(-2) at the overpertantial of 0.1 V.
     SCF-LDC composite cathodes were prepared by the systemic investigation on the synthesis conditions of SrCo_(0.8)Fe_(0.2)O_(3-δ) (SCF) powders, sintering procedure of cathodes, thermal expansion and chemical compatibility of LDC, SCF and LSGM. It was found that the thermal expansion characteristic of the cathode was improved and triple-phane-boundaries were increased. Electrochemical performance of the double-layer SCF-LDC composite cathode with the interior layer doped 50mass% LDC was the best, which showed the polarization current density of 1.102 mA·cm~(-2) at 800℃under the 0.1V overpotential and polarization resistance of 0.1480 ?·cm2. These properties were better than those of SCF60 cathode which was optimized in the monolayer composite cathode. The triple- layer SCF-LDC composite cathode with the respective SCF content of 50mass%、70mass% and 100mass% from the interior to the exterior layers was put forward and prepared, which not only improved the thermal compatibility between the cathode and the electrolyte, but also increased the three-phase boundaries and the total specific surface area. The triple-layer composite cathode had a current density of 1.32 A·cm~(-2) under the 0.1 V overpotential. The electrochemical performance of the triple-layer composite cathode was studied by EIS and the reaction mechanism of the cathode was proposed. The results showed that cathode reaction process were composed of the diffusion, desorption and dissociation of oxygen, the electrochemical reduction of oxygen atoms at three-phane-boundaries and the diffusion of oxygen ions from three-phane- boundaries to the interface of cathode and electrolyte. The rate determining step was the diffusion, desorption and dissociation of oxygen.
     Finally, the thermal compatibility between all the components of the cell was studied and the cell assembled with the triple-layer SCF-LDC composite cathode has a maximum power density of 0.33 W·cm~(-2) and an OCV of 1.073 V at 800℃.
引文
1 A. K. Maiti, B. Rajender. Terponeol as a Dispersant for Tape Casting Yttria Stabilized Zirconia Powder. Mater. Sci. Engin. 2002, 333(1): 35~40
    2 姚思童,司秀丽,杨军等. 燃料电池的工作原理及其发展现状. 沈阳工业大学学报. 1998, 20(1): 42~45
    3 M. A. J. Cropper, S. Geiger, D. M. Jollie et al. Fuel Cells: A Survey of Current Developments. J. Power Sources. 2004, 131(1-2): 57~61
    4 S. C. Singhal. Advances in Solid Oxide Fuel Cell Technology. Solid State Ionics. 2000, 135(1-4): 305~313
    5 J. Will, A. Mitterdorfer, C. Kleinlogel et al. Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells. Solid State Ionics. 2000, 131(1-2): 79~96
    6 Q. L. Liu, K. A. Khor, S. H. Chan et al. Anode-Supported Solid Oxide Fuel Cell with Yttria-Stabilized Zirconia/Gadolinia-Doped Ceria Bilalyer Electrolyte Prepared by Wet Ceramic Co-sintering Process. J. Power Sources. 2006, 162(2): 1036~1042
    7 J. W. Yan, M. Hiroshige, M. Enoki et al. High-Power SOFC Using La0.9Sr0.1Ga0.8 Mg0.2O3-δ/Ce0.8Sm0.2O2-δ Composite Film. Electrochem. Solid-State Lett. 2005, 8(8): A389~A391
    8 孙明涛, 孙俊才, 季世军等. CeO2基固体电解质材料研究进展. 稀土. 2006, 27(4): 78~82
    9 赵苏阳, 胡树兵, 郑扣松等. 固体氧化物燃料电池(SOFC)制备方法的研究进展. 材料导报. 2006, 20(7): 27~30
    10 张文强, 于波, 张平等. 固体氧化物燃料电池阳极材料研究及其在高温水电解制氢方面的应用. 化学进展. 2006, 18(6): 832~840
    11 A. Mai, A. C. Vincent, Haanappel et al. Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part I. Variation of Composition. Solid State Ionics. 2005, 176(1-2): 1341~1350
    12 Z. S. Duan, A. Y. Yan, Y. L. Dong et al. Intermediate-Temperature Solid Oxide Fuel Cell with Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathode. Chinese J. Catal. 2005,26(10): 829~831
