蒽醌掺杂聚吡咯在电极材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电聚合物作为电容器电极材料使用时,经常由于工作电压范围不够宽,电容量不够大,导致其在应用上受到限制。本文把在较负电位处具有良好赝电容行为的蒽醌掺杂进聚吡咯中,扩大了聚吡咯电极的工作电压范围,提高了复合电极的电容量。另外由于蒽醌对氧具有良好的电催化还原活性,将蒽醌掺杂的聚吡咯应用到微生物燃料电池阴极中,该阴极兼有防水和催化的双重效果,其良好的导电子和质子能力减少了阴极反应阻力,减少了阴极制备过程的复杂程序。
     首先在金电极上通过电化学方法制备蒽醌及其衍生物掺杂的聚吡咯电极。与高氯酸根离子掺杂的聚吡咯相比,检测发现蒽醌及其衍生物磺酸盐掺杂的聚吡咯电极有更宽的工作电压范围和更高的单位质量电容量。其中蒽醌单磺酸盐(9, 10-蒽醌-2-磺酸钠盐)掺杂的聚吡咯(PPy/AQS)电极的电容性能最好,工作电压范围为-0.9至0.5 V,扫描速度为5 mV/s时其单位质量电容量高达608 F/g。这主要是由于:1.蒽醌磺酸盐的掺杂能明显改变聚吡咯电极表面的形貌,其电极表面主要由纳米至亚微米级的颗粒组成,因此增大了电极的比表面积。2.蒽醌在较负电位处良好的氧化还原特性提高了总体电极的单位质量电容量并扩大了电极的工作电压范围。
     通过电化学测试,证明了PPy/AQS在Au电极和不锈钢网上的PPy/AQS均具有良好的电催化氧还原性能,且明确了其中对氧还原起催化作用的关键成分是蒽醌/氢蒽醌氧化还原电对。
     通过恒电流法,蒽醌掺杂的聚吡咯(PPy/AQS)均匀地电沉积在不锈钢网上,将其作为阴极组装进微生物燃料电池后进行测试,电池平稳运行,防水效果良好,沉积电量为100 C/cm2的PPy/AQS阴极无膜微生物燃料电池,其最高功率密度能达到575 mW/m2。随着阴极厚度增加,电极的内阻增大,氧气透过阴极的难度加大,微生物燃料电池的性能下降。通过在PPy/AQS阴极上涂覆一层石墨黑催化剂,这种改进后的微生物燃料电池功率密度能达到1857 mW/m~2,与同样使用石墨黑作为催化剂,PDMS作为防水层,不锈钢网作为支撑体的阴极微生物燃料电池相比,PPy/AQS上涂覆石墨黑的阴极MFC电池性能更好,这主要归功于PPy/AQS阴极良好的导电子和质子能力。此种合成微生物燃料电池阴极的方法为构建大容量的微生物燃料电池体系提供了一种新的思路。
The application of conductive polymer is often limited by short working voltage range and small electric capacity as a kind of supercapacitor electrode material. Situated in a relative negative potential, anthraquinone with a good pseudo-capacitive behavior is doped into PPy to enlarge the working voltage range and enhance the electric capacity of the composite electrode. Besides, a coating of anthraquinone doped polyprrole is applied to construct the cathodes of microbial fuel cells (MFCs), because of its good electrical catalytic reduction activities of the oxygen. The PPy/AQS is hydrophobic and oxygen electric catalytic, which is suitable for MFC cathode. In the same time, the ability of good conducting electrons and protons reduces the reaction resistance in MFC cathodes, finally the preparation method is also convenient and simple.
     A layer of PPy doped with anthraquinone and its derivatives was prepared on gold electrode by electrochemical methods. Results show that these PPy electrodes doped with anthraquinone result in a wider working potential range and a higher specific capacitance compared to the PPy electrodes doped with ClO4-. Among the samples investigated, the resulting PPy/AQS (9, 10-anthraquinone-2-sulfonic acid sodium salt) composite exhibits the highest specific capacitance of 608 F/g at a scan rate of 5 mV/s within a potential range between ?0.9 and 0.5 V. The major reasons are: (1)The incorporation of anthraquinone sulfonate species into the polymer matrix can significantly improve the surface area of PPy composites that are composed of submicron-/nano-sized particles, which enlarge the specific surface area of the electrodes. (2)Electrodes achieve a higher specific capacitance and a wider working potential range due to the good redox characteristics of anthraquinone in a relative negative potential.
