FFC法中温度对TiO_2阴极的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属钛是一种性能优越的结构和功能材料。目前制备钛的Kroll法存在工艺复杂,生产周期长,不能连续化生产等问题。自2000年以来,国际上掀起了TiO_2电化学还原制备海绵钛的研究热潮,其中直接电解TiO_2制取钛的FFC工艺被大家认为最具发展前景。
     本论文工作以FFC工艺为基础,考察烧结温度对TiO_2阴极物相组成、微观结构、氧空位及电解产物的影响;考察电解温度对电流变化、电解产物的影响,确定了适宜的烧结温度、电解温度;研究了熔盐电解体系中TiO_2阴极的导电性,主要研究工作及内容概况如下:
     通过对TiO_2烧结及其电解实验,研究了烧结温度对TiO_2阴极的物相组成、微观结构、氧空位及电解产物的影响。在600~1000℃,随着烧结温度的升高,烧结样品的颗粒尺寸及致密度逐渐增大,开气孔逐渐减少,孔隙、比表面积、平均孔径、孔容及有效反应面积逐渐减小。在相同电解条件下,阴极的导电性和有效反应面积影响电解产物钛含量,随着烧结温度的升高,电解产物含钛量逐渐增加,含氧量逐渐减少;在相同的烧结温度下,随着电解温度的升高,有利于钛的生成。通过实验室研究,得到了熔盐电解二氧化钛制备钛的主要试验参数,确定适宜的烧结温度900℃。这一研究为后续研究奠定了基础。
     在电解过程中电流都随时间的增加而减小;电解温度的升高有利于钛的生成,但经在900℃、950℃温度下电解,电解产物的钛含量增加不明显。因此,实验确定电解温度为900℃。
     在对烧结TiO_2的XRD、XPS及电导率测定基础上,研究分析了熔盐电解体系中TiO_2电极导电性认为:高温烧结可以改变TiO_2的能带结构,产生导电空位,形成O_2-;TiO_2电极在熔盐中形成双电层,使氧原子离子化,形成TiO_2-X离子结构;熔盐中的离子渗透到TiO_2电极内部,增加了电极内的导电离子数。以上结论说明绝缘TiO_2可在实验条件下可转变为有效电极。
Titanium is a kind of functional material with superior performance. But there are still problems existing in the fabrication titanium process by traditional Kroll method, such as, complicated technology, long production cycle and intermittent operation, etc. Since 2000, sponge titanium prepared by electrochemical reduction of TiO_2 has attracted much attention in the world. Among all kinds of methods, a typical metallurgical process of TiO_2 deoxidation, named FFC, is the best and promising technique considered by scientists.
     In this research, based on FFC process, titanium was obtained successfully by a series of electrolysis experiments. The influences of different sintering temperatures on the composition, microstructure, oxygen vacancies and electrolysis products of TiO_2 cathode, and the impacts of different electrolysis temperatures on current changes and electrolysis products of TiO_2 cathode were discussed. Moreover, the appropriate sintering temperature and electrolysis temperature were determined.Conductivity of TiO_2 cathode and the dishydrolysis of CaCl2 molten salt system were explored. The main contents of this disquisition are summarized as following:
     After research on TiO_2 sintering and electrolytic process, the result of appropriate sintering temperature and electrolysis temperature was both at 900℃. Sintering temperature affected on the composition and microstructure of TiO_2 cathode and cathodic electrolysis products. In the range of 600~1000℃, with the increasing of the sintering temperature, the grain size and compact extent of the sintering sample gradually increased, while the open holes gradually reduced, the open pore rate,pore surface area,pore average diameter, pore volume and effective reaction area became small gradually. On the same electrolysis condition, the content of titanium was impacted by the conductivity and effective reaction area of the cathode. The titanium content became greater and the oxygen content was lesser with sintering temperature increasing. At the same sintering temperature, higher electrolysis temperature was helpful for the generation of titanium.
     The current decreased as the time increasesed in electrolytic process; the increase of the electrolysis temperature is favorable to the generation of the titanium. However, the increase of electrolysis products is not clear under the electrolytic at 900℃、950℃. Therefore, the appropriate electrolysis temperature was 900℃.
     Based on the measurement of XRD, XPS and specific conduction of sintered TiO_2, conductivity of TiO_2 electrode was analyzed. It showed that sintering at high temperature may change the energy band structure of TiO_2, forming conductive vacancies, generate O_2-; the form of electric double layer in molten salt of TiO_2 made the oxygen atoms ionized, forming ionic structure of TiO_2-X; The ion in molten salt penetrate internally to the TiO_2 electrode and improved the number of conductive ion in TiO_2 electrode. It can explain reasonable why the TiO_2 cathode could be made effective electrode.