    13 T. L. Nguyen, T. Kato, K.Nozaki. Application of (Sm0.5Sr0.5)CoO3 as A Cathode Material to (Zr,Sc)O2 Electrolyte with Ceria-Based Interlayers for Reduced-Temperature Operation SOFCs. J. Electrochem. Soc. 2006, 153(7): A1310~A1316
    14 王强. 稀土资源产业发展前景分析. 世界有色金属. 2004, 5: 9~11
    15 A. V. Virkar. A Model for Solid Oxide Fuel Cell (SOFC) Stack Degradation. J. Power Sources. 2007, 172(2): 713~724
    16 T. S. Lai, S. A. Barnett. Effect of Cathode Sheet Resistance on Segmented-in-Series SOFC Power Density. J. Power Sources. 2007, 172(2): 742~745
    17 V. A. C. Haanappel, J. Mertens, J. Malzbender. Characterisation of Ni-cermets SOFCs with Varying Anode Densities. J. Power Sources. 2007, 172(2): 789~792
    18 P. Metzger, K.-A. Friedrich, G. Schiller. SOFC Characteristics along the Flow Path. Solid State Ionics. 2006, 177(19-25): 2045~2051
    19 Q. Fu, F. Tietz, D. Sebold et al. An Efficient Ceramic-Based Anode for Solid Ooxide Fuel Cells. J. Power Sources. 2007, 172(2): 663~669
    20 G. C. Mather, F. M. Figueiredo, J. R. Jurado. Electrochemical Behaviour of Ni-Cermet Anodes Containing a Proton-Conducting Ceramic Phase on YSZ Substrate. Electrochimi Acta. 2004, 49(16): 2601~2612
    21 S. J. Skinner. Recent Advances in Perovskite-Type Materials for SOFC Cathodes. Fuel Cells Bulletin. 2001, 4(33): 6~12
    22 J. Nielsen, T. Jacobsen. Three-Phase-Boundary Dynamics at Pt/YSZ Microelectrodes. Solid State Ionics. 2007, 178(13-14): 1001~1009
    23 W. G. Wang, M. Mogensen. High-Performance Llanthanum-Ferrite -Based Cathode for SOFC. Solid State Ionics. 2005, 176(5-6): 457~462
    24 A. Bodén, J. Di, C. Lagergren. Conductivity of SDC and (Li/Na)2CO3 Composite Electrolytes in Reducing and Oxidising Atmospheres. 2007, 172(2): 520~529
    25 S. Xu, X.g Niu, M. Chen. Carbon Doped MO–SDC Material as an SOFC Anode. J. Power Sources. 2007, 165(1): 82~86
    26 K. Nikooyeh, A. A. Jeje, J. M. Hill. 3D Modeling of Anode-Supported PlanarSOFC with Internal Reforming of Methane. J. Power Sources. 2007, 171(2): 601~609
    27 J. Jia, A. Abudula, L.Wei et al. A Mathematical Model of a Tubular Solid Oxide Fuel Cell with Specified Combustion Zone. J. Power Sources. 2007, 171(2): 696~705
    28 M. Oishi, K. Yashiro, J.O. Hong. Oxygen Nonstoichiometry of B-site Doped LaCrO3. Solid State Ionics. 2007,178(3-4): 307~312
    29 S. K. Park, K. S. Oh, T.S. Kim. Analysis of the Design of a Pressurized SOFC Hybrid System Using a Fixed Gas Turbine Design. J. Power Sources. 2007, 170(1): 130~139
    30 S. D. Kim, H. Moon, S. H. Hyun et al. Nano-Composite Materials for High-Performance and Durability of Solid Oxide Fuel Cells. J. Power Sources. 2006, 163(1): 392~397
    31 V. Fruth, M. Popa, D. Berger et al. Deposition and Characterisation of Bismuth Oxide Thin Films. J. Eur. Ceram. Soc. 2005, 25(12): 2171~2174
    32 B. Godfrey, K. Foger, R. Gillespie et al. Planar Solid Oxide Fuel Cells: the Australian Experience and Outlook. J. Power Sources. 2000, 86(1-2): 68~73
    33 A. L. Dicks, D. A. Costa, J. C. Diniz et al. Fuel Cells, Hydrogen and Energy Supply in Australia. J. Power Sources. 2004, 131(1): 1~12
    34 张义煌, 董永来, 江义等. 薄膜型中温固体氧化物燃料电池(SOFC)研制及性能考察. 电化学. 2000, 6(1): 78~83
    35 陈铭, 温廷琏, 黄臻等. YSZ 陶瓷膜流延等静压复合成型新工艺研究. 无机材料学报. 1994, 14(5): 745~750
    36 Y. X. Shi, N. S Cai, C Li. Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion. J. Power Sources. 2007, 164(2): 639~648
    37 查少武, 顾云峰, 付清溪等. CeO2-Y2O3 固体氧化物燃料电池的电化学性能. 功能材料. 2000, 31(6): 612~614
    38 K. Kurocda, I. Hashimoto, K. Adachi et al. Characterization of Solide Oxide Fuel Cell Using Doped Lanthanum Gallate. Solide State Ionics. 2000, 132(3): 199~208
    39 J. Pe?a-Martínez, D. Marrero-López, J. C. Ruiz-Morales. Fuel Cell Studies of Perovskite-type materials for IT-SOFC. J. Power Sources. 2006, 150:914~921
