额济纳多枝柽柳体内抗氧化酶和植物多酚含量的生态意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过实地调查采样,结合室内实验室分光光度计法,分析了多枝柽柳(Tamarix rasosissima)体内的过氧化物酶(POD)活性和丙二醛(MDA)含量,重点研究了植物多酚在多枝柽柳体内的分布和变化等情况。从而来探讨多枝柽柳体内的酶系统对于土壤含水率的响应情况,植物多酚在多枝柽柳体内的分布情况,其含量与水分、年龄和平茬的关系等。通过研究表明,多枝柽柳体内的POD活性随着土壤含水率的降低先升高后减低,MDA则表现出逐渐增加,多枝柽柳的生态需水量为土壤含水率(100 cm)大于20%。多枝柽柳体内的缩合单宁主要分布在根系部位,大径级根系中多酚含量比小径级根系中少。中龄柽柳体内的总酚含量较少,幼龄柽柳和老龄柽柳中的总酚含量较高。不同地段,根系部位的总酚含量有显著差异,但这种差异在季节间也有所不同。多枝柽柳的总酚含量与土壤含水率呈反比,即土壤含水率高时,总酚含量较低;反之亦然。多枝柽柳体内的多酚含量随季节呈现动态变化,从早春到深秋,总酚含量总体呈现增加趋势。平茬后的时间对多枝柽柳有影响,未经平茬的柽柳体内的多酚含量较高,平茬后时间越短,其体内的总酚含量越低。
     本研究首次测定了多枝柽柳根系中的多酚含量,并且报道了多酚在多枝柽柳体内在不同季节间的变化情况、多酚与土壤含水率的响应情况,此外,就平茬对多酚含量的影响进行了研究。
In this paper, the activity of POD, content of MDA and plant polyphenols in Tamarix rasosissima were measured by spectrophotometry on the basis of field investigation and sampling. The reflections of POD and MDA, under different soil water, were analyzed. Emphasis was placed on the content polyphenols in different tissues, sites, seasons, plant ages and soil water content. The following results were concluded: As a decreasing of soil water content, the activities of POD increased at first, but declined in a further decreasing. The content of MDA increased gradually with the declining of soil water content. The necessary soil water content to Tamarix rasosissima was more than 20%. The condensed tannin was mainly distributed in the roots. The smaller diameter the root was, the more condensed tannin was contained. Total phenolic in mid-aged plant was low relatively, while it was high in the young and the old. In different sites, the total phenolic was different significantly, which also happened in different seasons. It has been shown an inverse relationship between the content of total phenolic in plant and the soil water content. In addition, the content in plant varied seasonly. The time after stumping can affect the content of total phenolic in plant. The longer time after cutting, the higher content was indicated, which almost approximated to those not stumped.
    This was the first report we were aware of giving polyphenols characteristics of Tamarix rasosissima in roots, leaves and branches. The seasonal dynamic of total phenolic in Tamarix rasosissima and the relationship between the water containing in soil and total phenolic were studied. Also, the effect of stumping on the content of total phenolic was evaluated.
引文
[1] .安树青.湿地生态工程-湿地资源利用与保护的优化模式[M].北京:化学工业出版社,2002:12.
    [2].包永平,王景余,孙德学.沙棘平茬复壮更新技术研究[J].防护林科技,2004,(3):14-20.
    [3].曹宇.额济纳天然绿洲景观格局、动态、演化机制及其健康评价[D].北京林业大学硕士学位论文,2003:39-43.
    [4].陈留记,杨贤强,沈生荣,等.茶儿茶素清除活性氧自由基的机制[J].浙江大学学报(农业与生命科学版),2002,28(5):573-574.
    [5].陈民生,秦国明,李建勇.不同品种露地越冬甘蓝的抗冻性与渗透调节物质含量和抗氧化酶活性[J].山东农业大学学报,2006,37(3):329-333.