引文
[1]孙康.钛提取冶金物理化学[M].北京:冶金工业出版社,2001.1-2;13-16;18-19; 122;162-163; 199-208;234-238.
    [2] C.莱茵斯,M.皮特尔斯编.陈振华等译.钛及钛合金[M].北京:化学工业出社,2005.343-366.
    [3]彭金辉,郭胜惠.二氧化钛直接电解提取钛短流程绿色新技术[J].稀有金属,2002,26 (4): 290-293.
    [4]邓国珠,王向东.促进技术进步保持海绵钛生产持续发展的关键[J].钛工业进展,2007,24(2): 9-13.
    [5] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten Calcium Chloride[J].Nature,2000,407(6802),21:361-364.
    [6]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005.12-24.
    [7]莫畏,邓国珠,陈德禛等.钛冶金[M].北京:冶金工业出版社,1979.50-62;281-334.
    [8]日本钛协会编,周连在译.钛材料及其应用[M].北京:冶金工业出版社,2008,28-144.
    [9]黄虹.钛及其合金的非航空航天用途[J].稀有金属与硬质合金,2001,9(146):46-49.
    [10]周廉.美国、日本和中国钛工业发展评述[J].稀有金属材料与工程, 2003,32(8):577-584.
    [11] Andrew J F, Graham C, Fray D J. Exploiting the FFC Cambridge process [J].Advance Material Process,2004,162(2):51-53.
    [12] Martin J L. Low-cost titanium process development [DB/CD].http:/ /www. timet. Com/.
    [13] Fray D J. Emerging molten salt technologies for metals production [J]. JOM, 2001,53(10): 26-31.
    [14] Chen G Z ,Fray D J.Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride [J].J Electrochemical Soc, 2002,149(11): E455-E467.
    [15] Fray D.J. Electrochemical processing using slags, fluxes and salts[C]. In:VⅡInternational Conference on Molten Slags Fluxes and Salts, 2004, 20:6-7.
    [16] K.Dring,R.Dashwood, D.Inman.Voltammertry of Titanium Dioxiede Calcium Chloride at 900℃[J].Journal of The Electrochemical Society,2005,152(3):104-113.
    [17] Schwandt C, Fray D J. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride [J]. Electrochimica Acta, 2005(51):66-67.
    [18] Alexander DTL,Schwandt C,Fray D J. Microstructural kinetics of phase transformations duringelectrochemical reduction of titanium dioxide in molten calcium chloride[J].Acta Materialia,2006,54:2933-2944.
    [19] Mohandas K S, Fray D J. Electrochemical Deoxidation of solid zirconium dioxide in moltencalcium chloride [J]. Metallurgical & Materials Transactions B,2009(40B):685-699.
    [20] Pritish Kar, J. W. Evans .Determination of kinetic parameters by modeling of voltammograms for electrochemical reduction of titanium dioxide [J]. Electrochemistry Communications, 2006, 8:1397–1403.
    [21]王志,袁章福,郭占成.金属钛生产工艺研究进展[J].过程工程学报,2004,4(1):90-95.
    [22]刘美凤,卢世刚.二氧化钛电极对直接电解提取钛的影响[C].广州:第十三次全国电化学会议,2005: 4P-023.
    [23]刘美凤,郭占成,卢维昌. Ti02直接电解还原过程的研究[J].中国有色金属学报,2004,14(10):1752-1757.
    [24]杜继红,奚正平,李晴宇等.电化学还原TiO_2制备金属钛及反应过程的研究[J].稀有金属材料与工程, 2006,35(7):1045-1049.
    [25] Du Ji-hong, Xi Zheng-ping,Li Qing-yu etc. Effect of TiO_2 cathode performance on preparation of Ti by electro-deoxidation [J]. Transaction of Nonferrous Metal Society of China, 2007, 17:s514-s521.
    [26]杜继红,奚正平,李晴宇等.TiO_2阴极组分对电解的影响[J].稀有金属材料与工程,2007,36(增刊3):347-350.
    [27]杜继红,奚正平,李晴宇等.CaCO3的掺杂对TiO_2电解过程的影响[J].稀有金属材料与工程,2007,36(1):96-99.
    [28]杜继红,奚正平,李晴宇等.掺杂的TiO_2阴极对熔盐电解的影响[J].稀有金属,2007,31(3):336-340.
