经由电解低钛铝原位生成TiB_2粒子及其对Al合金组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,LSM工艺制备铝基复合材料得到广泛应用,已制备出TiB_2增强相均匀细小(<1μm)、性能优良的各类铝合金复合材料,但是该方法存在一个较严重的缺陷,即原位生成的TiB_2增强相常被盐膜包覆,造成TiB_2增强相与基体之间界面的污染,削弱了增强效果。此外,该方法还存在原料利用率低、环境污染等问题。与混合盐反应法制备TiB_2/Al复合材料不同,本文提出了一种向电解低钛铝熔体加Al-B中间合金制备含TiB_2颗粒Al合金的新方法,并对这种方法进行了较系统地研究,研究内容主要包括如下几方面:
     首先,研究了向电解低钛铝熔体加入Al-B中间合金制备含TiB_2颗粒Al合金的可行性,并对反应生成的TiB_2颗粒对材料硬度的影响进行了测试分析。结果表明:这种原位反应法制备工艺是可行的。而且,因在电解低钛铝熔体中,钛主要以原子的形式存在且分布均匀,故原位反应生成的TiB_2粒子颗粒均匀、细小且弥散的分布在熔体中;随含量的增加,TiB_2粒子在铝熔体中的分布仍能保持良好的均匀性,并使Al合金的布氏硬度大幅度提高。
     其次,研究了熔体温度对TiB_2颗粒生成反应的影响。结果表明:从750℃到950℃,随温度的升高,反应生成的TiB_2粒子偏聚程度减弱,TiB_2粒子的尺寸变小、分布均匀性变好,材料的硬度提高;但是,随熔体温度的升高,脆性相Al_3Ti的生成量增多。Al_3Ti相的生成会降低合金材料的性能。因此,熔体温度不宜过高,850℃为该工艺制得TiB_2/Al合金的最佳熔体温度。
     第三,研究了过量Ti对TiB_2/Al合金微观组织的影响,结果表明:过量Ti的存在可能有效的细化α-Al基体,使TiB_2颗粒分布均匀性变好,提高TiB_2/Al合金的硬度。
     第四,研究了Mg对TiB_2/Al合金熔体中TiB_2颗粒团聚的影响。结果表明:Mg元素的加入能有效抑制反应生成TiB_2的团聚,使TiB_2粒子的尺寸变小、分布均匀性变好,提高TiB_2/Al合金的硬度;加入适量的Mg元素,还可改善TiB_2颗粒与铝液界面的润湿性,这对提高材料的力学性能有利。
     最后,利用电解低钛铝、Al-B中间合金等基于上述工艺制备了具有不同TiB_2含量的TiB_2/Al-Si-Mg合金,研究了在Al-Si-Mg合金熔体中TiB_2粒子的原位反应生成及其对合金的微观组织和力学性能的影响。结果表明:此原位反应法制备含TiB_2粒子应用合金是基本可行的,随TiB_2粒子含量的增加,合金的强度有所下降,但塑性却大幅提高,合金的综合力学性能有所改善。
In recent years , LSM technique has extensively been used to prepare aluminum-matrix composites, and many different kinds of aluminum-matrix composites with well-distributed fine TiB_2 particles (<1μm) and good mechanical properties have been produced using this technique. However, there are some defects in the technique. For example, the TiB_2 particles formed are easily wrapped by the salt film, which probably contaminate the interfaces between the TiB_2 particles and aluminum-matrix and impaire the reinforcing effect of the TiB_2 particles. Besides, LSM technique has yet the disadvantages of low utilization ratio of raw materials and polluting environment. In this paper, a new method of in-situ formation of TiB_2 particle by adding Al-B master alloy to electrolytic low-titanium aluminum (ELTA) melt to prepare TiB_2/Al alloy has been put forward, and some studies on it have been done. The main studying results are summarized as follows:
     Firstly, the feasibility of adding Al-B master alloy to the ELTA melt to prepare TiB_2/Al alloy was investigated, and the HB hardness of the prepared TiB_2/Al alloys containing different content of the TiB_2 particle was also measured. The results show that the new method is feasible. And the TiB_2 particles formated in the melt are very small and evenly present in the melt because of even distribution of the titanium atom in the ELTA. With the increase of the content of the TiB_2 particle in the alloy, the HB hardness of the TiB_2 /Al alloy is obviously increased.
     Secondly, the effect of the temperature on the formation of TiB_2 particle in the melt was investigated. The results indicate that agglomeration of the TiB_2 particle formed is weakened with the increase of the melt temperature from 750℃to 950℃. As a result, the TiB_2 particles becomes much finer and are distributed in the melt more uniformly, The HB hardness of the TiB_2/Al alloy is also increased. However, more Al_3Ti particles will be formed at high melt temperature, which will decrease the mechanical properties of the alloy. So the melt temperature should not be too high. The optimal temperature of preparing the TiB_2/Al alloy using the new method is about 850℃.
