非水基流延法制备镓酸镧电解质陶瓷基片及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镓酸镧(LSGM)基固体电解质对中温型固体氧化物燃料(SOFC)电池来说是一种有前景的电解质材料,这种电解质粉体的制备虽然已经有研究,但是大面积电解质基片成型工艺还不成熟,有待进一步研究。流延法具有成本低、生产周期短、产量高、性能稳定的优点,非常适合于制备大面积的平板型固体电解质薄膜。本课题通过传统的非水基流延法制备镓酸镧电解质薄膜,并讨论工艺参数对陶瓷基片性能的影响。
     首先对固相反应法合成LSGM粉体的制备工艺进行优化,确定了LSGM粉体的的最佳煅烧制度为:900℃预烧24h,1300℃煅烧36h,得到粉体平均粒径为3.04μm,接近国际上固相反应法合成LSGM粉体的先进水平。随后通过沉降试验和粘度测试,确定了LSGM的流延浆料配方:粉料-LSGM 80g,溶剂-丁酮/乙醇(60/40) 60mL,分散剂-三乙醇胺2 mL,粘结剂-聚乙烯醇缩丁醛6.4g,塑性剂-聚乙二醇/邻苯二甲酸二乙酯3.2g/4mL。用此浆料流延出的素坯经过1500℃烧结6h后,采用非水基流延方式制备出宏观平整均匀、大小为5×5cm~2的大面积LSGM电解质,相对密度和显气孔率分别可以达到96.0%和0.38%,与玻璃陶瓷密封胶BCAS551的热膨胀匹配性良好,保证了工作温度范围内电池结构的稳定性。通过对其电化学阻抗谱的分析,确定了LSGM电解质低温区电导率主要取决于晶界电导,而在高温区电导率主要取决于晶粒电导的导电机制。低温下由于缺陷缔合的存在,电导率激活能较高,达0.91eV,温度升高到873K解缔合之后,在高温下的激活能较低,为0.62eV。离子电导率在1073K达到0.082S·cm~(-1)。
     最后系统地研究了电池各元件的热膨胀匹配性,组装了模拟电池,并对SCF-LDC45梯度阴极组装的模拟电池进行了放电性能测试,在800℃时开路电压为1.073V,与理论值1.2V接近,电池的最大功率密度为0.33W·cm~(-2)。
Lanthanum gallate doped with strontium and magnesium (LSGM) is a promising electrolyte system for intermediate temperature solid oxide fuel cells (SOFCs). The preparation method of the powder has been studied, but it isn’t mature for fabrication of the thin film. Tape castig has the advatages of a low cost,short produce cycle,high output,stabilized capability and so on. In this paper, LaGaO3 (LSGM) electrolyte thin film was prepared by the method of non-aqueous tape casting.
     The preparation techonology of the LSGM powders by a solid reaction method was discussed and the optimum sintering procedure was decided. The best LSGM powders 3.04μm in diameter were obtained by being sintered at 900℃for 24h and at 1300℃for 36h and this preparation technology has attained the advanced international level. Then, the best slurry composition, which was decided by precipitation and viscocity test, contains 80g LSGM powders, 60mL butanone/ethanol (60/40) as the solvent, 2mL triethanolamine as the dipersant and 6.4g polyvinyl butyral as the binder and 3.2g/4mL polyethylene glycol/diethyl phthalate as the plasticizer.
     The macroscopically smooth and homogeneous LSGM electrolyte base of 5×5cm in size was obtained by sintering the green tape at 1500℃for 6 h. The thus prepared LSGM electrolyte base possesses a relative density of 96.0%, a porosity of 0.38% and good compatiblitty with the BCAS551 glass-ceramic sealing materials, which ensures the structure stability of the cell within the operating temperature. Electrochemistry impedance spectrum test revealed that the conductivity of LSGM electrolyte was primarily controlled by conductivity of the grain boundary within the low temperature range and the conductivity of the grain within the high temperature range. The conductivity activation energy was 0.93eV within the high temperature range, which is higher than the conductivity activation energy of 0.64eV at the temperature above 873K. The conductivity of the LSGM electrolyte was 0.082S·cm~(-1) at 1073K.
     Finally,the thermal compatibility between all the components of the cell was studied and the cell has a maximum power density of 0.33W·cm-2 and an OCV of 1.073V at 800℃, which is comparable to the theoretical value of 1.2V.