    [29] Liu Meifeng, Lu Shigang, Kan Sumng etc. Effect of electrolysis voltage on electrochemical reduction of titanium oxide to titanium in molten calcium chloride [J]. Rare Metals,2007,26(6):547-551.
    [30]郭胜惠,彭金辉.熔盐电解还原TiO_2制备海绵钛新技术研究[J].昆明理工大学学报,2004,29(4):50-52.
    [31]郭胜惠,彭金辉,张世敏等.CaCl2体系中电解还原TiO_2制取钛的研究[J].稀有金属,2004,28(6):1091-1094.
    [32]聂新苗,董凌燕,白晨光等.TiO_2电解制取Ti的热力学研究[J].材料导报,2006,20(10):147-150.
    [33] Nie Xinmiao, Dong Lingyan, Bai Chenguang et al.Preparation of Ti by direct electrochemical reduction of solid TiO_2 and its reaction mechanism [J]. Transaction of Nonferrous Metal Society of China, 2006, 6: s723-s727.
    [34]扈玫珑,白晨光,董凌燕等.电化学直接还原TiO_2制取金属钛的研究[J].材料与冶金学报.2007,6(3):209-213.
    [35] Shulan Wang,Yingjun Li. Reaction Mechanium of Direct Electro-reduction of TitaniumDioxide in Moltern Calcium Chloride[J].Journal of Electroanalytical Chemistry. 2004, 571:37-42.
    [36]李颖君,王淑兰,钟和香等. TiO_2电化学还原反应机理及电极电势的研究[J].有色金属,2003, 55(4):68-70.
    [37] Ma Meng, Wang Dihua, Wang Wenguang etc.Extraction of titanium from different titania precursors by the FFC Cambridge process [J]. Journal of Alloys and Compounds, 2006, 420:37-45.
    [38]邹敏,朱世富,刘国钦等.熔盐电解TiO_2制备海绵钛过程中电解温度的确定[J].成都理工大学学报,2006,33(3):329-330.
    [39]邹敏,刘国钦,马光强等.真空熔盐电解法制备海绵钛电流效率影响因素的研究[J].中国有色冶金,2009,2:71-74.
    [40]邹敏,刘国钦,王琪琳等.真空电解法制备海绵钛阴极制备与表征[J].材料热处理学报,2007, 13(2):19-22.
    [41]刘国钦,邹敏,毛雪华,等.真空条件下电解TiO_2制备海绵钛中TiO_2电极制备及工艺参数确定[J].攀枝花学院学报,2007,24(3):1-4.
    [42]王碧侠,吴晓松,兰新哲等. TiO_2电化学还原工艺中阴极制备方法的研究[J].铸造技术, 2007,28(10):1328-1331.
    [43]王碧侠,崔静涛,兰新哲等.电化学还原法制备金属钛的阴极烧结工艺研究[J].铸造技术, 2008,29(10):8831-8835.
    [44] Ono K, Suzuki R O. A New Concept for Producing Ti Sponge: Calciothermic Reduction [J].JOM. 2002, 2:59-61.
    [45] Suzuki R O, Teranuma K, Ono K.Calciothermic Reduction of Titanium Oxide and in-situ Electrolysis in Molten CaCl2 [J].Metallurgical and Material Transactions B,2003, 34B:287-295.
    [46] Suzuki R O. Calciothermic reduction of TiO_2 and in situ electrolysis of CaO in the molten CaCl2 [J]. Journal of Physics and Chemistry of Solids, 2005, 66:461-465.
    [47] Yan X Y, Fray D J. Direct electrochemical reduction of niobium pentoxide to niobium metal in eutectic of CaCl2-NaCl melt[C].Light Metals: Proceeding of Sessions, TMS Annual Meeting, 2002:5-16.
    [48] Yan X Y, Fray D J.Production of niobium powder bye direct electrochemical reduction of solid Nb2O5 in eutectic of CaCl2-NaCl melt [J]. Metallurgical and Materials Transactions B- Process Metallurgy And Materials Processing Science, 2002, 33(5):685-693.
    [49] Yan X Y, Fray D J. Using electro-dioxidation to synthesize niobium sponge from solid in alkali-aline-earth metal chloride melts [J].Journal of Material Research, 2003, 18(2):346-356.
    [50] Yan X Y, Fray D J. Electrochemical studies on reduction of solid Nb2O5 in molten CaCl2-NaCleutectic:Ⅰ.Factors affecting electrodioxidation of solid Nb2O5 to niobium [J]. Journal of Electrochemical society, 2005, 152(1):D12-D21.
    [51]邓丽琴,许茜,李兵,等.电脱氧法由Nb2O5直接制备金属铌[J].中国有色金属学报,2005,15 (4):541-545.