     Thirdly, the effect of excessive Ti on the microstructure of the TiB_2/Al alloy was investigated. The results show that excessive Ti may have a certain refinement effect onα-Al in the alloy. The TiB_2 particles formed are yet distributed more uniformly in the alloy due to the fineα-Al grain of the alloy. Also, the HB hardness of the alloy is increased to some extent.
     Fourthly, the effect of Mg element on the agglomeration of the TiB_2 particle formed in the TiB_2/Al alloy melt were studied. The results prove that adding Mg to the melt can decrease the agglomeration of the TiB_2 particles, so the TiB_2 particles become much finer and more well-distributed in the melt. The HB hardness of the Al alloy is also increased at the same time. Moreover, the Mg element can yet improve the wettability between the TiB_2 particle and Al matrix, which is beneficial to the mechanical properties of the alloy.
     Lastly, the Al-Si-Mg alloys with different content of the TiB_2 particle were prepared using the ELTA, Al-B master alloy, Si and Mg etc. And the in-situ formation of the TiB_2 particle in the Al-Si-Mg alloy melt and the effect of the particle on the microstructure and mechanical properties of such alloy were investigated. The results have shown that preparing applied alloy with TiB_2 particles using the new method is basically feasible. With the increase of the content of the TiB_2 particle formed, the strength of the Al-Si-Mg alloy decreases, but the plasticity obviously increases. The comprehensive mechanical property of the alloy is improved.
引文
[1]马强,张敏刚,柴跃生.原位TiB_2/Al复合材料制备工艺研究[J].太原科技大学学报,2006,26(1):6-10.
    [2]Yongkang Le,Dong Chen,Naiheng Ma,et al.Microstructure and properties of in situ A356/TiB_2 composite[J].Transactions of Nonferrous Metals Society of China,2006,16:1366-1369.
    [3]K.L.Tee,L.Lv,M.O.Lai.Improvement in mechanical properties of in-situ composite by incorporation of carbon[J].Materials Science and Engineering A,2003,339:227-231.
    [4]D.G.Zhao,X.F.Liu,Y.C.Pan,et al.Microstructure and mechanical properties of in situ synthesized(TiB2+Al_2O_3)/Al-Cu composites[J].Journal of Materials Technology,2007,189:237-241.
    [5]史玉娟.原位反应制备Al_2O_3颗粒增强铝基复合材料的研究[D].东北大学硕士毕业论文,2005.
    [6]朱和国,吴申庆.自生铝基复合材料的制备、性能及生成机理[J].材料导报,1998.12(4):61-64.
    [7]李忠华.(TiB_2+TiAl_3)/AlSi_6Cu_4复合材料的研究[J].铸造,2001,50(12):734-736.
    [8]付雪莹,张洪,席慧智,等.增强颗粒在铝基复合材料中的作用[J].材料导报,2004.4(18):290-292.
    [9]S.C.Tjong,S.Q.Wu,H.G.Zhu.Wear behavior of in situ TiB_(2·)Al_2O_3/Al and TiB_(2·)Al_2O_3/Al-Cu composites[J].Composites Science and Technology,1995,59:1341.
    [10]苏雅璇.原位合成TiB_2/ZL109复合材料的性能研究[D].上海交通大学硕士毕业论文,2006.
    [11]K.L.Tee,L.Lv,M.O.Lai.Synthesis of in situ Al-TiB_2 composites using stir cast route[J].Composite Structures,1999,47:589-593.
    [12]陈晓.原位自生颗粒增强镁基复合材料的研究[D].中南大学硕士毕业论文, 2005.
    [13]张大童,李元元,龙雁。铝基复合材料研究进展[J].轻合金加工技术,2000,28(1):5-10.
    [14]Hongzhan Yi,Naiheng Ma,Xianfeng Li,et al.High-temperature mechanics properties of in situ TiB_(2p) reinforced Al-Si alloy composites[J].Materials Science and Engineering A,2006,419:12-17.
    [15]龙祥愿,章爱生.原位反应生成纳米颗粒增强铝基复合材料的研究近况[J].热加工工艺,2006,35(9):73-85.
    [16]刘江,彭晓东,刘相果,等.原位合成铝基复合材料的研究现状[J].重庆大学学报.2003,10(26):1-5.
    [17]P.Sahoo,K.J.Koczak.Elevated temperature response of in situ TiC reforced aluminium copper alloys[J].Mater.Sci.Eng.A,1990,144(1):25-30.
    [18]M.K.Aghajanican.Properties and microstructures of lanxide Al_O_3-Al ceramic composite materials[J].J.Mater.Sci,1989,24(2):658-670.