     The oxygern reduction behavior of PPy/AQS is detected, it proves that PPy/AQS on Au and stainless steel electrode show good oxygen reduction reaction activity, the experiment validate that anthraquinone/anthrahydroquinone redox center is the key issue to the oxygen reduction.
     AQS doped polypyrrole conductive polymer is electrodeposited onto stainless steel mesh by constant current method. The PPy/AQS film is uniformly formed on the metal mesh electrode. The MFC with PPy/AQS cathode can run steady and show good waterproof features, the 100 C/cm2 PPy/AQS cathode MFC exhibit a maximum power density of 575 mW/m2. Increasing film thickness seems to result in a reduction in power performance due to the increased ohmic resistance of the cathode material and the enhanced difficulty for oxygen diffusion inside the cathode. The graphite coated on the PPy/AQS layer is used as the catalyst, the maximal power density of the modified MFC was 1857 mW/m2, which is much higher than MFC whose cathode is fabricated by PDMS and graphite on stainless steel, this is owed to the good electron and proton conductivity of PPy/AQS. These results indicate that the one-step fabrication method holds potential in the implementation of this for air-breathing MFC applications on a large scale.
引文
[1] Shirakawa, H., Louis, E. J., MacDiarmid, A. G., et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x[J]. Journal of the Chemical Society, Chemical Communications, 1977, 16: 578-580
    [2] Su, W. P., Schrieffer, J. R., Heeger, A. J. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25): 1698-1701
    [3] Erwin, S. C., Zu, L., Haftel, M. I., et al. Doping semiconductor nanocrystals[J]. Nature, 2005, 436(7047): 91–94
    [4] Tourillon, G.., Garnier, F. Effect of dopant on the physicochemical and electrical properties of organic conducting polymers[J]. The Journal of Physical Chemistry, 1983, 87(13): 2289-2292
    [5]程发良,宁满霞,莫金垣,等.水介质中吡咯的电化学聚合反应[J].分析测试学报, 2002, 21(4): 30-33
    [6] Mastragostino, M., Arbizzani, C., Soavi, F. Polymer-based supercapacitors[J].Journal of power sources, 2001, 97:812-815
    [7] Kim, J. H., Lee, Y. S., Sharma, A. K., et al. Polypyrrole/carbon composite electrode for high-power electrochemical capacitors[J]. Electrochimica acta, 2006, 52 (4):1727-1732
    [8] Li, H., Zou, Y., Xia, Y. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor[J].Electrochimica acta, 2007, 52(5):2153-2157
    [9] D.E. Pacheco-Catalán, Mascha A. Smit, E. Morales. Characterization of composite mesoporous carbon/conducting polymer electrodes prepared by chemical oxidation of gas-phase absorbed monomer for electrochemical capacitors[J]. Int. J. Electrochem. Sci., 2011, 6:78–90
    [10] Gómez, H., Ram, M. K., Alvi, F., et al. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors[J]. Journal of power sources, 2011, 196:4102–4108
    [11] Lisowska-Oleksiak, A., Nowak, A. P. Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors[J]. Journal of power sources, 2007, 173 (2): 829-836
    [12] Khomenko, V. G.,Barsukov, V. Z.,Katashinskii, A. S. The catalytic activity of conducting polymers toward oxygen reduction[J]. Electrochimica acta, 2005, 50 (7-8): 1675-1683
    [13] Vaik, K.,Sarapuu, A.,Tammeveski, K., etc. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH[J]. Journal of Electroanalytical Chemistry, 2004, 564 159-166
    [14] Tammeveski, K.,Kontturi, K.,Nichols, R. J., etc. Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 515 (1-2): 101-112
    [15] Gao, M., Yang, F., Zhang, G., et al. Effects of poly-1, 5-diaminoanthraquinone morphology on oxygen reduction in acidic solution[J]. Electrochimica acta, 2009, 54 (8): 2224-2228
