急性冠脉综合征患者调节性T细胞稳态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在本课题组前期研究发现急性冠脉综合征(ACS)患者外周血调节性T细胞(Treg)数目存在异常的基础上进一步分析该群细胞的组成和凋亡变化。
     方法:本研究纳入研究对象共109例,其中包括急性ST段抬高心肌梗死(STEAMI)患者18例、非ST段抬高急性冠脉综合征(NSTACS,包括NSTEAMI和UA)患者64例、慢性稳定性心绞痛(CSA)患者12例和胸痛综合征(CPS)患者15例,留取外周血标本,密度梯度离心法分离获取淋巴细胞,流式细胞术检测Treg亚群CD4~+CD25~+CD127-CD45RO~+CD45RA-T细胞(memory Treg, mTreg),CD4~+CD25~+CD127-CD45RO-CD45RA~+T细胞(naive Treg, nTreg)和CD4~+CD25~+CD127-CD45RO-CD45RA~+TCD31~+细胞(recent thymic emigrants-naive Treg, RTE-nTreg)占CD4~+CD25~+CD127-Treg细胞的比例及AnnexinⅤ~+7-AAD-- -CD4~+CD25~+CD127-的凋亡细胞占CD4~+CD25~+CD127-Treg的比例;进一步纳入ACS,CSA及CPS患者各12例,磁珠分选(MACS)CD4~+CD25highTreg细胞, real-time PCR技术比较三组人群Treg细胞中T细胞受体重排删除环(TREC)拷贝数的差异。
     结果:STEAMI, NSTACS,CSA和CPS四组病人间的mTreg/Treg,nTreg/Treg的比例无统计学差异,但RTE-nTreg占nTreg的比例在STEAMI组(16.91±7.90)和NSTACS组(20.39±10.31)则较CSA组(29.78±9.86)和CPS组(31.54±10.52)显著性降低(p<0.01)。凋亡分析提示STEAMI患者(18.42±10.93)和NSTACS患者(16.24±9.67)处于早期凋亡的Treg细胞占总Treg细胞的比例较CSA患者(12.76±6.52)和CPS患者(11.38±4.85)有升高趋势,但尚未达统计学差异(STEAMI vs CSA, p=0.122; STEAMI vs CPS , p=0.068; NSTACS vs CSA , p=0.235 ; NSTACS vs CPS, p=0.170)。ACS患者(1.06±0.48)的Treg细胞的TREC拷贝数较CSA患者(1.98±0.69)与CPS患者(2.26±0.98)显著降低(p<0.05)。
     结论:ACS患者中Treg亚群中的RTE-nTreg及Treg细胞中TREC的拷贝数较CSA患者及CPS患者明显减低,提示ACS患者Treg细胞数目改变的同时存在内部稳态异常。
Objective: To investigate the subsets and apoptosis of regulatory T cells (Treg) in patients with acute coronary syndrome based on our previous studies.
     Methods: A total of 109 subjects were enrolled in our study, including 18 patients with st-elevation myocardial infarction (STEAMI), 64 patients with NSTACS (including NSTEAMI and UA), 12 patients with chronic stable angina (CSA)and 15 patients with chest pain syndrome (CPS ). The peripherial lymphocytes were isolated using gradient-density confriguration. The ration of CD4~+CD25~+CD127-CD45RO~+ -CD45RA- memory Treg (mTreg), CD4~+CD25~+CD127-CD45RO-CD45RA~+ naive Treg (nTreg) , CD4~+CD25~+CD127-CD45RO-CD45RA~+TCD31~+ recent thymic emigrants-naive Treg (RTE-nTreg)and AnnexinⅤ~+7-AAD-CD4~+CD25~+CD127- in CD4~+CD25~+CD127-total Treg were analyzed using flow cytometry. 12 cases with ACS, 12 cases with CSA and 12 cases with CPS were also included and CD4~+CD25high Treg were purified by magnetic activated cell sorting (MACS), and T-cell receptor excision circles (TREC) in the purifed Treg were determined by realtime-PCR.