    [19]严有为.反应铸造工艺及原位颗粒增强金属基复合材料[J].铸造,1997,46(11):1-3.
    [20]廖恒成.铝原位合成复合材料的反应模式与机理[J].铸造,1999,48(1):43-47.
    [21]肖代红,宋呅,陈康华.原位合成钛基复合材料的研究现状与展望[J].材料导报,2007,21(4):65-68.
    [22]A.G.Merzhanov.Self-propagating high-temperature synthesis:Twenty years of search and findings,Combustion and Plasma Synthesis of High-temperature materials[J].New York,1990:1-53.
    [23]J.J.Moore,H.J.Feng.Combustion synthesis of advanced materials[J].Materials Science,1995,39(4-5):243-273.
    [24]王汉立,黄为秀.自蔓延燃烧法(SHS)材料合成技术[J].湖北第二师范学院,2008.25(2):74-77.
    [25]T.Nukmi,M.C.Flemings.In-Situ synthesis of TiC particles reinforced aluminium matrix composites[J].Metall.Trans,1995,A 26(7):1884-1877.
    [26]Minhwa Huang,Xianfeng Li,Hongzhan Yi,et al.Effect of in situ TiB_2 particle reinforcement on the creep resistance of hypoeutectic Al-12Si alloy[J].Journal of Alloys and Compounds,2005,(389):275-280.
    [27]S.C.Tjong,Z.Y.Ma.Microstructural and mechanical characteristics of in situ metal matrix composites[J].Materials Science and Engineering,2000,29:49-113.
    [28]J.M.Brupbacher,L.Christodoulou,D.C.Nagle.Process for forming metal ceramic composites[J].US Patent,1987,4:348-710.
    [29]J.M.Brupbacher,L.Christodoulou,D.C.Nagle.Rapid solidification of metal-second phase composites[J].US Patent,1989,4:836-982.
    [30]李英,韩雅芳,夏洋,等.Al/TiB_2复合材料制备工艺研究[J].高技术通讯,1996,11:37-41.
    [31]王慧远.原位颗粒增强镁基复合材料的制备[D].吉林大学硕士毕业论文,2004.
    [32]王桂松,耿林,王德尊,等.反应热压(Al_2O_3+TiB_2+Al_3Ti)/Al复合材料的组织形成机制[J].中国有色金属学报,2004,(2):229-232.
    [33]S.C.Tjong,G.S.Wang,L.Geng.Cyclic deformation behavior of in-situ aluminum matrix composites of the system Al- Al_3Ti- TiB_2 - Al_2O_3[J].Composites Science and Technology,2004,64:1971-1980.
    [34]J.S.Benjamin.Dispersion strengthened superalloys by mechanical alloying[J]Metallurgical Transactions,1970,1:2943-2951.
    [35]颜冲,肖汉宁,杨巧勤,等.碳相含量对C-SiC-TiB_2复合材料结构和力学性能的影响[J].陶瓷研究,1999,14(3):4-8.
    [36]曾松岩.一种新型的金属基复合材料的方法-接触反应法[J].宇航材料工艺,1995,(5):27-30.
    [37]周绪明.原位自生TiB_2/Al复合材料制备和性能的研究[D].广西大学硕士毕业论文,2005.
    [38]龙祥愿,章爱生.原位反应生成纳米TiB_2颗粒增强铝基复合材料的研究近况[J].铸造,热加工工艺,2006,35(9):73-85.
    [39]P.Bachmann.,D.Leers.Diamond and Related Mater[M].1999,1:1-2.
    [40]B.S.Murty,S.A.Kori and M.Chakboraty.Grain refinement of aluminum and its alloys by heterogeneous nucleation and alloying[J].International Materials Reviews,2002,47(1):3-29.
    [41]赵芳欣,李德成,张瑛洁,等.LSM法制备TiB_2/Al-7Si复合材料[J].特种铸造及有色合金,1999,5(5):1-5.
    [42]张亦杰,江盛玲,马乃恒,等.原位自生A356/复合材料的组织与性能[J].上海交通大学学报,2007,41(2):328-331.
    [43]汪涛,鲁玉祥,祝美丽,等.颗粒增强金属基原位复合材料的制备技术回顾与展望[J].宇航材料工艺,2000,(1):12-18.
    [44]Chunlei Wang,Mingxing Wang,Zhiyong Liu,et al.The grain refining action of fine TiB_2 particles in the electrolytic low-titanium aluminum with Al-4B addition[J].Materials Science and Engineering A,2006,427(1-2):148-153.
    [45]B.S.Murty,S.A.Kori and M.C.hakboraty.Grain refinement of aluminum and its alloys by heterogeneous nucleation and alloying[J].International Materials Reviews,2002,47(1):3-29.
