铝诱导柱花草和黑麦根系分泌有机酸及其调控机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然作为重要的豆科牧草柱花草已广泛种植于酸性土壤地区,但是它对铝的耐性及其抵御机制尚未见报告。本研究发现,5 μmol L~(-1)AlCl_3使紫花苜蓿根长抑制80.0%,铝处理后的根尖被铬天青(ER)明显染色,而柱花草经30 μmol L~(-1)的AlCl_3处理后方观察到根尖明显染色的现象,根的伸长受抑制68.0%,表明柱花草抵御铝毒能力较强。采用高效液相色谱法对根系分泌物的分析发现,铝诱导柱花草根系分泌柠檬酸,并且其分泌量随铝处理浓度(0、10、20、50 μmol L~(-1))和时间(6、12、18、24 h)的增加而增加,表明铝诱导根系分泌柠檬酸是柱花草抵御铝毒害的重要机制。
     另一方面,虽然近年来越来越多研究报告在铝胁迫下根系分泌有机酸是一些耐铝植物抵御铝毒的主要机制,但是,至今人们对铝诱导根系分泌有机酸的机制的认识还非常有限。本研究以能够分泌柠檬酸与苹果酸的黑麦为对象,探讨铝诱导根系分泌有机酸的调控因子。在铝胁迫下黑麦根系分泌柠檬酸与苹果酸受阴离子通道抑制剂尼氟灭酸(NA)、苯甲酰甲醛(PG)的明显抑制;5 μmol L~(-1)的水杨酸(SA)显著促进铝诱导的柠檬酸的分泌而抑制苹果酸的分泌;Ca~(2+)通道抑制剂La~(3+)、异搏定(VP)也显著抑制有机酸的分泌,而
    
    广西大学硕士学位论文
    r通道抑制剂CsC12、四乙基氮化按(TEACI)对有机酸的分泌无
    显著抑制作用;250、500协molL一’的eaZ+专一性鳌合剂EG认显著
    抑制柠檬酸的分泌,而对苹果酸分泌无显著影响。这些结果暗示,
    阴离子通道参与铝诱导的黑麦根系分泌有机酸,SA和Ca2+可能介
    导此分泌过程,而K+对有机酸的分泌无直接调控作用。
As an important forage legume, Stylo (Stylosanthes spp) has been widely planted in acid soil areas. However, there is still no study on aluminum-tolerance of stylo and its tolerance mechanism at present. The present thesis showed that root elongation of alfalfa (Medicago sativa L.) during a 24-h period was inhibited by 80% by the exposure to 5 umol L-1 Al and its roots was obviously stained by eriochrome cyanine R (ER); however, the roots of stylo need to be exposure to 30umol L-1 Al in order to get obviously stained with its root elongation was inhibited by 68%, which shows, for stylo, its ability of tolerance to aluminum is strong. According to analysis of root exudates by HPLC, aluminum induced roots of stylo to secret citrate and its secretion increased with Al concentration treated (0, 10, 20, 50 umol L-1) and the period of exposure to Al (6, 12, 18, 24 h), which indicated that Al-induced secretion of citrate is an important mechanism for stylo to resist the toxicity of aluminum.
    