    40 Y. Hidenori, B. Yoshinobu, E. Koichi et al. High Temperature Fuel Cell with Ceria-Yttria Solid Electrolyte. J. Electrochem. Soc. 1988, 135(8): 2077~2080
    41 N. M. Sammes, G. A. Tompsett, H. Nafe et al. Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity. J. Eur. Ceram. Soc. 1999, 19: 1801~1826
    42 田长安, 曾燕伟. 中低温 SOFC 电解质材料研究进展. 电源技术. 2006, 130(4): 329~333
    43 S. Nakayama, M. Sakamato, M. Higuchi. Oxide Ion Conductivity of Apatite type Nd9.33(SiO4)6O2 Single crystal. J. Eur. Ceram. Soc. 1999, 19: 507~509
    44 A. A. Yaremchenko, A. L. Shaula, V. V. kharton et al. Ionic and Electronid Conductivity of La9.85-xPrxSi4.5Fe1.5O26+d Apatetes. Solid State Ionics. 2004, 171: 51~59
    45 T. Ishihara, H. Matsuda, Y. Tskita et al. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. J. Am. Chem. Soc. 1994, 116(9): 3801~3803
    46 F. Man, J. B. Goodenough, K. Q. Huang. Fuel Cells with Doped Lanthanum Gallate Electrolyte. J. Power Sources. 1996, 63(1): 47~51
    47 T. Ishihara, T. Shibayma, M. Honda et al. Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Electrolyte. J. Electrochem. Soc. 2000, 147(4): 1332~1337
    48 N. Trofimenko, H. Ullmann. Transition Metal doped Lanthanum Gallates. Solid State Ionics, 1999, 118(3-4): 215~227
    49 K. Q. Huang, R. Tichy, J. B. Goodenough. Superior Perovskite Oxide-Ion Conductor: Strontium- and Magnesium-Doped LaGaO3:Ⅱ, AC Impedance Spectroscopy. J. Am. Ceram. Soc. 1998,81(10): 2576~2580
    50 P. N. Huang, A. Petric. Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium. J. Electrochem. Soc. 1996, 143(5): 1644~1648
    51 K. Q. Huang, M. Feng, J. B. Goodenough. Characterization of Sr-Doped LaMnO3 and LaCoO3 as Cathode Materials for a Doped LaGaO3 Ceramic Fuel Cell. J. Electrochem. Soc. 1996, 143(11): 3630~3036
    52 T. Ishihara, T. Shibayma, M. Honda et al. Intermediate Temperature SolidOxide Fuel Cells Using LaGaO3 Electrolyte. J. Electrochem. Soc. 2000, 147(4): 1332~1337
    53 K. Q. Huang, R. Tichy, J. B. Goodenough. Superior Perovskite Oxide-Ion Conductor: Strontium- and Magnesium-Doped LaGaO3: Ⅰ , Phase Relationships and Electrical Properties. J. Am. Ceram. Soc. 1998, 81(10): 2565~2575
    54 P. R. Slater, J. T. S. Irvine, T. Ishihara. High-Temperature Powder Neutron Diffraction Study of the Oxide Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O2.85. J. Solid State Chem. 1998, 139(1): 135~143
    55 T. Ishihara, T. Shibayama, H. Nishiguchi et al. Oxide Ion Conductivity In La0.9Sr0.1Ga0.8Mg0.2-xNixO3 Perovskite Oxide and Application for the Electrolyte of Solid Oxide Fuel Cells. J. Mater. Sci. 2001, 36: 1125~1131
    56 K. Q. Huang, J. B. Goodenough. A Solid Oxide Fuel Cell Based on Sr- and Mg-Doped LaGaO3 Electrolyte: the Role of A Rare-Earth Oxide Buffer. J. Alloys Compds. 2000, 303-304(24): 454~464
    57 K. Q. Huang, M. Feng, J. B, Goodenough. Electrode Performance Test on Single Ceramic Fuel Cell Using as Electrolyte Sr-and Mg-doped LaGaO3. J. Electrochem. Soc. 1997, 144(10): 3620~3624
    58 X. G. Zhang, S. Ohara, H. Okawa et al. Ni-SDC Cermet for Medium- Temperature Solid Fuel Cell with Lanthanum Gallate Electrolyte. J. Power Sources. 1999, 83: 170~177
    59 X. G. Zhang, S. S. Ohara. Interactions of a La0.9Sr0.1Ga0.8Mg0.2O2.87 Electrolyte with Fe2O3, Co2O3 and NiO Anode Materials. Solid State Ionics. 2001, 139(1-2): 145~152
    60 K. Q. Huang, J. H. Wan, J.B, Goodenough. Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials. J. Electrochem. Soc. 2001, 148(7): A788~A794
    61 J. H. Wan, K. Q. Huang, J. B. Goodenough. LSGM-Based Solid Oxide Fuel Cells With 1.4W/cm2 Power Density and 30 Day Long-Term Stability. J. Electrochem. Soc. 2005, 152(8): A511~A515
    62 Y. B. Lin, S. A. Barnet. Co-Firing of Anode-Supported SOFCs with Thin La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolytes. Electrochem. Solid-State Lett. 2006, 9(6): A285~A288