    [46]乐永康,张亦杰,陈东,等.原位合成A356/TiB_2复合材料的微观组织及力学行为[J].稀有金属材料及工程,2006,10(35):1635-1638.
    [47]W.B.Pearson,A Handbook of Lattice Spacings and Structures of Metals and Alloys[M].Oxford:Pergamon Press,1958:222.
    [48]阴瑜娟,赵玉厚,夏永喜.原位生成和增强铝基复合材料的研究[J].铸造技术,2007.28(3):344-346.
    [49]赵瑞峰.原位反应制备TiB_2/Al-7Si复合材料微观组织及力学性能研究[D].郑州大学硕士毕业论文,2008.
    [50]赵芳欣,张瑛洁,尹绍奎,等.原位生成铸造TiB_2/Al-Si复合材料的微观特征及弹性模量[J].铸造,1998,12:13-16.
    [51]J.P.Tu,N.Y.Wang,Y.Z.Yang,etal.Preparation and properties of TiB_2nanoparticle reinforced copper matrix composites by in situ processing[J]Material Letters,2002,52:448-452.
    [52]L.Lv,M.O.Lai,Y.Su,etal.In situ TiB_2 reinforced Al alloys composites[J].Scripta Materialia,2001,45:1017-1023.
    [53]J.V.Wood,P.Davies,J.L.F.Kellite.Properties of reactively cast aluminium-TiB_2alloys[J].Materials Science and Technology,1993,9:833-840.
    [54]杨平.原位合成铝基复合材料凝固组织中TiB_2粒子的特征[J].中国有色金属学报,1999,9(4):753-758.
    [55]闫卫平,荣福杰,宋国金,等.混合盐法制备TiB_2/Al复合材料的研究现状[J].铸造,2006,55(11):1114-1117.
    [56]乐永康,陈东,张亦杰,等.原位TiB_2颗粒增强铝基复合材料及其力学性能[J].特种铸造及有色合金,2006,26(8):518-520.
    [57]王鹏,马乃恒,李险峰,等.原位合成铝基复合材料中颗粒沉降的研究[J].特种铸造及有色合金,2004(2):30-32.
    [58]Yijie Zhang,Naiheng Ma,Haowei Wang,et al.Effect of Ti and Mg on the damping behavior of in situ aluminum composites[J].Materials Letters,2005(59):3775-3778.
    [59]Yijie Zhang,Naiheng Ma,Haowei Wang,et al.Effect of Ti on the damping behavior of aluminum composite reinforced with in situ TiB_2 particulate[J].Scripta Materialia,2005,(53):1171-1174.
    [60]Zhuxian Qiu,Mingjie Zhang,Yaxin Yu,et al.Formation of aluminium-titanium alloys by electrolysis and by thermal reduction of titania in cryolite-alumina melts[J].Aluminium,1988,64(6):606-609.
    [61]范广新,王明星,刘志勇,等.电解加钛和熔配加钛对工业纯铝的晶粒细化作用的研究[J].中国有色金属学报,2004,14(2):249-254.
    [62]张作贵,刘相法,边秀房.TiB_2分布形态对AlTi5B合金细化特性的影响[J].特种铸造及有色合金,1999(5):12-13.
    [63]Xizhen Li,Xiufang Bian,Xiujun Li.AB initio studies of TiB_2 and AlB_2 in the Al-Ti-B alloy[J].Acta Metallurgica Sinica,2001,37(3):235-238.
    [64]尹彩流,曾建民,孙仙奇.DSC在自生TiB_2颗粒增强铝基复合材料制备中的应用[J].机械工程材料,2004,28(12):29-32.
    [65]杨滨,王锋,崔华,等.搅拌对熔铸-原位反应TiB_2/Al和TiC/Al复合材料微观组织的影响[J].航空材料学报,1999,19(4):16-21.
    [66]叶恒强.两相界面几何错配的高分辨象分析[J].电子显微学报,1993,12(2):145-145.
    [67]赵大为,米国发.铸造法制备颗粒增强铝基复合材料的研究进展[J].航天制造技术,2008,10(5):26-30.
    [68]张树瑜,柴跃生.原位TiB_2颗粒增强铝基复合材料形核机制及转变动力学[J].材料导报,2002,8:68-70.
    [69]何永生,李玉胜,赵芳欣,等.内生TiB_2颗粒增强TiB_2/Al-7%Si-0.5%Mg复合材料的组织和力学性能[J].铸造,2000,49(7):396-397.
    [70]韩延峰,刘相法,边秀房.原位生成TiB_2/Al-Si-Mg复合材料的组织与性能[J].中国有色金属学报,2001,11(5):840-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700