抗酸铝种质资源的筛选及细胞质膜H~+-ATPase在植物耐铝机制中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝毒害是酸性土壤植物生长主要的限制因子。浙江省分布着大面积的酸性土壤,且酸化有加重的趋势。本文前一部分是通过对浙江省范围内的土壤pH值数据的调查,收集浙江省内主要酸性土壤地区的地方性农作物种质资源共187份。以相对根伸长为指标,对各个品种的耐铝性进行评估和筛选。在赤豆、玉米、荞麦等物种中鉴定获得了具有较强铝耐性的种质资源;并在小麦、赤豆和荞麦中鉴定得到了在一定浓度铝处理下相对根伸长差异超过30%的不同品种,说明在地方性品种中可以筛选得到一些更具抗铝性的抗性品种。这为今后的抗铝生理机制及抗性基因资源的保护、挖掘与利用提供了了丰富的研究材料。
     铝诱导根系草酸分泌是一个重要的铝外部排斥机制,但对其分泌过程是否与细胞质膜上的质子泵有关仍有争议。本研究后半部分以铝诱导根系能快速分泌草酸的番茄为材料,从生理和分子两个层次深入探讨了草酸分泌与细胞质膜H+-ATPase活性间的关系。我们发现不同处理时间和不同铝处理浓度下,铝诱导的草酸分泌与细胞质膜质子H+-ATPase的活性不相关。外加细胞质膜H+-ATPase活性抑制剂VA不影响草酸的分泌,但外加阴离子通道抑制剂PG明显抑制了草酸的分泌,但不影响H+-ATPase活性;La处理提高了细胞质膜H+-ATPase活性,但并不诱导草酸的分泌,两个耐铝性不同的番茄品种铝胁迫下草酸分泌量不同,但与质膜H+-ATPase活性并无对应关系,上述几个方面的结果充分表明番茄铝诱导的草酸分泌和铝对番茄细胞质膜H+-ATPase酶活性的调节是相互独立的过程。此外,对于细胞质膜H+-ATPase的三个基因的表达情况研究初步揭示了铝对细胞质膜H+-ATP酶表达水平上的调控。
Aluminum is the major restriction factor of plant in acid soils. Most of the soil are acid soil in Zhejiang Province, and soil acidification become more and more severe. In the first part of this research we collect 187 local crop cultivars of various species which are cultured in low soil pH areas, according to the data of soil pH in Zhengjiang. In order to evaluate the Al tolerant character of these cultivars, the measurements of relative root elongation (RRE) was taken. We identified relatively more tolerant cultivars in Azuki bean, maize and wheat etc. Some cultivars of wheat, azuki bean and buckwheat were interestingly found to have great variance (>30%) of RRE in certain aluminum concentration. This indicates it is possible to find some crop resources with high aluminum resistance in local culticars. A library of the local crop cultivars was established in this research and it will provide ideal materials for future studies and saving gene recourses.
     Al-induced oxalate secretion is one of the major Al resistance mechanisms, but it is still controversial that whether plasma membrane H+-ATPase is in volved in the process. The second part of this paper focus on tomato, which can rapidly secrete oxalate in response to Al. the plasma membrane. We studied the oxalate secretion, and the H+-ATPase activity pattern under Al treatment. The correlation between PM H+-ATPase activity and Al-induced oxalate secretion was found to be not significant according to time and dose dependent Al treatment. Exposure to the PM H+-ATPase inhibitor VA do not influence oxalate secretion, but PG which reduced the Al-induced oxalate secretion, have no effect on PM H+-ATPase activity. Exposure to La confirms that Al is more likely to enhance oxalate secretion rather than high PM H+-ATPase activity. A comparative study on Hezuo903 (relatively sensitive) and Micro-tom (relatively toleran) provide direct evidence to show only Al-induced oxalate secretion but not PM H+-ATPase is correlated with Al tolerant variance between two cultivars. And at last a RT-PCR results is given and shows the expression pattern of 3 PM H+-ATPase gene regulates by Al in transcriptional level.
引文
1. Ahn S J, Sivaguru M, Osawa H, Chung G C, Matsumoto H. Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots[J]. Plant Physiology.2001.126:1381-1390
    2. AhnS J Rengel Z, Matsumoto H. Aluminum-Induced plasma membrane Surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum[J]. New Phytologist.2004.162:71-79.