    [6].陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [7].成文娟.额济纳旗土壤特性分析[J].湖北民族学院学报,2006,24(3):275-279.
    [8].崔秀萍,刘果厚,张瑞麟.浑善达克沙地不同生境下黄柳叶片解剖结构的比较[J].生态学报,2006,26(6):1842-1847.
    [9].邓文靖,周立祥,占新华.植物多酚物质原位钝化污染土壤重金属的研究Ⅱ.对土壤Cu环境行为和生物活性的影响动态[J].环境科学学报,2003,23(5):608-613.
    [10].邓文靖,周立祥.植物多酚物质原位钝化污染土壤重金属的研究Ⅰ.对土壤Cu吸持与溶出的影响[J].环境科学学报,2003,23(4):458-463.
    [11].狄莹,石碧.植物单宁化学研究进展[J].化学通报,1999,(3):1-5.
    [12].刁其玉.单宁的最新研究动态[J].饲料研究,1999,(11):28.
    [13].段彩莲.用SD模型对讨顺额济纳济纳绿洲水土资源平衡的研究[D].内蒙古农业大学硕士学位论文,2003:6-8..
    [14].范晓,严小军,房国明,等.高分子量褐藻多酚抗氧化性质研究[J].水生生物学报,1999,23(5):494-499.
    [15].高晓霞.内蒙多枝柽柳的构造及纤维形态研究[J].四川农业大学学报,1998,16(1):159-164.
    [16].豪树奇,额济纳绿洲土壤水分状况的研究[D].内蒙古农业大学硕士学位论文,2005:5-7.
    [17].黄文,石碧,姚开.植物单宁的生物降解[J].化学通报,2002,(5):321-325.
    [18].黄玉山,罗广华,关棨文.镉诱导植物的自由基过氧化损伤[JJ.植物学报,1997,39(6):522-526.
    [19].蒋志荣.沙冬青抗旱机理的探讨[J].中国沙漠,2000,20(1):71-74.
    [20].李俊清,崔国发.西北地区天然林保护与退化生态系统恢复理论思考[J].北京林业大学学报,2000,22(4):1-7.
    [21].李晓储.四种含笑叶解剖形状与抗旱性的研究[J].林业科学研究,2006,19(2):177-181.
    [22].刘鹏程,陈顺立,童应华,等.红腹柄天牛为害对甜槠黄酬、单宁含量的影响[J].福建林学院学报,2006,26(4):314-317.
    [23].刘萍,郭文善,浦汉春,等.灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响[J].中国农业科学,2005,3(?)(12):2403-2407.
    [24].刘亚萍,计巧灵,周小云.胡杨种子萌发过程中相关酶的活性变化[J].植物生理学通讯,2005,41(5):607-609.
    [25].卢山,玛妮拉.旱生抗盐碱树种——多枝柽柳[J].林业实用技术,2003,(1):43.
    [26].陆建良,梁月荣.茶多酚对酸铝敏感植物的影响[J].茶叶科学,1997,17(S1):137-140.
    [27].罗雪华,牛治宇,吴敏,等.香蕉假茎多酚类物质对尿素氮在土壤中形态转化的影响[J].热带作物学报,2004,25(4):30-35.
    [28].马云华,魏珉,王秀峰.日光温室连作土壤酚类物质变化及其对黄瓜根系抗病性相关酶的影响[J].应用生态学报,2005,16(1):79-82.
    [29].邱尔发,陈卓梅,洪伟,等.不同年龄麻竹阴阳叶生态生理特性[J].生态学报,2006,26(10):3096-3301.
    [30].任引哲,王静萍,王玉湘.单宁与土壤中铁元素的可给性[J].化学世界,2002,(2):62-64.
    [31].沈生荣,赵玉芳,杨贤强,等.茶多酚保护生物大分子的自由基机理[J].浙江农业大学学报,1995,21(4):361-365.