    [16] Martínez Millán, W., Toledano Thompson, T., Arriaga, L. G., et al. Characterization of composite materials of electroconductive polymer and cobalt as electrocatalysts for the oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2009, 34 (2): 694-702
    [17] Lima, A., Coutanceau, C., Leger, J. M., et al. Investigation of ternary catalysts for methanol electrooxidation[J]. Journal of Applied Electrochemistry, 2001, 31(4):379-386
    [18]吴婉群,王月丰.掺铂微粒的聚2,5-二甲氧基苯胺膜电极对甲醛氧化的电催化作用.西南师范大学学报(自然科学版)[J], 1996, 21(6): 579-554
    [19]万本强.甲酸在铂微粒修饰的聚2,5-二甲氧基苯胺电极上的电催化氧化.应用化学[J], 1999, 16(2):60-64
    [20] Levi, M, D., Pisarevskaya, E, Y. Eletrochemical charaeterisation of the polymer/solution interface for electronically conducting and conventional redox-polylners[J]. Synthetic Metals, 1993, 55(2-3):1377-1381
    [21] Malinauskas A., Holze R. A Uv-vis spectroelectrochemical study of redox reactions of solution species at a Polyaniline electrode in the conducting and the reduced state[J]. Journal of Electroanalytical Chemistry, 1999, 461(l-2):184-193
    [22] Komura, T., Mori, Y., Yamaguti, T., et al. Electrostatic incorporation of anthraquinone sulfonate ions into a polypyrrole film containing pyridinium groups[J]. Electrochimica acta, 1997, 42 (6):985-991
    [23] Zhang. J., Tse, Y-H, Pietro, W. J., et al. Electrocatalytic activity of N, N, N, N-tetramethyl-tetra-3, 4-pyridoporphyrazinocobalt (Ⅱ) adsorbed on a graphite electrode towards the oxidation of hydrazine and hydroxylamine[J]. Journal of Electroanalytical Chemistry, 1996, 406(1-2):203-211
    [24] Alatorre, M. A., Gutie′rrez, S., Pa′ramo, U., et al. Reduction of hexavalent chromium by polypyrrole deposited on different carbon substrates[J]. Journal of appliedelectrochemistry, 1998, 28 (5): 551-557
    [25] Rodriguez, F. J., Gutiérrez, S., Ibanez, J. G., et al. The efficiency of toxic chromate reduction by a conducting polymer (polypyrrole): influence of electropolymerization conditions[J]. Environmental science & technology, 2000, 34 (10): 2018-2023
    [26] Talaie, A. Conducting polymer based pH detector: A new outlook to pH sensing technology[J]. Polymer, 1997, 38 (5): 1145-1150
    [27] Schuhmann, W. Electron-transfer pathways in amperometric biosensors Ferrocene–modified enzymes entrapped in conducting-polymer layers[J]. Biosensors and Bioelectronics, 1995, 10 (1-2): 181-193
    [28] Vidal, J. C., Garcia, E., Castillo, J. R. In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overcxidized polypyrrole filmelectrodeposited in a flow system: Determination of total cholesterol in serum[J].Analytica Chimica Acta, 1999, 385(1-3):213~222
    [29] Kojima K, Nasu H, Shimomura M, et al. An interfering factor in the glucoseoxidase sensing system with polypyrrole/glucose oxidase membrane[J]. SyntheticMetals, 1995, 71(1-3): 2245~2246
    [30] De Souza, J. E. G., dos Santos, F. L., Barros-Neto, B., et al. Polypyrrole thin films gas sensors[J]. Synthetic metals, 2001, 119 (1-3): 383-384
    [31] Milella, E., Penza, M. SAW gas detection using Langmuir-Blodgett polypyrrole films[J]. Thin Solid Films, 1998, 327:694-697
    [32] Sgritski V S, Reut J, Opik A, et al.Environmental QCM sensors toted with polypyrrole[J]. Synthetic Metals, 1999, 102:1326-132
    [33]张劲.新兴的非金属材料在油气田中的应用[J].国外油田工程,2001,17(5):44~47
    [34] Manisankar, P., Gomathi, A. Electrocatalysis of oxygen reduction at polypyrrole modified glassy carbon electrode in anthraquinone solutions[J]. Journal of Molecular Catalysis A: Chemical, 2005, 232 (1-2): 45-52
    [35] Algharaibeh, Z., Liu, X., Pickup, P. G. An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor[J]. Journal of power sources, 2009, 187 (2): 640-643