    3. Arango M, Gevaudant F, Oufattole M. The plasmamembrane proton pump H+-ATPase: the significance of gene subfamilies[J]. Planta.2003.216:355-365
    4. Akeson M A,Munns D N.Burao R G. Absorption of Al3+to phosphatidylcholine vesicles [J]. Biochimica et Biophysia Acta.1989.986:33-40
    5. Bennet R J and Breen C M. The aluminum signal:New dimensions to mechanisms of aluminum tolerance[J]. Plant Soil.1991.134:153-166
    6. Blamey F P C. Asher C J, Kerven G L and Edwards D G. Factors affecting aluminium sorption by calcium pectate[J]. Plant and Soil.1993.149:87-94
    7. Bohrer D, Nascimento P C, Mendonca J K, Polli V G, Carvalho L M. Interaction of aluminum ions with some amino acids present in human blood[J]. Amino Acid.2004.27: 75-83
    8. Clark R B. Effect of aluminum on growth and mineral elements of Al-tolerant and Al-intolerant corm. Plant soil.1997.47:653-662
    9. Clarkson D T.Interaction between aluminum and phosphorus on root surfaces and cell wall material[J]. Plant Soil.1967.27:347-356
    10. Deleers M, Servais J P,Wulfert E.Neurotoxic cartions induce membrane rigidification and membrane fusion at micromolar concentrations[J]. Biochimica et Biophysia Acta. 1986.855:271-276
    11. Delhaize E, Craig S and Beaton C D. Aluminum tolerance in wheat (Triticum aestivum L.) uptake and distribution of aluminum in root apices[J]. Plant Physiology.1993.103: 685-693
    12. Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants[J]. Plant Physiology. 1995.107:315-321.
    13. Delhaize E, Ryan P R, Hebb D M, Yamamoto Y, Sasaki T, Matsumoto H. Engineering high-level aluminum tolerance in barley with the ALMT1 gene[J]. Proceedings of the National Academy of Science.2004.101:15249-15254.
    14. Eticha D, Stass A and Horst W J. Cell-wall pectin and its degree of methylation in the maize root-apex:significance for genotypic differences in aluminum resistance[J]. Plant Cell and Environment.2005.28:1410-1420
    15. Foy C D. Plant adaptation to acid, aluminum-toxic soils[J]. Communications in Soil Science and Plant Analysis.1988.15:957-987
    16. Furukawa J, Naoki Y, Wang H, Mitani N, Murata Y, Kazuhiro S, Katsuhara M, Takeda K and Ma J F. An aluminum-activated citrate transporter in barley[J]. Plant and Cell Physiology.2007.48:1081-1091
    17. Guo H J, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K, Vitousek P, Zhang F S. Significant acidification in major Chinese croplands[J]. Science. 2010.327:1008-1010
    18. Hoekenga O A, Maron L G, Pineros M A, Cancado G M A, Shaff J, Kobayashi Y, Ryan P R, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H and Kochian L V. AtALMT1, which encodes a malate transporter, is identified as one of several genes cirtical for aluminum tolerance in Arabidopsis[J]. Proceedings of the National Academy of Science.2006.103:9738-9743
    19. Huang C F, Yamaji N, Nishimura M, Tajima S and Ma J F. A rice mutant sensitive to Al toxicity is defective in the specification of root outer cell layers[J]. Plant and Cell Physiology.2009b.50:976-985
    20. Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K and Kobayashi M. Zinc finger protein, STOP1, is critical for proton tolerance in Arabidopsis and co-regulates a key gene in aluminum tolerance[J]. Proceedings of the National Academy of Science.2007.104:9900-9905
    21. Kawai F, Zhang D M and Sugimoto M. Isolation and characterization of acid and Al-tolerent microorganisms[J]. Ferns Microbiology Letters.2000.189:143-147
    22. Kinraide TB Toxicity factors in acidic forest soils:attempts to evaluate separately the toxic effects of excessive Al3+and H+and insufficient Ca2+and Mg2+upon root elongation[J]. Europe Journal Soil Science.2003.54:323-333
    23. Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology.1995.46:237-260
    24. Kochian L V, Hoekenga O A and Pineros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency[J]. Annual Review of Plant Biology.2004.55:459-493
    25. Le Van H, Kuraishi S, Sakurai N Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings[J]. Plant Physiology.1994.106:971-976.