    [32].沈同,王镜岩.生物化学[M].北京:高等教育出版社,1990:232-328.
    [33].石碧,狄莹.植物多酚[M].北京:科学出版社,2000:19-21.
    [34].苏建平,仵彦卿,黎志恒,等.黑河下游河岸绿洲区包气带土壤水分与植被生长状况的研究[J].西北植物学报,2004,24(4):662-668.
    [35].苏永红,冯起,吕世华,等.额济纳旗生态环境退化及成因分析[J].高原气象,2004,23(2):264-270.
    [36].苏永红;冯起;刘蔚,等.额济纳三角洲土壤养分特征分析[J].干旱区研究,2006,23(1):133-134.
    [37].粟淑媛,乔辰,扈瑞平,等.螺旋藻POD、CAT和SOD同工酶的研究[J].微生物学通报,2004,31(1):82-85.
    [38].孙达旺.植物单宁化学[M].北京:中国林业出版社,1992:1-6.
    [39].陶荣达.茶多酚的制备和应用研究的进展[J].化学世界,1997,(2):64-67.
    [40].汪吉东,刘兆普,郑青松,等.供氮水平对芦荟幼苗生长、硝酸盐和次生代谢产物含量的影响[J].植物营养与肥料学报,2006,12(6):864-868.
    [41].王贵禧,李鹏霞,梁丽松,等.高氧处理对冬枣货架期间膜脂过氧化和保护酶活性的影响[J].园艺学报,2006,33(3):609-612.
    [42].温小虎,仵彦卿,苏建平.额济纳盆地地下水盐化特征及机理分析[J].中国沙漠,2006,26(05):837-841.
    [43].乌日根夫,战士宏,程继全,等.额济纳旗天然胡杨林生物学、生态学抗旱机理与繁殖机理研究[J].内蒙古林业调查设计,2003,26(4):1-5.
    [44].吴建慧,杨玲,孙国荣.低温胁迫下玉米幼苗叶片活性氧的产生及保护酶活性的变化[J].植物研究,2004,24(4):456-459.
    [45].肖生春,肖洪浪,司建华,等.干旱区多枝柽柳的生长特性[J].西北植物学报,2005,25(5):1012-1016.
    [46].许凯扬,叶万辉,沈浩,等.低温胁迫下喜旱莲子草幼苗膜脂过氧化及保护酶活性的变化[J].生态科学,2006,25(2):139-142.
    [47].闫志坚,杨持,高天明.平茬对岩黄芪属植物生物学性状的影响[J].应用生态学报,2006,17(12):2311-2315.
    [48].杨方云,魏朝富,刘英.干旱胁迫写甜橙叶片保护酶体系的变化研究[J].植物营养与肥料学报,2006,12(1):119-124.
    [49].姚开.黑荆树皮单宁不同级分的生物活性研究[J].北京林业大学学报,2002,24(2):18-21.
    [50].叶勇,吴军.茶多酚吸水及氧化差异性探讨[J].中国茶叶,1999,(5):8-9.
    [51].尹林克.中亚荒漠生态系统中的关键种——柽柳(Tamarix spp.)[J].干旱区研究,1995,12(3):43-47.
    [52].郁继华,张国斌,冯致,等.低温弱光对辣椒幼苗抗氧化酶活性与质膜透性的影响[J].西北植物学报,2005,25(12):2478—2483.
    [53].袁勤生.现代酶学[M].上海:华东理工大学出版社,2001:290-325.
    [54].曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002,13(5):611-614.
    [55].张凤琴,王友绍.重金属污水对木榄幼苗几种保护酶及膜脂过氧化作用影响[J].热带海洋学报,2006,25(2):66-70.
    [56].张海清,常金宝.额济纳旗柽柳气体交换与水分利用效率日变化研究[J].内蒙古师范大学学报(自然科学汉文版),2006,35(2):229-233.