    63 S. Q. Hui, A. Petric. Evaluation of Yttrium–Doped SrTiO3 as an Anode for Solid Oxide Fuel Cells. J. Eur. Ceram. Soc. 2002, 22(9):1673~1681
    64 R. Maric, S.S. Ohara, T. Fukui et al. Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode and Ni-Samaria-Doped Ceria Cermet Anode. J. Electrochem. Soc. 1999, 146(6): 2006~2010
    65 T. Ishihara, M. Honda, T. Shibayamal et al. Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Electrolyte (I). J. Electrochem. Soc. 1998, 145(9): 3177~3183
    66 T. Ishihara, S. Fukui, H. Nishiguchi et al. Mixed Electronic-Oxide Ionic Conductor of BaCoO3 Doped with La for Cathode of Intermediate- Temperature-Operating Solid Oxide Fuel Cell. Solid State Ionics, 2002, 152-153: 609~613
    67 G. C. Kostogloudis, C. Ftikos, A. A. Khanlou et al. Chemical Compatibility of Alternative Perovskite Oxide SOFC Cathodes with Doped Lanthanum Gallate Solid Electrolyte. Solid State Ionics. 2000, 134(1-2): 127~138
    68 H. Kishimoto, N. Sakai, T. Horita et al. Cation Transport Behavior in SOFC Cathode Materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3 with Perovskite Structure. Solid State Ionics. 2007, 178(21-22): 1317~1325
    69 K. Q. Huang, J. B. Goodenough. Oxygen Permeation Through Cobalt- Containing Perovskites: Surface Oxygen Exchange vs. Lattice Oxygen Diffusion. J. Electrochem. Soc. 2001, 148(5): E203~E214
    70 R. Chiba, F. Yoshimura, Y. Sakurai et al. An Investigation of LaNi1-xFexO3 as a Cathode Material for Solid Oxide Fuel Cells. Solid State Ionics. 1999, 124(3-4): 281~288
    71 N. Trofimenko, H. Ullmann. Transition Metal Doped Lanthanum Gallates. Solid State Ionics. 1999, 118(3-4): 215~227
    72 F. L. Chen, M. L. Liu. Study of Transition Metal Oxide Doped LaGaO3 as Electrode Materials for LSGM-based Solid Oxide Fuel cells. J. Solid State Electrochem. 1998, (3): 7~14
    73 D. Kuscer, J. Holc, M. Hrovat et al. Correlation between the Defect Structure, Conductivity and Chemical Stability of La1-ySryFe1-xAlxO3-d Cathodes for SOFC. J. Eur. Ceram. Soc. 2001, 21: 1817~1820
    74 H. Yamaura, T. Ikuta, H. Yahiro et al. Cathodic Polarization of Strontium-doped Lanthanum Ferrite in Proton-conducting Solid Oxide Fuel Cell. Solid State Ionics. 2005, 176: 269~274
    75 S. P. Simner, J. P. Shelton, M. D et al. Anderson. Interaction between La(Sr)FeO3 SOFC Cathode and YSZ Electrolyte. Solid State Ionics. 2003, 161: 11~18
    76 S. P. Simner, M. Anderson, J. Bonnett. Enhanced Low Temperature Sintering of (Sr, Cu)-doped Lanthanum Ferrite SOFC Cathodes. Solid State Ionics. 2004, 175: 79~81
    77 G. W. Coffey, J. Hardy, L. R. Pedersen et al. Electrochemical Properties of Lanthanum Strontium Aluminum Ferrites for the Oxygen Reduction Reaction. Solid State Ionics. 2003, 158: 1~9
    78 S. Taniguchi, M. Kadowaki, T. Ysuo et al. Improvement of Thermal Cycle Characteristics of A Planar-Type Solid Oxide Fuel Cell by Using Ceramic Fiber as Sealing Material. J. Power Sources. 2000, 90: 163~169
    79 K. Eichler, G. Solow, P. Otschik and W. Schaffrath, BAS (BaO·Al2O3·SiO2) -Glasses for High Temperature Applications. J. Eur. Ceram. Soc. 1999, 19(6-7): 1101~1104
    80 N. Lahl, D. Bahadur, K. Singh et al. Chemical Interactions Between Aluminosilicate Base Sealants and the Components on the Anode Side of Solid Oxide Fuel Cells. J. Electrochem. Soc. 2002, 149(5): A607-A614
    81 S. B. Sohn, S. Y. Choi, G. H. Kim et al. Stable Sealing Glass for Planar Solid Oxide Fuel Cell. J. Non-Cryst. Solids. 2002, 297(2-3): 103~112
    82 S. R. Le, K. N. Sun, N. Q. Zhang et al. Comparison of Infiltrated-Ceramic Fiber Paper and Mica Base Compressive Seals for Planar Solid Oxide Fuel Cells. J. Power Sources. 2006, 161(2): 901~906.