     Results: The frequencies of mTreg and nTreg in total Treg were comparable among the STEAMI, NSTACS, CSA and CPS group. In contrast, the frequency of RTE-nTreg in total nTreg significantly decreased in both STEAMI group (16.91±7.90) and NSTACS group (20.39±10.31) compared to CSA group (29.78±9.86) and CPS group (31.54±10.52) (p<0.01). The frequency of apoptotic Treg in total Treg increased in the group of STEAMI group (18.42±10.93) and NSTACS group (16.24±9.67) increased compared with CSA group (12.76±6.52) and CPS group (11.38±4.85) , but the differences were not significant (STEAMI vs CSA, p=0.122; STEAMI vs CPS, p=0.068; NSTACS vs CSA, p=0.235; NSTACS vs CPS, p=0.170). The copies of TREC were also markedly lower in the ACS group (1.06±0.48) than in the CSA group (1.98±0.69) and CPS group (2.26±0.98) (p<0.05).
     Conclusion: Our data demonstrated that the frequency of RTE-nTreg in total Treg and the the copies of TREC in purified Treg significantly decreased in STEAMI and NSTACS patients compared to CSA and CPS patients, suggesting that Treg homeostatis was disturbed in patients with ACS.
引文
1. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med[J]. 1999;Jan 14;340(2) : 115-26.
    2. Edfeldt, Kristina, Swedenborg, etal.Expression of toll-like receptors in human atherosclerotic lesions:A possible pathway for plaque activation. Circulation[J] 2002; 2002 ; 105: 1158-1161.
    3. Bjorkbacka H,Kunjathoor VV,Moore KJ,etal.Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways.Nat Med[J]. 2004 ; 10: 416-421.
    4. Michelsen KS,Wong MH,Zhang W,etal.Genetic ablation of MyD88,an adaptor molecule involved in TLR signaling and innate immunity,reduces atherosclerosis and alters plaque phenotype in ApoE null mice without changing circulating cholesterol levels.Circulation[J].2003 ; 108:1621-1268.
    5. Ait-Oufella H, Salomon BL,etal. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med[J]. 2006; 12:178–180.
    6. Groyer E, Nicoletti A, etal. Atheroprotective effect of CD31 receptor globulin through enrichment of circulating regulatory T-cells. J Am Coll Cardiol[J]. 2007; 50:344–350.
    7. Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes. Eur Heart J[J]. 2006 ; 27: 2530–2537.
    8. Han SF, Liu P, Zhang W,etal . The opposite-direction modulation of CD4CD25Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol[J]. 2007; 124: 90–97.
    9. Sardella G, De Luca L, Francavilla V, etal. Frequency of naturally-occurring regulatory T cells is reduced in patients with ST-segment elevation myocardial infarction. Thromb Res[J]. 2007; 120:631–634.
    10. Cheng X, Yu X, Ding YJ, etal . The Th17/Treg imbalance in patients with acute coronary syndrome.Clin Immunol[J]. 2008 ; 127 : 89–97.
    11.李杨秋,杨力建,陈少华等.实时定量PCR检测正常人外周血T细胞和胸腺sjTRECs水平.现代临床医学生物工程学杂志[J].2001;7(6):397-400.
    12.阴继霞,武大林,徐文娟等.实时荧光定量PCR检测外周血TREC的方法研究。南方医科大学学报[J].2006;26(7).
    13. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA,Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells. J Exp Med[J]. 2006 ; 203: 1701–1711.
    14. Libby , Theroux , etal . Pathophysiology of coronary artery disease. Circulation[J]. 2005 ; 111(25): 3481-8.
    15. Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun[J]. 2003; 21: 273–276.
    16. Viglietta V, Baecher-Allan C, Weiner HL, Ha?er DA. Loss of functional suppression by CD4+CD25+ regulatory Tcells in patients with multiple sclerosis. J Exp Med [J]. 2004; 971: 9–19.
    17. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA,Mauri C. Compromised function of regulatory Tcells in rheumatoid arthritis and reversal by anti-TNF alpha therapy. J Exp Med[J]. 2004 ; 200 : 277–285.
    18. Ait-Oufella H,Salomon BL,Potteaux S,et al. Natural regulatory T cells control the development of atherosclerosis in mice.Nat Med[J]. 2006 ; 12 (2) : 178—180.