    [57].张力平,孙长霞,江明开.落叶松单宁净化有毒金属离子的研究[J].林产工业,2004,31(2):32-34.
    [58].张玉波,李景文,张昊,等.胡杨种子散布的时空分布格局[J].生态学报,2005a,25(8):1994-2000.
    [59].张玉波.极干旱地区绿洲植被退化过程中胡杨繁埴特性研究[D].北京林业大学硕士学位论文.2005b:4-8.
    [60].赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413-418.
    [61].钟哲科,王人潮,江波.森林土壤有机质层中多酚类物质的生态反馈意义[J].应用生态学报,2003,14(3):341-344.
    [62].周海燕.中国东北科尔沁沙地两种建群植物的抗旱机理[J].植物研究,2002,22(1):51-55.
    [63].周茅先,肖洪浪,张小由,等.额济纳绿洲柽柳群落蒸散特征的初步分析[J].中国沙漠,2004,24(4):479-483.
    [64].朱教君,康宏樟,李智辉,等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响[J].生态学报,2005,25(10):2527-2533.
    [65].庄丽,陈亚宁,李卫红,等.塔里木河下游荒漠植被保护酶活性与地下水位变化的关系[J].西北植物学报,2005,25(7):1287-1294.
    [66]. Akagawa, M., Suyama, K. Amine oxidase-like activity of polyphenols [J]. Mechanism and Properties, 2001, 268 (7): 1953-1963.
    [67]. Amarowicza, R., Peggb, R. B., Rahimi-Moghaddamc, P. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies [J]. Food Chemistry, 2004, 84: 551-562.
    [68]. Andersen, D. C. Below-ground herbivory in natural communities:a review emphasizing fossorial animals [J]. Quaterly Review of Biology, 1987, 62: 261-286.
    [69]. Anderson, J. M., Ingram, J. S. I. Tropical soil biology and fertility: A handbook of methods [M]. Walingford, England: CAB International, 1993: 88-89.
    [70]. Asada, K. Production and action of active oxygen in photosynthetic tissue [M]. Boca Raton FL: CRC Press, 1994: 77-104.
    [71]. Baloyi, J. J., Acamovic, T., Ngongoni, N. T. et al. Proanthocyanadin (condensed tannin) content of Brachystegia spiciformis browse harvested at different stages of growth from three sites in Zimbabwe [J]. African Journal of Range and Forage Science, 2006, 23 (3): 197-200.
    [72]. Bandeoglu, E., Eyidogan, F., Yucel, M. et al. Antioxidant reponses of shoots and roots of lentil to NaCl-salinity stress [J]. Plant Growth Regulation, 2004, 42: 69-77.
    [73]. Barry, T. N., Forss, D. A. The condensed tannin content of vegetative lotus pedunculatus, its regulation by fertiliser application, and effect upon protein solubility [J]. Journal of the Science of Food and Agricultur, 1983, 34 (10): 1047-1056.
    [74]. Benson, E. E., Special symposium: In vitro plant recalcitrance do free radicals have a role in plant tissue culture recalcitrance? [J] In Vitro Cellular and Development Biology-Plant, 2000, 36 (3): 163-170.
    [75]. Binkley, D., Giardina, C. Why do tree species affect soils? The warp and woof of tree-soil interactions [J]. Biogeochemistry, 1998, 42: 89-106.
    [76]. Bors, W., Michel, C. Chemistry of the antioxidant effect of polyphenols [A]. Alcohol and wine in health and disease [C]. Annals of the New York Academy of Sciences, 2002, 957 (1): 57-69.
    [77]. Bravo, L., Manas, E., Saura-Calixto, F. Dietary non-extractable condensed tannins as indigestible compounds: Effect on faecal weight, and protein and fat excretion [J]. Journal of Science Food Agriculture, 1993, 63: 63-68.
    [78]. Broadhurst, R., Jones, W. Analysis of condensed tannins using acidified vanillin [J]. Journal of the Science of Food and Agriculture, 1978, 29: 788-798.