    83 S. Bilger, G. Blaβ, R. F?rthmann et al. Sol-gel Synthesis of Lanthanum Chromite Powder. J. Eur. Ceram. Soc. 1997, 17(8): 1027~1031
    84 T. Brylewski, K. Przybylski, J. Morgiel et al. Microstructure of Fe–25Cr/(La, Ca)CrO3 Composite Interconnector in Solid Oxide Fuel Cell Operating Conditions. Mater. Chem. Phy. 2003, 81(2-3): 434~437
    85 A. Zuev, L. Singheiser, K. Hilpert et al. Defect Structure and Isothermal Expansion of A-site and B-site Substituted Lanthanum Chromites. Solid StateIonics. 2002, 147(1-2): 1~11
    86 M. Suzuki, H. Sasaki, A. Kajimura et al. Oxide Ionic Conductivity of Doped Lanthanum Chromite Thin Film Interconnectors. Solid State Ionics. 1997, 96(1-2): 83~88
    87 D. P. Lim, D. S. Lim, J. S. Oh, et al. Influence of Post-treatments on the Contact Resistance of Plasma-Sprayed La0.8Sr0.2MnO3 Coating on SOFC Metallic Interconnector. Surf. Coat. Tech. 2005, 200(5-6): 1248~1251
    88 T. Brylewski, M. Nanko, T. Maruyama et al. Application of Fe–16Cr Ferritic Alloy to Interconnector for a Solid Oxide Fuel Cell. Solid State Ionics. 2001, 143(2): 131~150
    89 K. Choy, W. Bai, S. Charojrochkul et al. The Development of Intermediate Temperature Solid Oxide Fuel Cells for the next Nullennium. J. Power Sources. 1998, 71(1-2): 361~369
    90 J. P. P. Huijsmans, F. P. F. Berkel, G. M. Christie et al. Intermediate Temperature SOFC-A Promise for 21st century. J. Power Sources. 1998, 71: 107~110
    91 E. Perry Murray, T. Tsai, S. A. Barnett et al. A Direct-Methane Fuel Cell with a Ceria-Based Anode. Nature. 1999, 400(12): 649~651
    92 Y. Jiang, A. V. Virkar. A high Performance, Anode-Supported Solid Oxide Fuel Cell Operating on Direct alcohol. J. Electrochem. Soc. 2001. 148(71): A706~A709
    93 T. Ishihara, T. Shibayama, M. Honda et al. Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Electrolyte II. Improvement of Oxide Ion Conductivity and Power Density by Doping Fe for Ga Site of LaGaO3. J. Electrochem. Soc. 2000, 147(4): 1332~1347
    94 T. Ishihara, T. Shibayama, M. Honda et al. Solid Oxide Fuel Cell Using Co Doped La(Sr)Ga(Mg)O3 Perovskite Oxide with Notably High Power Density at Intermediate Temperature. Chem. Commun. 1999, 13: 1227~1228
    95 T. Ishihara, K. Shimose, T. Kudo et al. Preparation of Yttria-Stabilized Zirconia Thin Films on Strontium-Doped LaMnO3 Cathode Substrates via Electrophoretic Deposition for Solid Oxide Fuel Cells. J. Am. Ceram. Soc. 2000, 83(8): 1921~1927
    96 R. Xia, F. L. Chen, M. L. Liu et al. Reduced Temperature Solid Oxide FfuelCells Fabricated by Screen Printing. Electrochem. Solid State Lett. 2001, 4(5): A52~A54
    97 S. Ohara, R. Maric, X. Zhang et al. High Performance Electrodes for Rreduced Temperature Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrode, I. Ni-SDC Cermet Anode. J. Power Sources. 2000, 86(1-2): 455~458
    98 H. Brinkman, W. Meijerink, J. D. Vries et al. Kinetics and Morphology of Electrochemical Vapour Deposited Thin Zirconia/Yttria Layers on Porous Substrates. J. Eur. Ceram. Soc. 1996, 16(6): 587~600
    99 H. J. Zeng, Y. Xomeritakis, G. Y. Lin et al. Electrochemical Vapor Deposition Synthesis and Oxygen Permeation Properties of Dense Zirconia– Yttria–Ceria Membranes. Solid State Ionics. 1997, 98(1-2): 63~72
    100 K. W. Chour, J. Chen, R. Xu et al. Metal-Organic Vapor Deposition of YSZ Electrolyte Layers for Solid Oxide Fuel Cell Applications. Thin Solid Films. 1997, 304 (1-2): 106~112
    101 H. B. Wang, C. R. Xia, G. Y. Meng et al. Deposition and Characterization of YSZ Thin Films by Aerosol-Assisted CVD. Mater. Lett. 2000, 44(1): 23~28
    102 P. Egger, G. D. Soraru, S. Dire et al. Sol-Gel Synthesis of Polymer-YSZ Hybrid Materials for SOFC Technology. J. Eur. Ceram. Soc. 2004, 24(6): 1371~1374
    103 C. J. Li, C. X. Li, X. J. Ning et al. Performance of YSZ Electrolyte Layer Deposited by Atmospheric Plasma Spraying for Cermet-Supported Tubular SOFC. Vacuum. 2004, 73(3-4): 699~703