    
    On the other hand, although in recent years more and more researches concluded that Al-induced secretion of organic acids from roots is a main mechanism for some Al-tolerance plants, so far in field of study the knowledge of the mechanism responsible for Al-induced secretion of organic acids is still very limited. In present study, taking rye (Secale cereale L.) which can secreted citrate and malate as study object, I explored the regulation of organic acid secretion from roots . Secretion of citrate and malate was obviously inhibited by anion channel inhibitors such as niflumic acid and phenlglyoxal. Five umol L-1 salicylic acid (SA) evidently promoted Al-induced secretion of citrate but inhibited secretion of malate. Ca2+ channel inhibitors (La3+, verapamil), greatly inhibited the secretion, while K+ channel inhibitors (CsCl2, tetraethylammonium chloride) has no obviously inhibit to the secretion. As a special chelator of Ca2+, EGTA of 250, 500umol L-1 inhibited secretion of citrate clearly, while had no d
    istinct inhibition to malate secretion. All the above experimental evidence shows that anion channel involve in Al-induced secretion of organic acid from rye roots. Salicylic acid and Ca2+ seem to involve in the process, while K+ has no direct regulation to the secretion of organic acids.
引文
[1]赵和涛.铝元素与茶树生育和品质的关系.热带作物科技,1996,(3):33~35
    [2]Hideaki Matsumoto. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology, 2000, 200:1~46.
    [3]Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol,1995,46:237~260.
    [4]Ma JF. Role of organic acid in detoxification of aluminum in higher plants. Plant Cell Physiol, 2000, 41: 383~390.
    [5]Delhaize E, Ryan PR. Aluminum toxicity and tolerance in plants. Plant Pysiol, 1995, 107:315~332.
    [6]Foy CD. The physiology of plant adaptation to mineral stress. Iowa State J.Res., 1983, 57: 355~392.
    [7]Wallace SU, Henning SJ, Anderson IC. Elongation, Al concentration and hematoxylin staining of aluminum-treated wheat roots. Iowa State J.Res.,1981,57:97~106.
    [8]Bennet RJ, Breen CM. The aluminum signal: new dimensions to mechanisms of aluminum tolerance. Plant Siol, 1991, 134:153~166.
    [9]Ryan PR, Ditomaso JM, Kochian LV. Aluminum toxicity in roots: an investigation of spatial sensitivity and to role of the root cap. J. Experimental Botany, 1993, 44: 437~446.
    [10]Sung Ju Ahn, Sivaguru M., Osawa H., et al., Aluminum inhibits the H~+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol, 2001,126:1381~1390.
    [11]Taylor GJ. Current views of the aluminum stress response: the physiological basis of tolerance. Curr. Top. Plant Biochem. Physiol., 1991,10:57~93.
    [12]Hue NV, Craddock GR,Adams F. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Am J., 1986,50:28~34.
    [13]Ma JF, Hiradate S, Nomoto K, et al. Internal detoxification mechanism of Al in hydrangea (identification of Al form in the leaves). Plant Physiol, 1997, 113:
    
    1033~1039.
    [14]Li XF, Ma JF, Matsumoto H. Aluminum-induced secretion of both citrate and malate in rye. Plant and Soil, 2002, 242: 235~243.
    [15]Ma JF, Zheng SJ, Hiradate S, et al. Detoxifying aluminum with buckwheat. Nature, 1997, 39: 569~570.
    [16]Ma JF, Hiradate S, Matsumoto H. High Aluminum Resistance in Buckwheat. Ⅱ. Oxalic Acid Detoxifies Aluminum Internally. Plant Physiol, 1998,117:753~759.
    [17]Zheng SJ, Ma JF, Matsumoto H. High aluminum resistance in buckwheat: Ⅰ. Al-indueed specific secretion of oxalic acid from root tips. Plant Physiol, 1998, 117:745~751.
    [18]Foy CD, Chancy RL, White MC. The physiology of metal toxicity in plants. Annu. Rev Plant Physiol, 1978,29:511~566.
    [19]黄邦全,白景华,薛小桥.植物铝毒害及遗传育种研究进展.植物学通报.2001,18:385~395.
    [20]严小龙,张福锁.植物营养营养遗传学.北京:中国农业出版社,1996.
    [21]杨茂,严小龙。柱花草在酸性红壤中的磷吸收效率及其形态和生理系生化特性初探。草地学报,1998,6:212~220。
    [22]Cancado GMA, Loguercio LL, Martins PR. Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor Appl Genet. 1999,99:747~754.
    [23]Ma JF, Zhen SJ, Li XF. A rapid hydroponic screening for aluminium tolerance in barley. Plant and Soil. 1997, 191: 133-137.
    [24]Llugany M, Massot N, Wissemeier Ah, et al. Aluminum tolerance in maize cultivars as assessed by callose production and root elongation. Z Pflanzenernhr Bodenk, 1994,157:447~451.
    [25]Sasaki M, Yamamoto Y, Matsumoto H. Lignin deposition induced by aluminum in wheat(Triticum aestivum) roots. Physio Plant, 1996,96:193~198.
    [26]Howeler RH. Identifying plants adaptable to low pH conditions. In RJ Wright, VC Baligar, RP Murrmann, eds, Plant-Soil Interactions at Low pH. Kluwer
    