    [79]. Cakmak, K. B., Horst, W. J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glycine max L.) [J]. Physiologia Plantarum, 1991, 83:463-468.
    
    [80]. Chapin, F. S. New cog in the nitrogen cycle [J]. Nature, 1995, 377: 199-200.
    [81]. Dat, J., Vendenabeele, S., Vranova, E. et al. Dual action of the active oxygen species during plant stress responses [J]. Cellular and Molecular Life Sciences, 2000, 57 (5): 779-795.
    [82]. Deshpande, S. S., Cheryan, M. Evaluation of vanillin assay for tannin analysis of dry beans [J]. Journal of Food Science, 1985, 50 (4): 905-910.
    [83]. Dhindsa, R. S., Plumb-Dhindsa, P. L., Reid, D. M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen [J]. Physiologia Plantarum, 1982, 56 (4): 453-457.
    [84]. Foote, C. S., Chang, Y. C, Denny, R. W. Chemistry of singlet oxygen. X. carotenoid quenching parallels biological protection [J]. Journal of the American Chemical Society, 1970, 92 (17): 5216-5218.
    
    [85]. Freudenberg, K. Die chemie der naturlichen gerbstoffe [M]. Berlin: Julius springer, 1920.
    [86]. Fridovich, I. The biology of oxygen radicals [J]. Science, 1978, 201: 875-880.
    [87]. Geret, F., Serafim, A., Bebianno, M. J. Antioxidant enzyme activities, metallothioneins and liqid peroxidation as biomarkers in Ruditapes decussates? [J]. Ecotoxicology, 2003, 12: 427-426.
    [88]. Gonzalez-Coloma, A., Wisdom, C. S., Rundel, P. W. Ozone impact on the antioxidant nordihydroguaiareticacid content in the external leaf resin of Larrea tridentate [J]. Biochemical Systematics and Ecology, 1988,16: 59-64.
    [89]. Gramza, A., Khokhar, S., Yoko, S. et al., Antioxidant activity of tea extracts in lipids and correlation with polyphenol content [J]. European Journal of Lipid Science and Technology, 2006, 108 (4): 351-362.
    [90]. Guo, T. R., Zhang, G. P., Zhou, M. X. et al. Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance [J]. Plant and Soil, 2004, 258: 241-248.
    [91]. Gupta, S. D., Datta, S. Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration [J]. Biologia Plantarum, 2003/4,47(2): 179-183.
    [92]. Haslam, E. Plant polyphenols and chemical defense a reappraisal [J]. Journal of Chemistry and Ecology, 1988, 14(10): 1789-1805.
    [93]. Haslam, E. Plant polyphenols-vegetable tannins revisited [M]. Cambridge: Cambridge University Press, 1989: 10.
    [94]. Hattenschwiler, S., Hagerman, A. E. and Vitousek, P. M. Polyphenols in litter from tropical montane forests across a wide range in soil fertility [J]. Biogeochemistry, 2003, 64 (1): 129-148.
    [95]. Henis, Y., Tagari, H. R. Effect of water extracts of carob pods, tannic acid, and their derivatives on the morphology and growth of microorganisms [J]. Applied Microbiology, 1964, 12 (3): 204-209.
    [96]. Hernes, P. J., Hedges, J. I. Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts [J]. American Chemical Society, 2000, 72 (20): 5115-5124.
    [97]. Holechek, J. L., Munshikpu, A. V., Saiwana, L. et al. Influences of six shrub diets varying in phenol content on nitrogen retention by goats [J]. Tropical Grasslands, 1990,24: 93-98.
    [98]. Hoven, V. W. Tannins and digestibility in greater kudu [J]. Canadian Journal of Animal Science, 1984,64:177-178.