    104 K. A. Khor, L. G. Yu, S. H. Chan et al. Densification of Plasma Sprayed YSZ Electrolytes by Spark Plasma Sintering (SPS). J. Eur. Ceram. Soc. 2003, 23(11): 1855~1863
    105 K. A. Khor, L. G. Yu, S. H. Chan et al. Densification of Plasma Sprayed YSZ Electrolytes by Spark Plasma Sintering (SPS). J. Eur. Ceram. Soc. 2003, 23(11): 1855~1863
    106 E. Wanzenberga, F. Tietza, P. Panjanb et al. Influence of Pre- and Post-Heat Treatment of Anode Substrates on the Properties of DC-Sputtered YSZ Electrolyte Films. Solid State Ionics. 2003, 159(1-2): 1~8
    107 A. Nagata, H. Okayama. Characterization of Solid Oxide Fuel Cell DeviceHaving a Three-Layer Film Structure Grown by RF Magnetron Sputtering. Vacuum. 2002, 66(3-4): 523~529
    108 B. Hobein, F. Tietz, D. Stover et al. DC Sputtering of Yttria-Stabilised Zirconia Fims for Solid Oxide Fuel Cell Applications. J. Eur. Ceram. Soc. 2001, (21): 1843~1846
    109 贾莉, 吕喆, 黄喜强等. 用于燃料电池的氧化锆薄膜制备方法进展. 电源技术. 2004, 28(7): 449~451
    110 T. Tsai, S. A. Barnett. Effect of LSM-YSZ Cathode on Thin-Electrolyte Solid Oxide Fuel Cell Performance. Solid State Ionics. 1997, 93(1-2): 207~217
    111 T. Tsai, S. A. Barnett. Bias Sputter-Deposition of Dense Yttria-Stabilized Zirconia Films on Porous Substrates. J. Electrochem. Soc. 1995, 142(9): 3084~3087
    112 S. L. Douvartzides, F. A. Coutelieris,P. E. Tsiakaras et al. On the Systematic Optimization of Ethanol Fed SOFC-Based Electricity Generating Systems in terms of Energy and Exergy. J. Power Sources. 2003, 114(2): 203~212
    113 D. F. Yang, X. G. Zhang, S. Nikumb et al. Low Temperature Solid Oxide Fuel Cells with Pulsed Laser Deposited Bi-Layer electrolyte. J. Power Sources. 2007, 162(10): 182~188
    114 N. Pryds, B. Toftmann, J. B. Bilde-S?rensen et al. Thickness Determination of Large-Area Films of Yttria-Stabilized Zirconia Produced by Pulsed Laser Deposition. Appl. Surf. Sci. 2006, 252(13): 4882~4885
    115 S. K. Tien, J. G. Duh. Comparison of Microstructure and Phase Transformation for Nanolayered CrN/AlN and TiN/AlN Coatings at Elevated Temperatures in air Environment. Thin Solid Films. 2006, 515(3): 1097~1101
    116 S. P. Simner, J. F.Bonnett, N. L. Canfield et al. Development of Lanthanum Ferrite SOFC Cathodes. J. Power Sources. 2003, 113(1): 1~10
    117 Y. H. Zhang, X. Q. Huang, Z. Lu et al. A Study of the Process Parameters for Yttria-Stabilized Zirconia electrolyte films prepared by screen printing. J. Power Sources. 2006, 160(2): 1065~1073
    118 C. F. Lin, M. L. Liu. Preparation of Yttria-Stabilized Zirconia (YSZ) Films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ Substrates Using an Electrophoretic Deposition (EPD) Process. J. Eur. Ceram. Soc. 2001, 21 (2): 127~134
    119 W. J. Hruschka, K. M. Martin, G. L. Gauckler et al. Electrophoretic Deposition of Zirconia on Porous Anodic Substrates. J. Am. Ceram. Soc. 2001, 84(2): 328~332
    120 I. T. Sato, K. T. Yusaku et al. Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells. J. Am. Ceram. Soc. 1996, 79(4): 913~919
    121 M. F. Han, X. L. Tang, H. Y. Yin et al. Fabrication, Microstructure and Properties of a YSZ Electrolyte for SOFCs. J. Power Sources. 2007, 165(2): 757~763
    122 D. Simwonis, H. Thuelen, F. J. Dias et al. Properties of Ni/YSZ Porous Cermets for SOFC Anode Substrates Prepared by Tape Casting and Coat-mix Process. J. Mater. Process. Tech. 1999, 92~93: 107~111
    123 R. K. Nimat, C. A. Betty, S. H. Pawar et al. Spray Pyrolytic Deposition of Solid Electrolyte Bi2V0.9Cu0.1O5.35 Films. Appl. Surf. Sci. 2006, 253(5): 2702~2707
    124 V. V. Ivanov, A. S. Lipilin, Yu. A. Kotov et al. Formation of A Thin-Layer Electrolyte for SOFC by Magnetic Pulse Compaction of Tapes Cast of Nanopowders. J. Power Sources. 2006, 159(1): 605~612