    19. Jurgen Haas, Benedikt Fritzsching , etal. Prevalence of Newly Generated Naive Regulatory T Cells (Treg) Is Critical for Treg Suppressive Function and Determines Treg Dysfunction in Multiple Sclerosis. The Journal of Immunology[J]. 2007; 179: 1322–1330.
    20. Andreas Hug, Mirjam Korporal,etal. Thymic Export Function and T Cell Homeostasis in Patients with Relapsing Remitting Multiple Sclerosis. The Journal of Immunology[J]. 2003; 170: 432–437.
    21. AL-Harthi L,Marchetti G,Steffens GM.Detection of T cell receptor circles (TRECs )as biomarke rs for de novo T cell synthesis using a quantitative polymerase chainreaction—enzyme linked im munosorbent assay(PCR-ELISA).JI mmunol Med[ J ] . 2 0 0 0 ; 2 3 7 :1 8 7.
    22. Daniel C, Douek, Richard D, McFarland etal . Changes in thymic function with age and during the treatment ofHIV infection. Nature[J]. 1998 ; 396 (6712) : 690-695.
    23. Kimmig S, Przybylski GK, Schmidt CA, et al. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med[J]. 2002 ;195:789-79.
    24. Brenchley JM, Hill BJ, Ambrozak DR, et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J Virol[J]. 2004 ; 78: 1160-1168.
    25. Kilpatrick RD, Rickabaugh T, Hultin LE, et al. Homeostasis of the naive CD4+ T cell compartment during aging. J Immunol[J]. 2008 ; 180: 1499-1507.
    26. Junge S, Kloeckener-Gruissem B, Zufferey R, et al. Correlation between recent thymic emigrant and CD31+ (PECAM-1) CD4+T cells in normal individuals during aging and in lymphopenic children. Eur J Immunol[J]. 2007 ; 37 : 3270-3280.
    27. Krammer PH. CD95's deadly mission in the immune system. Nature[J]. 2000; 407 : 789–95.
    28. Gupta S. Decision between life and death during TNF-induced signaling. J Clin Immunol [J].2002 ; 22: 270–8.
    29. Gupta S.Molecular signaling in death receptor and mitochondrial pathways of apoptosis. Int J Oncol [J]. 2003 ; 22 : 15–20.
    30. Green DR, Evan GI. A matter of life and death. Cancer Cell [J]. 2002 ; 1:19–30.
    31. Zamzami N, Kroemer G.The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol [J]. 2001 ; 2 : 67–71.
    32. Orrenius S, Zhivotovsky B, Nicotera N. Regulation of cell death:the calcium apo- -ptosis link. Nat Rev Mol Cell Biol[J]. 2003 ; 4 : 552–65.
    33. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol [J].2001 ; 3 : E255–66.
    34. Gupta S. Death of lymphocytes: a clue to immune deficiency in human aging.Disc Med [J]. 2005 ; 5 : 298–302.
    35. Locksley RM, Kileen N, Lenardo MJ. The TNF and TNF receptor superfamilies. Cell [J]. 2001 ; 104 : 487–501.
    36. Fritzsching B, Oberle N, Eberhardt N, Quick S, et al. In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol [J]. 2005 ; 175:32–36.
    37. Desbarats J, Wade T, Wade WF, Newell MK. Dichotomy between naive and memory CD4+ T cell responses to Fas engagement. Proc Natl Acad Sci USA [J]. 1999 ; 96 : 8104–8109.
    38. Esma S Yolcu, Shifra Ash, Ayelet Kaminitz, Yuval Sagiv, Nadir Askenasyand Shai Yarkoni. Apoptosis as a mechanism of T-regulatory cell homeostasis and suppression. Immunology and Cell Biology [J] . 2008 ; 86, 650–658.
    39. Makoto Miyara, Zahir Amoura,Christophe Parizot etal. Global Natural Regulatory T Cell Depletion in Active System lupus Erythematosus. The Journal of Immunology[J]. 2005; 175: 8392–8400.
    40. Aiko Nakano,Mikio Watanabe,Takao Iida,etal. Apoptosis-induced Decrease of Intrathyroidal CD4+CD25+ Regulatory T Cells in Autoimmune Thyroid Diseases. THYROID[J].DOI: 10.1089=thy.2006.0231.