    [99]. Hyder, P. W., Fredrickson, E.-L.,-Estell, R. E. et al. Distribution and concentration of total phenolics, condensed tannins, and nordihydroguaiaretic acid (NDGA) in creosotebush (Larrea tridentata) [J]. Biochemical Systematics and Ecology, 2002, 30 (10): 905-912.
    [100]. Jackson, F. S., Barry, T. N., Lascano, C. et al. The extractable and bound condensed tannin content of leaves from tropical tree, shrub and forage legumes [J]. Journal of the Science of Food and Agriculture, 1999,71 (1): 103-110.
    [101]. Jones, C, Lawton, J., Swhackak, M. Organisms as ecosystem engineers [J]. Oikos, 1994, 69: 373-386.
    [102]. Kim, Y., Arihara, J., Nakayama, T. Antioxidative responses and their relation to salt tolerance in Echinochloa oryzicola Vasing and Setaria virdis (L.) Beauv. [J]. Plant Growth Regulation, 2004, 44: 87-92.
    [103]. Kiselova, Y., Ivanova, D., Chervenkov, T. et al. Correlation between the In Vitro antioxidant activity and polyphenol content of aqueous extracts from bulgarian herbs [J]. Phytotherapy Research, 2006, 20 (11): 961-965.
    [104]. Klapheck, S., Zimmer, I., Cosse, H. Scavenging of hydrogen peroxide in endosperm of Ricinus communis by ascorbate peroxidase [J]. Plant Cell Physiology, 1990, 31:1005-1013.
    [105]. Kumar, G. N. M., Knowles, N. R. Changes in Lipid Peroxidation and Lipolytic and Free-Radical Scavenging Enzyme Activities during Aging and Sprouting of Potato (Solanum tuberosum) Seed-Tubers [J]. Plant Physiology,1993, 102 (1): 115-124.
    [106]. Kumar, R., Singh, M. Tannins: Their adverse role in ruminant nutrition [J]. Journal of Agricultural and Food Chemistry, 1984, 32: 447-453.
    [107]. Kumazawa, S., Taniguchi, M., Suzuki, Yasuyuki et al. Antioxidant activity of polyphenols in carob pods [J]. Journal of Agriculture and Chemistry, 2002, 50 (2): 373-377.
    [108]. Kusumoto, D., Suzuki, K. Spatial distribution and time-course of polyphenol accumulation as a defense response induced by wounding in the phloem of Chamaecyparis obtusa [J]. New Phytologist, 2003, 159 (1): 167-173.
    
    [109]. Larson, R. A. The antioxidants of higher plants [J]. Phytochemistry, 1988, 27: 969-978.
    [110]. Lees, G L., Hinks, C. F., Suttill, N. H. Effect of high temperature on condensed tannin accumulation in leaf tissues of big trefoil (Lotus uliginosus Schkuhr) [J]. Journal of the Science of Food and Agriculture, 2006, 65 (4): 415-421.
    [111], Mansfield, J. L., Curtis, P. S., Zak, D. R. et al. Genotypic variation for condensed tannin production in trembling aspen (Populus tremuloides, Salicaceae) under elevated co2 and in high- and low-fertility soil [J]. American Journal of Botany, 1999, 86 (8): 1154-1159.
    [112]. Mccord, J. M., Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuperin) [J]. The Journal of Biological Chemistry, 1969, 244 (22): 6049-6055.
    [113]. Mitjavila, S., Lacombe, C, Carrera, G et al. Tannic acid and oxidized tannic acid on the functional state of rat intestinal epithelium[J]. Journal of Nutrition, 1977, 107: 2113-2130.
    [114]. Nardini, M., Scaccini, C, Virgili, F. Modulation of kinase activity by polyphenols [A]. Cell signaling, transcription, and translation as therapeutic targets [C]. Annals of the New York Academy of Sciences, 2002, 973 (1): 368-370.