    125 N. Ai, Z. Lü, K. F. Chen et al. Preparation of Sm0.2Ce0.8O1.9 Membranes on Porous Substrates by A Slurry Spin Coating Method and Its Application in IT-SOFC. J. Membrane Sci. 2006, 286(1-2): 255~259
    126 N. Das, H.S. Maiti. Effect of Size Distribution of the Starting Powder on the Pore Size and Its Distribution of Tape Cast Alumina Microporous Membranes. J. Eur. Ceram. Soc. 1999, 19(3): 341~345
    127 T. Chartier, T. Rouxel. Tape-Cast Alumina-Zirconia Laminates: Processing and Mechanical Properties. J. Eur. Ceram. Soc. 1997, 17(2-3): 299~308
    128 Z. R. Wang, J. Q. Qian, J. D. Cao et al. A study of Multilayer Tape Casting Method for Anode-Supported Planar Type Solid Oxide Fuel Cells (SOFCs). J. Alloy. Compd. 2007, 437(1-2): 264~268
    129 S. Mei, J. Yang, M. F. J. Ferreira et al. The Fabrication and Characterisation of Low-k Cordierite-Based Glass-Ceramics by Aqueous Tape Casting. J. Eur. Ceram. Soc. 2004, 24(2): 295~300
    130 F. Snijkers, A. de Wilde, S. Mullens et al. Aqueous Tape Casting of YttriaStabilised Zirconia Using Natural Product Binder. J. Eur. Ceram. Soc. 2004, 24(6): 1107~1110
    131 J. L. Young, T. H. Etsell. Polarized Electrochemical Vapor Deposition for Cermet Anodes in Solid Oxide Fuel Cells. Solid State Ionics. 2000, 135: 457~462
    132 R. Moreno, G. Córdoba. Oil-Related Deflocculants for Tape Casting Slips. J. Eur. Ceram. Soc. 1997, 17(2-3): 351~357
    133 N. Das, H.S. Maiti. Formation of Pore Structure in Tape-Cast Alumina Membranes-Effects of Binder Content and Firing Temperature. J. Membrane Sci. 1998, 140(2): 205~212
    134 L. Salam, A. Matthews, D. R. Robertson et al. Hugh Pyrolysis of Polyvinyl Butyral (PVB) Binder in Thermoelectric Green Tapes. J. Eur. Ceram. Soc. 2000, 20(9): 1375~1383
    135 S. Y. Jee, Z. X. Guo, S. I. Stoliarov et al. Experimental and Molecular Dynamics Studies of the Thermal Decomposition of A Polyisobutylene Binder. Acta Mater. 2006, 54(18): 4803~4813
    136 H. Tomaszewski, H. W?glarz, A. Wajler et al. Multilayer Ceramic Composites with High Failure Resistance. J. Eur. Ceram. Soc. 2007, 27(2-3): 1373~1377
    137 T. Kenjo, M. Nishiya. LaMnO3 Air Cathodes Containing ZrO2 Electrolyte for High Temperature Solid Oxide Fuel Cells. Solid State Ionics. 1992, 57(3-4), 295~302
    138 K. Sasaki, J. P. Wurth, R. Gschwend et al. Microstructure-Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors. Cathodic Polarization and Ohmic Resistance. J. Electrochem. Soc. 1996, 143(2): 530~536
    139 H. Fukunaga, M. Ihara, K. Sasaki et al. The Relationship between Overpotential and the Three Phase Boundary Length. Solid State Ionics. 1996, 86-88: 1179~1185
    140 E. P. Murray, S. Barnett. (La,Sr)MnO3–(Ce,Gd)O2?x Composite Cathodes for Solid Oxide Fuel Cells. Solid State Ionics. 2001, 143(3-4): 265~273
    141 B. C. H. Steele, I. Kelly, H. Middleton et al. Oxidation of Methane in Solid State Electrochemical Reactors. Solid State Ionics. 1988, 28~30: 1547~1552
    142 N. T. Hart, N. P. Brandon, M. J. Day et al. Functionally Graded Composite Cathodes for Solid Oxide Fuel Cells. J. Power Sources. 2002, 106: 42~50
    143 M. Hrovat, A. K. Ariane, S. Zoran et al. Interactions Between Lanthanum Gallate Based Solid Electrolyte and Ceria. Mater. Res. Bull. 1999, 34(12-13): 2027~2034
    144 Choy K L, Charojrochkul S, Steele B C H. Fabrication of Cathode for Solid Oxide Fuel Cells Using Flame Assisted Vapour Deposition Technique. Solid State Ionics, 1997, 96(1~2): 49~54
    145 S.Charojrochkul, K. L.Choy, B. C. H. Steele. Cathode/Electrolyte Systems for Solid Oxide Fuel Cells Fabricated Using Flame Assisted Vapour Deposition Technique. Solid State Ionics. 1999, 121(1~4): 107~113
    146 Tao S W, John T S, Irvine et al. Synthesis and Characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, A Redox-Stable, Efficient Perovskite Anode for SOFCs. J. Electrochem. Soc. 2004, 151(2): A25~A259