    [36] Kalinathan, K., DesRoches, D. P., Liu, X., et al. Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities[J]. Journal of power sources, 2008, 181 (1): 182-185
    [37] Hossain, M. S., Tryk, D., Yeager, E. The electrochemistry of graphite and modifiedgraphite surfaces: the reduction of O2[J]. Electrochimica acta, 1989, 34 (12): 1733-1737
    [38] Shamsipur, M., Salimi, A., Golabi, S. M. et al. Electrochemical properties of modified carbon paste electrodes containing some amion derivatives of 9, 10-anthraquinone[J]. Journal of Solide State Electrochemistry, 2001, 5(1):68-73
    [39] Potter, M. C. Electrical effects accompanying the decomposition of organic compounds [J]. Proceedings of the Royal Society of London, Series B, Containing Papers of a Biological Character, 1911, 84 (571): 260
    [40] Rabaey, K., Verstraete, W. Microbial fuel cells: novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23 (6): 291-298
    [41] Min, B., Logan, B. E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental science & technology, 2004, 38 (21): 5809-5814
    [42] Rabaey, K., Clauwaert, P., Aelterman, P., et al. Tubular microbial fuel cells for efficient electricity generation[J]. Environmental science & technology, 2005, 39 (20): 8077-8082
    [43] Liu, H.,Ramnarayanan, R.,Logan, B. E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental science & technology, 2004, 38 (7): 2281-2285
    [44] Liu, H., Logan, B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental science & technology, 2004, 38 (14): 4040-4046
    [45] O'Hayre, R., Cha, S. W.,Colella, W., et al. Fuel cell fundamentals[M]. John Wiley & Sons, New York, 2005
    [46] Larminie, J., Dicks, A., Knovel. Fuel cell systems explained[M]. John Wiley & Sons, New York, 2003
    [47] Gil, G. C., Chang, I. S., Kim, B. H., et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics, 2003, 18(4): 327-334
    [48] Cheng, S.,Liu, H.,Logan, B. E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental science & technology, 2006, 40 (1): 364-369
    [48] Rismani-Yazdi, H., Carver, S. M., Christy, A. D., et al. Cathodic limitations in microbial fuel cells: an overview[J]. Journal of power sources, 2008, 180(2): 683-694
    [49]连静,冯雅丽,李浩然,杜竹玮.微生物燃料电池的研究进展[J].过程工程学报,2006, 6(2):334-338
    [50]宋天顺,叶晔捷,徐源,等.用于废水处理及产能的微生物燃料电池研究进展[J].现代化工, 2008, 28(4): 23-27
    [51] Shukla, A. K., Suresh, P., Berchmans, S., et al. Biological fuel cells and their applications[J]. Curr Sci, 2004, 87 (4): 455-468
    [52] Kim, B. H., Chang, I. S., Gadd, G. M. Challenges in microbial fuel cell development and operation[J]. Applied microbiology and biotechnology, 2007, 76 (3): 485-494
    [53] Bond, D. R., Holmes, D. E., Tender, L. M., et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295 (5554): 483
    [54] Logan, B. E., Hamelers, B., Rozendal, R., et al. Microbial fuel cells: methodology and technology[J]. Environmental science & technology, 2006, 40 (17): 5181-5192
    [55] Shantaram, A., Beyenal, H., Veluchamy, R. R. A., et al. Wireless sensors powered by microbial fuel cells[J]. Environmental science & technology, 2005, 39 (13): 5037-5042
    [56] Lovley, D. R. Bug juice: harvesting electricity with microorganisms[J]. Nature Reviews Microbiology, 2006, 4 (7): 497-508
    [57] Liu, H., Grot, S., Logan, B. E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environmental science & technology, 2005, 39 (11): 4317-4320
    [58] Huissoud, A., Tissot, P. Electrochemical reduction of 2-ethyl-9, 10-anthraquinone (EAQ) and mediated formation of hydrogen peroxide in a two-phase medium Part II: Production of alkaline hydrogen peroxide by the intermediate electroreduction of EAQ in a flow-by porous electrode in two-phase liquid–liquid flow[J]. Journal of applied electrochemistry, 1999, 29 (1): 17-25