    26. Li X F, Ma J F, Hiradate S and Matsumoto H. Pattern of Al-induced secretion of organic acids differ between rye and wheat[J]. Plant Physiology.2000.123:1537-1543
    27. Li Y Y, Yang J L, Zhang Y J and Zheng S J. Disorganized distribution of homogalacturonan epitopes in cell walls as one possible mechanism for aluminium-induced root growth inhibition in maize[J]. Annals of Botany.2009.104: 235-241
    28. Ligaba A, Katsuhara M, Ryan P R, Shibasaka M and Matsumoto H. The BnALMT1 and BnALMT2 genes from Brassica napus L. encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells[J]. Plant Physiology. 2006.142:1294-1303
    29. Liu J P, Magalhaes J V, Shaff J and Kochian L V. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. The Plant Journal.2009.57:389-399
    30. Ma J F, Hiradate S, Nomoto K, Iwashita T and Matsumoto H. Internal detoxification mechanism of Al in hydrangea:Identification of Al form in the leaves[J]. Plant Physiology.1997a.113:1033-1039
    31. Ma J F. Ryan P R and Delhaize E. Aluminum tolerance in plants and the complexing role of organic acids[J]. Trends in Plant Science.2001.6:1360-1385
    32. Ma J F, Shen R F, Nagao S and Tanimoto E. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots[J]. Plant and Cell Physiology.2004.45: 583-589
    33. Ma J F, Shen R F, Zhao Z Q, Wissuwa M, Takeuchi Y, Ebitani T and Yano M. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance[J]. Plant and Cell Physiology.2002.43:652-659
    34. Ma J F, Zheng S J, Hiradate S and Matsumoto H. Detoxifying aluminum with buckwheat[J]. Nature.1997b.390:569-570
    35. Magalhaes J V, Liu J P, Guimaraes C T, Lana U G P, Alves V M C, Wang Y H, Schaffert R E, Hoekenga O A, Pineros M A and Shaff J E. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum[J]. Nature Genetics.2007.39:1156-1161
    36. Maron L G, Pineros M A, Guimaraes C T, Magalhaes J V, Pleiman J K, Mao C Z, Shaff J, Belicuas S N J and Kochian L V. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize [J]. The Plant Journal.2010.61:728-740
    37. Marschner H. Mineral nutrition of higher plants[M].2nd edn.1995. London:Academic Press.
    38. Ma Z, Miyasaka S C Oxalate Exudation by Taro in Response to AI[J]. Plant Physiology. 1998.118:861-865
    39. Miyasaka S C, Buta J G, Howell R K and Foy C D. Mechanism of aluminum tolerance in snapbeans root exudation of citric acid[J]. Plant Physiology.1991.96:727-743
    40. Nagata T, Hayatsum and Kosuge N. Identification of aluminum forms in tea leaves by 27A1-NMR[J]. Phytochemistry.1992.31:1215-1218
    41. Ohno T. Koyama H, Hara T. Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion [J]. Plant Cell Physiology.2003.44:156-162
    42. Osawa H, Matsumoto H. Possible involvement of protein phosphorylation in aluminum-responsive malate efflux in wheat root apex [J]. Plant Physiology.2001.126: 411-420
    43. Pellet D M, Grunes D L and Kochian L V. Organic acid exudation as an aluminum tolerance mechanism in maize(Zea Mays L.) [J]. Planta.1995.196:788-795
    44. Pellet D M, Papernik L A and Kochian L V. Multiple aluminum-resistance mechanisms in wheat:roles of root apical phosphate and malate exudation[J]. Plant Physiology.1996. 112:591-597
    45. Pereira J F, Zhou G F, Delhaize E, Richardson T, Zhou M X and Ryan P R. Engineering greater aluminium resistance in wheat by over-expressing TaALMTl [J]. Annals of Botany.2010.106:205-214
    46. Pineros M A, Shaff J E, Manslank H S, Alves V M C and Kochian L V. Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study[J]. Plant Physiology.2005.137:231-241
    47. Rengel Z and Reid R J. Uptake of Al across the plasma membrane of plant cells[J]. Plant and Soil.1997.192:31-35
    48. Ryan ER, Delhaize E, Randall P J. Characterisation of AI-stimulated efflux of malate from the spices of Al-tolerant wheat roots[J]. Planta.1995.196:103-110
    49. Ryan P R, Ditomaso J M and Kochian L V. Aluminum toxicity in roots-an investigation of spatial sensitivity and the role of root cap[J]. Journal of Experimental Botany.1993. 44:437-446
    50. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E and Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter[J].The Plant Journal.2004.37:645-653