引文
1. A. K. Maiti, B. Rajender. Terponeol as A Dispersant for Tape Casting Yttria Stabilized Zirconia Powder. Materials Science And Engineering. 2002, 333(1):35~40
    2.姚思童,司秀丽,杨军等.燃料电池的工作原理及其发展现状.沈阳工业大学学报. 1998,20(1):48
    3. T. Ishihara, T. Shibayma, M. Honda et al. Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Electrolyte. Journal of The Electrochemical Society. 2000,147(4):1332~1337
    4. T. Ishihara, H. Matsuda, Y. Tskita et al. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor. Journal of the American Chemical Society. 1994,116(9):3801~3803
    5. S. C. Singhal. Advances in Solid Oxide Fuel Cell Technology. Solid State Ionics. 2000,135(1~4):305~313
    6. C. Jigui, Z. Shaowu, F. Xiaohong et al. On the Green Density, Sintering Behavior and Electrical Property of Tape Cast Ce0.9Ga0.1O1.95 Electrolyte Films. Materials Research Bulletin.2002,37(15):2437~2446
    7. G. V. M. Kiruthika, U. V. Varadaraju. Ionic Conductivity Study on the New High Oxide Conducting Perovskite LaGaO3. Proceeding of the Fifth International Symposium on Solid Oxide Fuel Cells. 1997,540~544
    8. F. Man, J. B. Goodenough, K. Q. Huang. Fuel Cells with Doped Lanthanum Gallate Electrolyte. Journal of Power Sources. 1996,63(1):47~51
    9. K. Q. Huang, R. Tichy, J. B. Goodenough. Superior Perovskite Oxide-Ion Conductor: Strontium- and Magnesium-Doped LaGaO3:Ⅱ, AC Impedance Spectroscopy. Journal of the America Ceramic Society. 1998,81(10): 2576~2580
    10. P. N. Huang, A. Petric. Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium. Journal of The Electrochemical Society. 1996,143(5):1644~1648
    11. K. Q. Huang, M. Feng, J. B. Goodenough. Characterization of Sr-Doped LaMnO3 and LaCoO3 as Cathode Materials For A Doped LaGaO3 CeramicFuel Cell. Journal of the Electrochemical Society. 1996,143(11):3630~3036
    12. T. Ishihara, T. Shibayma, M. Honda et al. Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Electrolyte. Journal of The Electrochemical Society. 2000,147(4):1332~1337
    13. K. Q. Huang, R. Tichy, J. B. Goodenough. Superior Perovskite Oxide-Ion Conductor: Strontium- and Magnesium-Doped LaGaO3:Ⅰ, Phase Relationships and Electrical Properties. Journal of the America Ceramic Society. 1998,81(10):2565~2575
    14. P. R. Slater, J. T. S. Irvine, T. Ishihara. High-Temperature Powder Neutron Diffraction Study of the Oxide Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O2.85. Journal of Solid State Chemistry. 1998,139(1):135~143
    15. T. Ishihara, T. Shibayama, H. Nishiguchi et al. Oxide Ion Conductivity In La0.9Sr0.1Ga0.8Mg0.2-xNixO3 Perovskite Oxide and Application for the Electrolyte of Solid Oxide Fuel Cells. Journal of Materials Sciences. 2001, 36:1125~1131
    16. I. Yasuda, Y. Matsuzaki, T. Yamakawa et al. Electrical Conductivity and Mechanical Properties of Alumina-Dispersed Doped Lanthanum Gallates. Solid State Ionics. 2000,135(1~4):381~388
    17. L. Dokyol, H. Ju-Hyeong, C. Youngsuk, Rak-Song, S. Dong Ryul. Preparation and characterization of strontium and magnesium doped lanthanum gallates as the electrolyte for IT-SOFC. Power Sources. 2007,166(17):35~40
    18. G. N. Howatt, R. G. Breekenridge, J. W. Brownlow. Fabrication of thin ceramic sheets for capacitors. J Am Ceram Soc, 1947,30(1):237~242
    19. G. N. Howatt. Method of producting high–dielectric high-insulation ceramic plates. U. S. Pat., 2582993.1952~10~06
    20. E. Richard, Mistler. Tape casting: the basic process for meeting the needs of the electronics industry. Ceram Bull, 1990,69(6):1002~1026
    21. E. Passalacqua. Alkali resistance of tape-cast SiC porous ceramic membranes. Mater Lett, 1998,34(6):257~262
    22. C. Corso. Influnce of the tape-casting process parameters on the geometric characteristics of SiC tapes. Mater Chem and Phy, 1998,56(2):125~133