    [59] Conway, B. E. Electrochemical supercapacitors: scientific fundamentals and technological applications[M]. Springer Us, 1999
    [60] Feng, C., Chan, P. C. H., Hsing, I. M. Catalyzed microelectrode mediated by polypyrrole/Nafion(R) composite film for microfabricated fuel cell applications[J]. Electrochemistry communications, 2007, 9 (1): 89-93
    [61] Feng, C., Ma, L., Li, F., et al. A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors and Bioelectronics, 25 (6): 1516-1520
    [62] Peng, C., Zhang, S., Jewell, D., et al. Carbon nanotube and conducting polymer composites for supercapacitors[J]. Progress in Natural Science, 2008, 18 (7): 777-788
    [63] Hughes, M., Chen, G. Z., Shaffer, M. S. P., et al. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole[J]. Chemistry of materials, 2002, 14 (4): 1610-1613
    [64] Fan, L. Z., Maier, J. High-performance polypyrrole electrode materials for redox supercapacitors[J]. Electrochemistry communications, 2006, 8 (6): 937-940
    [65] K tz, R., Carlen, M. Principles and applications of electrochemical capacitors[J]. Electrochimica acta, 2000, 45 (15-16): 2483-2498
    [66] Belanger, D., Ren, X., Davey, J., et al. Characterization and long-term performance of polyaniline-based electrochemical capacitors[J]. Journal of the Electrochemical Society, 2000, 147:2923
    [67] Tissot, P., Huissoud, A. Proton effects in the electrochemical behaviour of 2-ethyl-9, 10-anthraquinone in the medium dimethoxyethane-tetrabutylammonium hydroxide with and without oxygen[J]. Electrochimica acta, 1996, 41 (15): 2451-2456
    [68] Shouji, E., Okamoto, Y., Ozaki, F., et al. Electrochemical formation of cation-exchanging polypyrrole films within various hydrophilic–hydrophobic domains[J]. Polymers for Advanced Technologies, 1996, 7 (3): 177-181
    [69] Xu, L., Wang, J., Song, Y., et al. Electrically tunable polypyrrole inverse opals with switchable stopband, conductivity, and wettability[J]. Chemistry of materials, 2008, 20 (11): 3554-3556
    [70] Sadki, S., Schottland, P., Brodie, N., et al. The mechanisms of pyrrole electropolymerization[J]. Chemical Society Reviews, 2000, 29 (5): 283-293
    [71] Zhang, F., Saito, T., Cheng, S., et al. Microbial fuel cell cathodes with poly (dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors[J]. Environmental science & technology, 2010, 44 (4): 1490-1495
    [72] Lang, X., Wan, Q., Feng, C., et al. The role of anthraquinone sulfonate dopants in promoting performance of polypyrrole composites as pseudo-capacitive electrode materials[J]. Synthetic metals, 2010, 160: 1800-1804
    [73] Levine, K., Iroh, J. O. Electrochemical behavior of a composite of polyimide and polypyrrole[J]. Journal of Materials Chemistry, 2001, 11 (9): 2248-2252
    [74] Li, H.,Wang, J.,Chu, Q., et al. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid[J]. Journal of power sources, 2009, 190 (2): 578-586
    [75] Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., et al. Towards practical implementation of bioelectrochemical wastewater treatment[J]. Trends in Biotechnology, 2008, 26 (8): 450-459
    [76] Yuan, S. J., Sheng, G. P.,Li, W. W., et al. Degradation of Organic Pollutants in a Photoelectrocatalytic System Enhanced by a Microbial Fuel Cell[J]. Environmental science & technology, 2010, 195: 3490–3493
    [77] Cheng, S., Liu, H., Logan, B. E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure[J]. Electrochemistry communications, 2006, 8 (3): 489-494
    [78] Yuan, Y., Zhou, S., Zhuang, L. Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells[J]. Journal of power sources, 2010, 195 (11): 3490-3493

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700