    Academic Publishers, Dorrecht, The Netherlands, 1991, pp 885~904.
    [27]Miyasaka S, Quta JG, Hiradate S, et al. Mechanism of aluminum tolerance in snapbeans. Plant Physiol, 1991,96: 737~743.
    [28]Delhaize E, Ryan PR, Randall PJ. Aluminum tolerance in wheat (Triticum aestivum L.): Ⅱ .Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol, 1993,103:695~702.
    [29]Ryan PR, Delhaize E, Randall PJ. Malate effiux from root apices and tolerance to aluminum are highly correlated in wheat. Aust. J. plant physiol, 1995, 22: 531~536.
    [30]Pellet DM, Papernik LA, Kochian LV. Multiple aluminum resistance mechanisms in wheat: the roles of root apical phosphate and malate exudation. Plant Physiol, 1996,112:591~597.
    [31]Pellet DM, Grunes DL, Kochian LV. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta, 1995, 196:788~795.
    [32]Ma JF, Zheng SJ, Matsumoto H. Specific secretion of citric acid induced by Al stress in Cassia tato L. Plant cell Physiol, 1997, 38:1019~1025.
    [33]Yang ZM, Nian H, Sivaguru M, et al. Characterization of aluminum-induced citrate secretion in aluminum-tolerance soybean(Glycine max) plants. Physiol Plant,2001,113:64~71.
    [34]Ma Z, Miyasaka SC. Oxalate exudation as a mechanism of aluminum tolerance in taro. Plant Physiol, 1998 118:861~865.
    [35]Ma JF, Taketa S, Yang ZM. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in Triticale. Plant Physiol, 2000,122:687~694.
    [36]de la Fuente JM, Ramirez-Rodrigues V, Cabreta-Ponce JL, et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science. 1997,276: 1566~1568.
    [37]Mesfin T, Stephen JT, Deborah LA, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhance organic acid synthesis and confers
    
    tolerance to aluminum. Plant Physiol. 2001,127:1836~1844.
    [38]国家统计局,中国统计年鉴1998。北京:中国统计出版社,1998:386~389
    [39]易克贤.我国热带牧草主业化的发展现状、前景与对策.热带农业科学,2001,92:30~34.
    [40]陈三有.柱花草生产利用技术现状及展望.中国草地,2000,4:64~67.
    [41]白静仁.我国苜蓿品种资源的发展及利用.中国草地,1990(4).
    [42]Li XF, Ma JF, Matsumoto H. Pattern of Al-induced secretion of organic acids differs between rye and wheat. Plant Physiol. 2000, 123:1537~1543.
    [43]Ryan PR, Delhaize E, Randall PJ. Characterisation of Al-stimulated effiux of malate from the apices of Al-tolerant wheat roots. Planta, 1995, 196:103~110.
    [44]Zao ZQ, Ma JF, Sato K et al. Diffemtial Al resistance and citrate seretion in barly (Hordeum vulgare L.). Planta. 2003, 217:794-800
    [45]Hue NV, Craddock GR, Adams F. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci. Am. J. 1986, 50: 28~34.
    [46]Aniol A, Gustafson JP. Chromosome location of genes controlling aluminum tolerance in wheat, rye and tricale. Can J Genet Cytol. 1984,26:701~705.
    [47]Ma JF, Ryan PR, Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 2001, 6: 273~278.
    [48]Schroeder JI. Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant-soil interactions. Plant Mol. Biol. 1995, 28: 353~361.
    [49]Hélenfè Barbier-Brygoo, Vinauger M, Colcombet J,et al. Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biochimica et Biophysica Acta, 2000,1465:199~218.
    [50]Schroeder JI. Anion channels as centrals mechanisms for signal transduction in guard cell and putative functions in roots for plant-soil interactions. Plant Mol Boil. 1995,28:353~361.
    [51]Keller BU, Hedrich R, Raschke K. Volage-dependent anion channel in the plasma membrane of guard cells. Nature. 1989, 341: 450~453.
    
    
    [52]Schroeder JI, Keller B. Two types of anion channel currents in guard cells with distinct voltage rgulation. Proc Natl Acad Sci USA. 1992, 89:5025~5029.
    [53]Cosgrove D, Hedrich P. Strech-zctivated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia fata L. Planta. 1991,186:143~153.
    [54]Thomine S, Zimmermann S, Guern J, et al. ATP-dependent regulation of an anion ahannel at the plasma membrane of protoplasts from epidermal cells of Arabidopsis hypocotyls. Plant cell. 1995, 7: 2091~2100.
    [55]Cho MH, Spalding EP. An anion channel in Arabidopsis hypocotyls activated by blue light. Proc Natl Acad Sci USA. 1996, 93: 8134~8138.
    [56]Skerrett M, Tyerman SD,. A channel that allows inwardly directed fluxes of anions in protoplasts derived from wheat roots. Planta, 1994,192:295~305.
    [57]Jones DL. Organic acids in the rhizosphere: a critical review. Plant Soil. 1998, 205: 25~44.
    [58]Ryan PR, Skerrett M, Findlay GP, et al. Aluminum activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci USA. 1997, 94: 6547~6552.
    [59]Zhang W, Ryan PR, Tyerman SD. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol. 2001,125:1459~1472.
    [60]Pieros M, Kochian LV. A patch clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize: identification and characterization of Al~(3+)-induced anion channels. Plant Physiol. 2001,125:292~305.
    [61]Kollmeier M, Dietrich P, Bauer CS, et al. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex: a comparison between aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol. 2001, 126:397~410.
    [62]Osawa H, Matsumoto H. Aluminum triggers malate-independent potassium release via ion channels from the root apex in wheat. Planta. 2002,215: 405~412.
    [63]Malamy J, Klessing DF. Salicylic acid and plant disease resistance. Plant J.
    