    51. Sawaki Y, luchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M and Koyama H. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities[J]. Plant Physiology.2009.150: 281-294
    52. Shen H, Ligaba A, Yamaguchi M, Osawa H, Shibata K, Yan X L, Matsumoto H Effect of K-252a and abscisic acid on the efflux of citrate from soybean roots [J].Journal of experimental botany.2004.55:663-671
    53. Shen H, He L F, Sasaki T. Tamamoto Y,Zheng S J, Ligaba A, Yan X L, Ahn S J, Yamaguchi M, Sakawa H, Matsumoto H. Citrate secretion coupled with the modulation of soybeanroot tip under Al stress. Up-regulation of transcription, translation and threonine oriented phosphorylation of plasma membrane H+-ATPase [J]. Plant Physiology.2005.138:287-296
    54. Shen R F, Ma J F, Kyo M and Iwashita T. Compartmentation of aluminum in leaves of an Al-accumulator Fagopyrum esculentum Moench[J]. Planta.2002.215:394-398
    55. Sivaguru M and Horst W J. The distal part of the transition zone is the most aluminium-sensitive apical root zone of Zea mays [J]. Plant Physiology.1998.116: 155-163
    56. Taylor G J. The physiology of aluminum tolerance in higher plants[J]. Communications in Soil Science and Plant Analysis.1988.19:1179-1194
    57. Taylor G J. Current views of the aluminum stress response:The physiological basis of tolerance[J]. Current Topics in Plant Biochemistry and Physiology.1991.10:57-93
    58. Taylor G J, McDonald Stephens J L, Hunter D B Direct Measurement of Aluminum Uptake and Distribution in Single Cells of Charaeorallina[J]. Plant Physiology.2000.123: 987-996
    59. Wenzl P, Patino G R, Chaves A L, Mayer J E and Rao I M. The high levels of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices[J]. Plant Physiology.2001.122:1473-1484
    60. Xia J X, Yamaji N, Kasai T and Ma J F. Plasma membrane-localized transporter for aluminum in rice[J]. Proceedings of the National Academy of Science.2010.107: 18381-18385
    61. Yamaji N, Huang C F, Nogao S, Yano M, Sato Y, Nagamura Y and Ma J F. A Zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. The Plant Cell.2009.21:3339-3349
    62. Yang J L, Li Y Y, Zhang Y J, Zhang S S, Wu Y R, Wu P and Zheng S J. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex[J]. Plant Physiology.2008.146:602-611
    63. Yang J L, Zheng S.J, He Y F, You J F, Zhang L and Yu X H. Comparative studies on the effect of a protein-synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots[J]. Plant Cell and Environment.2006.29:240-246
    64. Yang J L, Zhu X F, Peng Y X, Zheng C, Li G X, Liu Y, Shi Y Z and Zheng S J. Cell wall hemicellulose contributes significant to aluminum absorption and root growth in Arabidopsis[J].2011.155:1885-1892
    65. Yang X Y, Yang J L, Zhou Y, Pineros M A, Kochian L V, Li G X, Zheng S,A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex[J]. Plant Cell and Environment.2011.34:2138-2148
    66. Yang Z M, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H. Characterization of aluminum-induced citrate secretion in aluminum-tolerant soybean plants[J]. Plant Physiology.2001.113:64-71
    67. You J F, He Y F, Yang J L, Zheng S J. A comparison of aluminum resistance among Polygonum species originating on strongly acidic and neutral soils[J]. Plant Soil.2005. 276:143-151
    68. Zheng S J. Ma J F, Matsumoto H. High Aluminum Resistance in Buckwheat AI-Induced Specific Secretion of Oxalic Acid from Root Tips[J]. Plant Physiology.1998.117: 745-751
    69. Zheng S J, Yang J L, He Y F, Yu X H, Zhang L, You J F, Shen R F and Matsumoto H. Immobilization of aluminum with phosphorous in cell wall is associated with high Al resistance in buckwheat[J]. Plant Physiology.2005.138:297-303
    70. Zhu X F, Zheng C, Hu Y T, Jiang T, Liu Y Dong N Y, Yang J L and Zheng S J Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum [J]. Plant Cell and Environment. 2011.34:1055-1064
    71.边武英.浙江省标准农田土壤酸碱度现状及改良措施[J].安徽农业科学.2009,37(22):10605-]0607
    72.沈仁芳主编.《铝在土壤—植物中的行为及植物的适应机制》[M].北京科学出版社;2008,Page 1-26
    73.杨建立,何云峰,郑绍建.植物耐铝机制研究进展[J].植物营养与肥料学报,2005,11:836-845

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700