    [52]邓丽琴,许茜,马涛,等.电脱氧法制妮用Nb2O5阴极活性的改进[J].金属学报,2005,41 (5):551-555.
    [53] Qian Xu, Li-Qin Deng,Yan Wu.A Study of Cathode Improvement for Electro-deoxidation of Nb2O5 in a Eutectic CaCl2-NaCl Melt at 1073K[J]. Journal of Alloys and Compounds, 2005, 396:288-294.
    [54]邓丽琴,许茜.熔盐电脱氧法制备金属Nb及Nb-Ti合金[D].沈阳,东北大学,2006:28-88.
    [55] Guohong Qiu, Xionghan Feng, Mingming Liu et al. Investigation on electrochemical reduction process of Nb2O5 powder in molten CaCl2 with metallic cavity electrode [J]. Electrochimica Acta, 2008, 53:4074–4081.
    [56] Barnett R, Kilby K T, Fray D J.Reduction of Tantalum Pentoxide Using Graphite and Tin-Oxide-Based Anodes via the FFC-Cambridge Process [J]. Metallurgical and Materials Transactions B, 2009, 15(40B):150-157.
    [57]胡小峰,许茜.CaCl2-NaCl熔盐电脱氧法制备金属Ta[J].金属学报,2006,45(3):285-289.
    [58] Chen G Z, Gordo E, Fray D J.Direct electrolytic preparation of chromium powder [J]. Metall Mater Trans B, 2004, 35B(4):223-233.
    [59] Gordo E, Chen G Z, Fray D J. Toward optimization of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts [J].Electrochimica Acta, 2004, 49:2195-2208.
    [60] Chen G Z, Fray D J. A morphological study of the FFC chromium and titanium powders [J].Trans Inst Min MetallSect C Miner Process Extr Metall, 2006, 115:51-53.
    [61]李晴宇,杜继红,奚正平.金属锆的熔盐电脱氧制备[J].稀有金属材料与工程,2007,36(增刊3):390-393.
    [62] Yan X Y, Fray D J. Direct electrolytic reduction of solid alumina using molten calcium chloride-alkali chloride electrolytes [J]. J Appl Electrochem, 2009, 39:1349-1360.
    [63] Qian Xu, Carsten Schwandt, George Z. Chen, Derek J. Fray. Electrochemical Investigation of Lithium Intercalation into Graphite from Molten Lithium Chloride [J].Journalof Electroanalytical Chemistry, 2002, 530:16-22.
    [64] Qian Xu, Carsten Schwandt, Fray D J. Electrochemical Investigation of Lithium and Tin Reduction at a Graphite Cathode in Molten Chlorides[J].Journal of Electroanalytical Chemistry, 2004,62:15-21.
    [65] Fray D. J., Chen G. Z. Reduction of titanium and other metal oxides using electro-deoxidation [J]. Materials Science and Technology, 2004, 20(3):295-300.
    [66] Chen G Z, Fray D J,Farthing T W. Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride [J].Metallurgical and materials transactions B, 2001,32B: 1041-1052.
    [67]于旭光,邱竹贤.TiO_2电解制取Al-Ti合金[J].东北大学学报(自然科学版),2004,25(11):1088-1090.
    [68]宋天富,刘忠侠,王明星等.电解法生产低钛铝合金的可行性研究[J].郑州大学学报(力学报), 2004, 36(1): 37-40.
    [69]刘美凤,卢世刚,阚素荣等.熔盐电解直接制备钛镍合金的研究[J].稀有金属,2007,31(4):573-576.
    [70]高筠,周正,王岭等.电脱氧法的发展及应用研究[J].材料导报,2007,21(4):76-79.
    [71]胡小锋,许茜,李海滨等.熔盐电脱氧法制备金属Ti最新研究进展[J].材料导报, 2006, 20(8):101-106.
    [72]戴金辉,葛兆明主编.无机非金属材料概论[M].哈尔滨工业大学出版社,2000:114-125.
    [73]刘全坤.材料成形基本原理[M].机械工业出版社,2004.216-219.
    [74]张彦华,薛克敏.材料成形工艺[M].北京:高等教育出版社,2008.223-224.
    [75]曾桂生,杨大锦,谢刚.钙熔盐电解过程中石墨阳极保护涂层研究[J].昆明理工大学学报,2003,28(4):31-33.
    [76]斯拉文斯基.元素的物理化学性质[M].北京:中国化学工业出版社,1994:66-69.