    1992, 2:643~654.
    [64]Dat JF, Christine H, Foyer CH, et al. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 1998,118:1455~1461.
    [65]Janda T, Szalai G, Tari I, et al. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) Plant. Planta. 1999, 208: 175~180.
    [66]Borsani O, Valpuesta V, Botlla MA. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 2001,126:1024~1030.
    [67]Sharma YK, León J, Raskin I, et al. Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and'induced resistance. Proc Nalt Acad Sci USA. 1996, 93: 5088~5104.
    [68]Yalpani N, Enyedi Aj, León J, et al. Ultraviolet light and ozone stimulate accumulation of salicylic acid and pathogenesis-related proteins and virus resistance in tobacco. Planta. 1994,193:373~374.
    [69]Yang ZM, Wang J, Wang SH, et al. Salicylic acid-induced aluminum tolerance by modulation of efflux from roots of Cassia tora L. Planta, 2003, 217:168~174.
    [70]陈由强,叶冰莹,高一平,陈文列.低温胁迫下枇杷幼叶细胞内Ca~(2+)水平及细胞超微结构变化的研究.武汉植物学研究,2000,18(2):138~142
    [71]孙大业,郭艳林.细胞信号系统,科学出版社。1993,北京
    [72]Lindberg S, Strid H. Aluminum induces rapid changes in cytosolic pH and free cacium and potassium concentrations in root protoplasts of wheat (Triticum aestivum). Physiol Plant. 1997, 99: 405~444.
    [73]Zhang Wh, Rengel Z. Aluminum induces an increase in cytoplasmic calcium in intact wheat root apical cells. Aust Plant Physiol. 1999,26:401~409.
    [74]Gelli A, Higgins VJ, Blumwald E. Activation of plant plamsamenbrane
    
    Ca-permeable channels by race-specific fugal elicition. Plant Physiol. 1997, 113:269~279.
    [75]Santa-María GE, Danna CH, CziBner C. High-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways. Plant physiol. 2000, 123: 297~306.
    [76]Pantoja O, Smith JAC. Sensitivity of the plant vacuolar malate channel to pH, Ca~(2+) and anion-channel blockers. J. Membrane Biol. 2002, 186:31~42.
    [77]Kozlowski RZ. Chloride channels. Isis Medical Media Ltd., Oxford. 1999.
    [78]Marten I, Zeilinger C, Redhead C, et al. Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. EMBO J. 1992, 11 : 3569~3575.
    [79]Schroeder JI, Hagiwara S. Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature. 1989, 338: 427~430.
    [80]Frachisse JM, Thomine S, Colcombet J, et al. Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyls cells. Plant Physiol. 1999, 121: 253~261.
    [81]Thomine S, Guern J, Barbier-Brygoo H. Voltage-dependent anion channel of Arabidopsis hypocotyls: nucleotide regulation and pharmacological properties. J Membr Biol. 1997, 159: 71~82.
    [82]Hélenè Barbier-Brygoo, Frachisse JM, Colcombet J, et al. Anion channels and hormone signaling in plant cells. Plant Physiol. Biochem. 1999, 37:381~392.
    [83]Yang ZM, Ma JF. Aluminum regulation of citrate metabolism and possible activation of anion transporter for Al-induced citrate efflux in the roots of cassia tora L. Physiol Plant. 2003, in press.
    [84]施卫明,王校常,曹志洪.植物钾离子通道研究现状.植物生理学通讯.1998,34:219~224.
    [85]Liu K, Luan S. Internal Aluminum Block of Plant Inward K Channels. The Plant Cell. 2001.13: 1453-1465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700