    147 K. Kobayshi, I. Takahashi, M. Shiono et al. Supported Zr(Sc)O2 SOFCs for Reduced Temperature Prepared by Electrophoretic Deposition. Solid State Ionics, 2002, 152-153: 591~596
    148 丁子上, 王民权, 潘守彝等. 硅酸盐物理化学. 建筑工业出版, 1979: 345~350
    149 M. Descamps, G. Ringuet, D. Leger, B. Tape-casting: Relationship between Organic Constituents and the Physical and Mechanical Properties of Tapes. J. Eur. Ceram. Soc. 1995, 15(4): 357~362
    150 梁建超, 肖建中, 罗志安等. 分散剂对 ZrO2 料浆及陶瓷性能的影响. 硅酸盐通报. 2005,24(2): 45~48
    151 K. Prabhakaran, A. Narayanan, C. Pavithran et al. Cardanol as a Dispersant Plasticizer for An Alumina/Toluene Tape Casting Slip. J. Eur. Ceram. Soc. 2001, 21: 2873~2878
    152 S. Y. Lee, C. T. Fu et al. The Effect of Rheological Behavior of Tape Casting on the Green Sheet and Sintered Silicon Carbide. Ceram. Int. 2004, 30(2): 151~156
    153 陈铭, 温廷琏, 黄臻等. YSZ 陶瓷膜流延等静压符合成型新工艺研究. 无机材料学报. 1999, 14(5): 745~750
    154 蒋凯, 孟建. (Ce(0.8)RE(0.2))(1-x)MxO(2-δ)固体电解质的溶胶-凝胶合成及其电性质. 中国科学: B 缉, 1999, 29(3): 254~258
    155 T. Ishihara, T. Shibayama, H. Nishiguchi et al. Nickel–Gd-doped CeO2 Cermet Anode for Intermediate Temperature Operating Solid Oxide Fuel Cells Using LaGaO3-Based Perovskite Electrolyte. Solid State Ionics. 2000, 132(2): 209~216
    156 M. Shiono, K. Kobayshi, T. L. Nguyen et al. Effect of CeO2 Interlayer on ZrO2 Electrolyte/La(Sr)CoO3 Cathode for Low-Temperature SOFCs. Solid State Ionics. 2004, 170(1-2): 1~7
    157 K. Q. Huang, J. Wan, J. B. Goodenough. Oxide-Ion Conducting Ceramics for Solid Oxide Fuel Cells. J. Mater. Sci. 2001, 36: 1093~1098
    158 J. H. Wan, J. Q. Yan, J. B. Goodenough. LSGM-Based Solid Oxide Fuel Cell with 1.4W·cm-2 Power Density and 30 Day Long-Term Stability. J. Electrochem. Soc. 2005,152(8): A1511~A1515
    159 K. Sasaki, J. P. Wurth, R. Gschwend et al. Microstructure Property Relations of Solid Oxide Fuel Cell Cathode and Current Collectors. J. Electrochem. Soc.1996,143(2): 530~543
    160 H. S. Song, S. H. Hyun, J. Moon et al. Electrochemical and Microstructural Characterization of Polymeric Resin-Derived Multilayered Composite Cathode for SOFC. J. Power Sources. 2005, 145(2): 272~277
    161 M. E. Perry, M. J. Sever, S. A. Barnett. Electrochemical Performance of (La, Sr)(Co, Fe)O3–(Ce,Gd)O3 Composite Cathodes. Solid State Ionics. 2002, 148(1-2): 27~34
    162 T. Kenjo, S. Osawa, K. Fujikawa. High Temperature Air Cathodes Containing Ion Conductive Oxides. Electrochem. Sci. Tec. 1991, 138(2): 349~355
    163 C. W. Tanner, K. Z. Fung, A. V. Virkar. The Effect of Porous Composite Cathode Structure on Solid Oxide Fuel Cell Performance. J. Electrochem. Soc. 1997, 144(1): 21~30
    164 Y. J. Leng, S. H. Chan, S .P. Jiang et al. Low-Temperature SOFC with Thin Film GDC Electrolyte Prepared in Situ by Solid-State Reaction. Solid State Ionics. 2004, 170(1-2): 9~15
    165 F. S. Baumann, J. Fleig, M. Konuma, U. Starke et al. Strong Performance Improvement of La0.6Sr0.4Co0.8Fe0.2O3-δ SOFC Cathodes by ElectrochemicalActivation. J. Electrochem. Soc. 2005, 152(10): A2074~A2079
    166 Y. L. Yang, C. L. Chen, S. Y. Chen, et al. Impedance Studies of Oxygen Exchange on Dense Thin Film Electrodes for La0.5Sr0.5CoO3-δ. J. Electrochem. Soc. 2000, 147(11): 4001~4007
    167 M. E. Perry, M. J. Sever, S. A. Barnett. Electrochemical Performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 Composite Cathodes. Solid State Ionics. 2002, 148 (1-2): 27~34
    168 T. H. Lee, Y. L. Yang, A. J. Jacobson et al. Oxygen Permeation in Dense SrCo0.8Fe0.2O3?δ Membranes: Surface Exchange Kinetics versus Bulk Diffusion. Solid State Ionics. 1997, 100(1-2): 77~85
    169 S. Wang, T. Chen, S. Chen. Kinetics of Oxyen reduction over Sm0.5Sr0.5CoO3 supported on La0.9Sr0.1Ga0.8Mg0.2O3. J. Electrochem. Soc. 2004, 151(9): A1461~A1467

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700