    23. H. Liu, S. M. Hsu. Fracture behavior of multilayer silicon nitride/boronnitride ceramics. J Am Ceram Soc, 1996,79(9):2452~2457
    24. T. Chartier. Laminar ceramic composites. J Eur Ceram Soc, 1995,15(2): 101~107
    25. B. Philippe. Tape casting of Al2O3/ZrO2 laminated composites. J Am Ceram Soc, 1986,69(8):C191~192
    26. A. Jennifer. Rheological Property and stress development during drying of tape-cast ceramic layers. J Am Ceram Soc, 1996,79(12):3225~3234
    27. W. J. Clegg. A simple way to make tough ceramic. Nature, 1990,347(4):455~ 461
    28. N. Das, H. S. Maiti. Effect of Size Distribution of the Starting Powder on the Pore Size and Its Distribution of Tape Cast Alumina Microporous Membranes. Journal of the European Ceramic Society. 1999,19(3):341~345
    29. T. Chartier, T. Rouxel. Tape-Cast Alumina-Zirconia Laminates: Processing and Mechanical Properties. J European Ceramic Society. 1997,17(2~3): 299~308
    30. H. Brinkman, W. Meijerink, J. D. Vries et al. Kinetics and Morphology of Electrochemical Vapour Deposited Thin Zirconia/Yttria Layers on Porous Substrates. Journal of the European Ceramic Society. 1996,16(6):587~600
    31. H. J. Zeng, Y. Xomeritakis, G. Y. Lin et al. Electrochemical Vapor Deposition Synthesis and Oxygen Permeation Properties of Dense Zirconia–Yttria–Ceria Membranes. Solid State Ionics. 1997,98(1-2):63~72
    32. K. W. Chour, J. Chen, R. Xu et al. Metal-Organic Vapor Deposition of YSZ Electrolyte Layers for Solid Oxide Fuel Cell Applications. Thin Solid Films. 1997,304 (1-2):106~112
    33. H. B. Wang, C. R. Xia, G. Y. Meng et al. Deposition and Characterization of YSZ Thin Films by Aerosol-Assisted CVD. Materials Letters. 2000,44(1): 23~28
    34. P. Egger, G. D. Soraru, S. Dire et al. Sol-Gel Synthesis of Polymer-YSZ Hybrid Materials for SOFC Technology. Journal of The European Ceramic Society. 2004,(24):1371~1374
    35. C. J. Li, C. X. Li, X. J. Ning et al. Performance of YSZ Electrolyte Layer Deposited by Atmospheric Plasma Spraying for Cermet-Supported Tubular SOFC. Vacuum. 2004,73(3-4):699~703
    36. K. A. Khor, L. G. Yu, S. H. Chan et al. Densification of Plasma Sprayed YSZ Electrolytes by Spark Plasma Sintering (SPS). Journal of the European Ceramic Society. 2003,23(11):1855~1863
    37. E. Wanzenberga, F. Tietza, P. Panjanb et al. Influence of Pre- and Post-Heat Treatment of Anode Substrates on The Properties of DC-Sputtered YSZ Electrolyte Films. Solid State Ionics. 2003,159(1~2):1~8
    38. A. Nagata, H. Okayama. Characterization of Solid Oxide Fuel Cell Device Having a Three-Layer Film Structure Grown by RF Magnetron Sputtering. Vacuum. 2002,66(3~4):523~529
    39. B. Hobein, F. Tietz, D. Stover et al. DC Sputtering of Yttria-Stabilised Zirconia Fims for Solid Oxide Fuel Cell Applications. Journal of the European Ceramic Society. 2001,(21):1843~1846
    40.贾莉,吕喆,黄喜强等.用于燃料电池的氧化锆薄膜制备方法进展.电源技术. 2004,28(7):449~451
    41. T. Tsai, S. A. Barnett. Effect of LSM-YSZ Cathode on Thin-Electrolyte Solid Oxide Fuel Cell Performance. Solid State Ionics. 1997,93(1~2): 207~217
    42. T. Tsai, S. A. Barnett. Bias Sputter-Deposition of Dense Yttria-Stabilized Zirconia Films on Porous Substrates. Journal of the Electrochemical Society. 1995,142(9):3084~3087
    43. T. Tsai, S. A. Barnett. Proc. 5th Int. Symp. on Solid Oxide Fuel Cells (eds. Stimming U, Shinghal S C ) . Pennington: Electrochem. Soc., 1997. 274~282
    44. R. Kikuchi, M. Futamura, T. Matsui. Proc. 9th Int. Symp. on Solid Oxide Fuel Cells (eds. S. C. Singhal and J. Mizusaki). Pennington: Electrochem. Soc., 2005.1674~1683
    45. S. P. Simner, J. F. Bonnett, N. L. Canfield et al. Development of Lanthanum Ferrite SOFC Cathodes. Journal of Power Sources. 2003,113(1):1~10