    [77]高艳秋.低温氮吸附容量法测催化剂比表面积[J].化学工程师.2004,109(10),35-36.
    [78] C. Wu, Y. Yue, X. Deng et al. Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations[J].Catalysis Today,2004, 93/95:863-869.
    [79]杨昕宇,梁晓娟,向卫东.XRD表征Ag掺杂对TiO_2晶型结构的影响[J].稀有金属材料与工程,2008,37(增刊2):450-452.
    [80]周芝俊,宁崇德.钛的性质及其应用[M].高等教育出版社,1993,49-50.
    [81]符春林,魏锡文.二氧化钛晶型转变研究进展[J].材料导报,1996,13(3):37-47.
    [82]徐勇军,李秀平,罗列等.XPS对多层膜中单层膜厚的测定[J].分析测试学报,2008,27(9):1005-1007.
    [83]刘昶时,武光明,刘芬等.金属表面结构的变角XPS特征[J].分析测试学报,1997,16(4):77-79.
    [84]黎步银,周东祥,姜胜林,吕文中,龚树萍.TiO_2高温电导及缺陷化学分析[J].压电与声光,2001,23(6):473-477.
    [85] R.M. Mohamed, I.A. Mkhalid. The effect of rare earth dopants on the structure, surface texture and photocatalytic properties of TiO_2–SiO_2 prepared by sol–gel method[J]. Journal of Alloysand Compounds,2010, 501(1):143–147.
    [86] V. Belessi, G. Romanos, N. Boukos, D. Lambropoulou, C. Trapalis. Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO_2 nanoparticles[J]. Journal of Hazardous Materials,2009,170(2-3) :836–844.
    [87] K.V. Baiju, P. Periyat, P. Shajesh,W.Wunderlich, K.A. Manjumol, V.S. Smitha, K.B. Jaimy, K.G.K.Warrier. Mesoporous gadolinium doped titania photocatalyst through an aqueous sol–gel method [J]. Journal of Alloys and Compounds, 2010,505(1):194-200.
    [88] I.M. Hung, Y. Wang, C.F. Huang, Y.S. Fan, Y.J. Han, H.W. Peng. Effects of templating surfactant concentrations on the mesostructure of ordered mesoporous anatase TiO_2 by an evaporation-induced self-assembly method [J].Journal of the European Ceramic Society, 2010, 30 (10):2065–2072.
    [89] X.M. Yan, P. Mei, J.H. Lei, Y.Z. Mi, L. Xiong, L.P. Guo. Synthesis and characterization of mesoporous phosphotungstic acid/TiO_2 nanocomposite as a novel oxidative desulfurization catalyst[J]. Journal of Molecular Catalysis A: Chemical 2009,304 (1-2): 52–57.
    [90] D.S. Kim, S.J. Han, S.Y. Kwak. Synthesis and photocatalytic activity of mesoporous TiO_2 with the surface area, crystallite size, and pore size[J]. Journal of Colloid and Interface Science, 2007,316 (1):85–91.
    [91] M.M. Viana, V.F. Soares, N.D.S. Mohallem.Synthesis and characterization of TiO_2 nanoparticles[J]. Ceramics International, 2010,36 (7):2047–2053.
    [92] R.C. da Silva, E. Alves, M.M. Cruz. Conductivity behaviour of Cr implanted TiO_2 [J]. Nuclear Instruments and Methods in Physics Research section B:Beam Interactions with Materials and Atoms, 2002, 191(1-4):158-162.
    [93] P.S. Patil, S.H. Mujawar, A.I. Inamdar, P.S. Shinde, H.P. Deshmukh, S.B. Sadale. Structural, electrical and optical properties of TiO_2 doped WO3 thin films[J]. Applied Surface Science, 2005,252(5): 1643–1650.
    [94] K. Karthik, S. Kesava Pandian, N. Victor Jaya. Effect of nickel doping on structural, optical and electrical properties of TiO_2 nanoparticles by sol–gel method[J]. Applied Surface Science,2010,256(22):6829–6833.
    [95] Arve Holt, Per Kofstad. Electrical conductivity of Cr2O3 doped with TiO_2[J]. Solid State Ionics,1999,117(1-2):21–25.
    [96]曲宝涵,马传利,杨爱萍.TiO_2材料的半导化机理探讨[J].郑州轻工业学院学报(自然科学出版社),2000,15(4):99-101.
    [97]张明杰,王兆文.熔盐电化学原理与应用[M].北京:化工工业出版社,2006:42-43.
    [98]曾政权,甘孟瑜,张云怀等.大学化学[M].重庆:重庆大学出版社,2008:184-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700