    41. Stanzer S, Dandachi N,etal. Resistance to apoptosis and expansion of regulatory T cells in relation to the detection of circulating tumor cells in patients with metastatic epithelial cancer. J Clin Immunol[J]. 2008 ; 28(2) : 107-14.
    42. Lei Zhang, Kamtai Dermawan, etal. Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clinical Immunology[J]. 2008 ; 129: 219–229.
    1. Ross R. Atherosclerosis-an inflammatory disease.N Engl J Med[J]. 1999;Jan 14;340(2) : 115-26.
    2. Binder CJ, Chang MK, et al. Innate and acquired immunity in atherogenesis. Nat Med[J]. 2008 ; 8(11): 1218–1226.doi:10.1038/nm1102-1218.
    3. Mallat Z,Tedgui A. Immunomodulation to combat atherosclerosis: the potential role of immune regulatory cells. Expert Opin Biol Ther[J]. 2004; 4(9) :1387-93.
    4. Stephens GL, Shevach EM. Foxp3+regulatory T cells: selfishness under scrutiny. Immunity[J]. 2007; 27: 417–9.
    5. Wood KJ,Sakaguehi S.Regulatory T cells intransplantation tolerance.Nat Rev lmmunol[J]. 2003 ; 3(3) : 199-210.
    6. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 +CD25+regulatory T cells.Nat Immunol[J]. 2003; 4: 330–6.
    7. Lin W, Haribhai D, Relland LM et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol[J]. 2007; 8: 359–68.
    8. Wu Y, Borde M, Heissmeyer V et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell[J]. 2006; 126: 375–87.
    9. Ono M, Yaguchi H, Ohkura N et al. Foxp3 controls regulatory T-cell function by interacting with AML1 ? Runx1. Nature[J]. 2007; 446: 685–9.
    10. Hori s,Nomura T,Sakaguchi S.Control of regulatory T cell development by the transcription factor Foxp3.Science[J]. 2003; 299(5609) : 1057—1061.
    11. Paust S.Lu L,McCarty N,et al.Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease.Proc Natl Acad sci[J]. 2004; 10l (28) : 10398-10403.
    12. Fallarino F, Grohmann U, Hwang KW et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol[J]. 2003 ; 4: 1206–12.
    13. Collison LW, Workman CJ, Kuo TT et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature[J]. 2007; 450: 566–9.
    14. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ.CD4(+)CD25(+)Foxp3(+)regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4(+) T cells. Nat Immunol[J]. 2007; 8: 1353–62.
    15. Glass CK.Wiztum JL.atherosclerosis:the road ahead.cell[J]. 2001; 104(4):503-516.
    16. Sk?len K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature[J]. 2002; 417: 750–754 .
    17. Smith JD et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoproteine. Proc. Natl. Acad. Sci[J]. 1995; 92: 8264–8268.
    18. Niessner A. et al. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation[J]. 2006; 114: 2482–2489.
    19 .Niessner A. Weyand CM. Dendritic cells in atherosclerotic disease. Clin. Immunol[J]. 2010; 134: 25–32.
    20. Caligiuri G, Nicoletti A, Poirier B. & Hansson G.K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest[J]. 2002; 109: 745–753.
    21. Hansson G.K., robertson A.K.L. & S?derberg-Nauclér C. Inflammation and atherosclerosis. Annu. Rev. Pathol[J]. 2006; 1: 297–329.
    22. Whitman SC, Ravisankar P, Daugherty A. IFN-γdeficiency exerts gender-specific effects on atherogenesis in Apoe–/– mice. Interferon Cytokine Res[J]. 2002; 22: 661–670 .
    23. Buono C, et al. T-bet deficiency reduces atherosclerosis and alters plaque anti-gen specific immune responses. Proc. Natl. Acad. Sci[J]. 2005; 102:1596–1601.
    24. Miller AM, et al. IL-33 reduces the development of atherosclerosis. J. Exp. Med[J]. 2008; 205, 339–346.
    25. Ait-Oufella H,Salomon BL,Potteaux S,et aL. Natural regulatory T cells control the development of atherosclerosis in mice.Nat Med[J]. 2006; 12(2): 178—180.