    [115]. Northup, B., Dahlgren, R. A., Mccoll, J. G Polyphenol as regulators of plant-litter-soil interactions in northern Californias Pygmy forest: A positive feedback? [J]. Biogeochemistry, 1998,42:189-220.
    [116]. Pizzi, A., Cameron, F. A. Flavonoid tannins - structural wood components for drought-resistance mechanisms of plants [J]. Wood Science and Technology, 1986,20(2): 119-124.
    [117]. Porter, L. J., Hrstich, L. N., Chan, B. G The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin [J]. Phytochemistry, 1986, 25 (1): 223-230.
    [118]. Price, M. L., Butler, L. G Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain [J]. Journal of Agricultural and Food Chemistry, 1977, 25: 1268-1273.
    [119]. Provenza, F. D. Post-ingestive feedback as an elementary determinant of food preference and intake in ruminants [J]. Journal of. Range Management, 1995, 48: 2-17.
    [120]. Rodriguez-Concepcion, M., Fores, O., Martinez-Garcia, J. F. et al. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development [J]. Plant Cell, 2004, 16: 144-156.
    
    [121]. Rummukainen, A., Julkunen-Tiitto, R. Raisanen, M. et al. Phenolic compounds in Norway spruce as affected by boron nutrition at the end of the growing season [J]. Plant and Soil, 2007, 292 (1-2): 13-23.
    [122]. Schnitzer, M., Barr, M., Hartenstein, R. Kinetics and characteristics of humic acids produced from simple phenols [J]. Soil Biology and Biochemistry, 1984,16 (4): 371-376.
    [123]. Singleton, V. L., Rossi, J. A. Colorimertry of total phenolics with phosphomolybdic - phosphotungstic acid reagents [J]. American Journal of Enology and Viticulture, 1965, 32: 58-63.
    [124]. Slater, T. F. Free radical in liver injury [J]. Proceedings of the Nutrition Society, 1987, 13 (2): 141-146.
    [125]. Stark, S., Julkunen-Tiitto, R., Kumpula, J. Ecological role of reindeer summer browsing in the mountain birch (Betula pubescens ssp. czerepanovii) forests: effects on plant defense, litter decomposition, and soil nutrient cycling [J]. Oecologia, 2007,151 (3): 486-498.
    [126]. Swain, T., Hillis, W. E. The phenolic constituents of Prunus domestica L.-The quantitative analysis of phenolic constituents [J]. Journal of the Science of Food and Agriculture, 1959, 10 (1): 144-158.
    [127]. Tepe, B., Sokmen, A. Screening of the antioxidative properties and total-phenolic contents of three endemic Tanacetum subspecies from Turkish flora [J]. Bioresource Technology, 2007, 98 (16): 3076-3079.
    [128]. Turkan, I., Bor, M., Ozdemir, F. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress [J]. Plant Science, 2005,168: 223-231.
    [129]. Urbansky, E.T., Magnuson, M. L., Kelty, C. A. et al. Perchlorate uptake by salt cedar (Tam arix ramosissima) in the Las Vegas Wash riparian ecosystem [J]. The Science of the Total Environment, 2000, 256: 227-232.
    [130]. Vaughan, D., Sparling, G P., Ord, B. G Amelioration of the phytotoxicity of phenolic acids by some soil microbes [J]. Soil Biology and Biochemistry, 1983, 15 (5): 613-614.
    [131]. Walls, R., Apple, H., Cipollini, M. et al. Fertility, root reserves and the cost of inducible defenses in the perennial plant Solanum carolinense [J]. Journal of Chemical Ecology, 2005, 31 (10): 2263-2288.
    [132]. Xu, B. J., Yuan, S. H., Chang, S. K. C. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes [J]. Journal of Food Science, 2007, 72 (2): S167-S177.
    [133]. Yang, P. F., Pratt, D. E. Antithiamin Activity of Polyphenolic Antioxidants [J]. Journal of Food Science, 1984, 49 (2): 489-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700