    46. K. Q. Huang, J. B. Goodenough. A Solid Oxide Fuel Cell Based on Sr- and Mg-Doped LaGaO 3 Electrolyte: the Role of A Rare-Earth Oxide Buffer. Journal of Alloys and Compounds. 2000,303~304(24):454~464
    47. K. Q. Huang, M. Feng, J. B, Goodenough. Electrode Performance Test on Single Ceramic Fuel Cell Using as Electrolyte Sr-and Mg-doped LaGaO3.Journal of the Electrochemical Society. 1997,144(10):3620~3624
    48. X. G. Zhang, S. Ohara, H. Okawa et al. Ni-SDC Cermet for Medium-Temperature Solid Fuel Cell with Lanthanum Gallate Electrolyte. Journal of Power Sources. 1999,83:170~177
    49. X. G. Zhang, S. S. Ohara. Interactions of a La0.9Sr0.1Ga0.8Mg0.2O2.87 Electrolyte with Fe2O3, Co 2 O3 and NiO Anode Materials. Solid State Ionics. 2001,139(1~2):145~152
    50. K. Q. Huang, J. H. Wan, J. B. Goodenough. Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials. Journal of Electrochemical Society. 2001,148(7):A788~A794
    51. D. Simwonis, H. Thuelen, F. J. Dias et al. Properties of Ni/YSZ Porous Cermets for SOFC Anode Substrates Prepared by Tape Casting and Coat-mix Process. Journal of Materials Processing Technology. 1999,92~93:107~111
    52. T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, T. Inagaki, Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3, Journal of Power Sources 2002,106:142~145
    53. M. Shi, N. Liu, Y. D. Xu, C. Wang, Y. P. Yuan, P. Majewski, F. Aldinger, Preparation of electrolyte foil La0.85Sr0.15Ga0.85Mg0.15O2.85(LSGM) by means of tape casting, Journal of Materials Processing Technology 2005,169: 179~183
    54. Mei, J. Yang, M. F. J. Ferreira et al. The Fabrication and Characterisation of Low-k Cordierite-Based Glass-Ceramics by Aqueous Tape Casting. Journal of the European Ceramic Society. 2004,24(2):295~300
    55. R. E. Mistler, E. R. Twiname. Tape Casting-Theory and Practic. Published by the American Society, 735 Ceramic Place, Wsiterville, 2000, p:209~224
    56. J. L. Young, T. H. Etsell. Polarized Electrochemical Vapor Deposition for Cermet Anodes in Solid Oxide Fuel Cells. Solid State Ionics. 2000,135: 457~462
    57. R. Moreno, G. Córdoba. Oil-Related Deflocculants for Tape Casting Slips. Journal of the European Ceramic Society. 1997,17(2~3):351~357
    58. N. Das, H. S. Maiti. Formation of Pore Structure in Tape-Cast Alumina Membranes-Effects of Binder Content and Firing Temperature. Journal of the Membrane Science. 1998,140(2):205~212
    59. L. Salam, A. Matthews, D. R. Robertson et al. Hugh Pyrolysis of Polyvinyl Butyral (PVB) Binder in Thermoelectric Green Tapes. Journal of the European Ceramic Society. 2000,20(9):1375~1383
    60. C. S. Y. Jee, Z. X. Guo, S. I. Stoliarov et al. Experimental and Molecular Dynamics Studies of the Thermal Decomposition of A Polyisobutylene Binder. Acta Materialia. 2006,54(18):4803~4813
    61. H. Tomaszewski, H. W?glarz, A. Wajler et al. Multilayer Ceramic Composites with High Failure Resistance. Journal of the European Ceramic Society. 2007,27(2~3):1373~1377
    62.丁子上,王民权,潘守彝等.硅酸盐物理化学.建筑工业出版, 1979: 345~350
    63. M. Descamps, M. Mascart, B. Thierry et al. How to Control Craking of Tape-Casting Aheets. American Ceramic Society Bulleting. 1995,74(10): 89~92
    64.梁建超,肖建中,罗志安等.分散剂对ZrO2料浆及陶瓷性能的影响.硅酸盐通报. 2005,24(2) 45~48
    65. K. Prabhakaran, Asha Narayanan, C. Pavithran et al. Cardanol as A Dispersant Plasticizer for An Alumina/Toluene Tape Casting Slip. Journal of the European Ceramic Society. 2001,21:2873~2878
    66. S. Y. Lee, C. T. Fu et al. The Effect of Rheological Behavior of Tape Casting on The Green Sheet And Sintered Silicon Carbide. Ceramics International. 2004,30(2):151~156
    67.蒋凯,孟建. (Ce (0.8) RE (0.2) ) (1-x) M x O(2-δ)固体电解质的溶胶-凝胶合成及其电性质.中国科学: B缉,1999,29(3):254~258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700