    26. Adi Mor et al. Role of Naturally Occurring CD4+CD25+ Regulatory T Cells in Experimental Atherosclerosis.Arterioscler Thromb Vasc Bio[J]. 2007; 27: 893-900.
    27. Jinushi M Y, Nakazaki M, Dougan DR, Carrasco M. MFG-E8-mediated uptake of apoptotic cells by APCs links the pro and anti-inflammatory activities of GM-CSF.J. Clin. Invest[J]. 2007; 117: 1902–1913.
    28. Mallat ZA, Gojova C, Marchiol-Fournigault B, Esposito C,Kamate R, Merval D, Fradelizi and A Tedgui. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ.Res[J]. 2008; 89: 930–934.
    29. Lutgens E M, Gijbels M, Smook P, Heeringa P, Gotwals VE,Koteliansky and MJ Daemen. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression.Arterioscler. Thromb. Vasc. Biol[J]. 2002; 22: 975–982.
    30. Grainger DJ, DE Mosedale, JC Metcalfe and EP Bottinger. Dietary fat and reduced levels of TGFbeta1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions. J. Cell Sci[J]. 2000; 113: 2355–2361.
    31. Gojova A, V Brun, B Esposito, F Cottrez, P Gourdy, P Ardouin, A Tedgui, Z Mallat and H Groux. Specific abrogation of transforming growth factor-{beta} signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood[J]. 2003; 102: 4052–4058.
    32. Robertson A K, M Rudling, X Zhou, L Gorelik, RA Flavell and GK Hansson. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J. Clin. Invest[J]. 2003; 112: 1342–1350.
    33. Mallat Z, S Besnard, M Duriez, V Deleuze, F Emmanuel, MF Bureau, F Soubrier, B Esposito, H Duez, C Fievet, et al. 1999. Protective role of interleukin-10 in atherosclerosis. Circ. Res[J]. 1999; 85: e17–e24.
    34. Caligiuri G, M Rudling, V Ollivier, MP Jacob, JB Michel, GK Hansson and A Nicoletti. Interleukin-10 deficiency increases atherosclerosis, thrombosis, andlow-density lipoproteins in apolipo-protein E knockout mice. Mol. Med[J]. 2003; 9: 10–17.
    35. Von Der Thusen JH, J Kuiper, ML Fekkes, P De Vos, TJ VanBerkel and EA Biessen. Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr-/-mice. FASEB J[J]. 2001; 15: 2730–2732.
    36. Vieira PI,Christensen JR, el a1.IL—10-secreting regulatory T ceIls do not express Foxp3 but have comparable regulatory funtion to naturally occuring CD4+CD25+ regulatory T cells.J Immunol[J]. 2004; 172: 5986—51993.
    37. O'Garra A,Vieira PL,Vieira P,Goldfeld AE.IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest[J]. 2004; 114(10): 1372-8.
    38. Mallat Z,Ait-Oufella H,Tedgui A. Regulatory T cell responses: potential role in the control of atherosclerosis. Curr Opin Lipidol[J]. 2005; Oct; 16(5): 518-24.
    39. Han SF, Liu P, Zhang W, Bu L, Shen M, Li H, Fan YH, Cheng K, Cheng HX, Li CX, Jia GL. The opposite-direction modulation of CD4CD25Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol[J]. 2007; 124: 90–97.
    40. Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes. Eur Heart J[J]. 2006; 27: 2530–2537.
    41. Sardella G, De Luca L, Francavilla V, Accapezzato D, Mancone M,Sirinian MI, Fedele F, Paroli M. Frequency of naturally-occurring regulatory T cells is reduced in patients with ST-segment elevation myocardial infarction. Thromb Res[J]. 2007; 120: 631–634.
    42. Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, Yao R, Chen Y, Liao YH. The Th17/Treg imbalance in patients with acute coronary syndrome.Clin Immunol[J]. 2008; 127: 89–97.
    43. Enrico Ammirati, Domenico Cianflone et al. Circulating CD4CD25hiCD127lo Regulatory T-Cell Leve Do Not Reflect the Extent or Severity of Carotid and Corona-ry Atherosclerosis. Arterioscler Thromb Vasc Biol[J]. 2010; 30(9):1832-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700